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Abstract

Here we report a facile and efficient method for site-directed glycosylation of peptide/protein. The 

method contains two sequential steps: generation of a GlcNAc-O-peptide/protein, and subsequent 

ligation of a eukaryotic N-glycan to the GlcNAc moiety. A pharmaceutical peptide, glucagon-like 

peptide-1 (GLP-1), and a model protein, bovine α-Crystallin, were successfully glycosylated using 

such an approach. It was shown that the GLP-1 with O-linked N-glycan maintained an unchanged 

secondary structure after glycosylation, suggesting the potential application of this approach for 

peptide/protein drug production. In summary, the coupled approach provides a general strategy to 

produce homogeneous glycopeptide/glycoprotein bearing eukaryotic N-glycans.
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Glycans attached to proteins are closely related to protein stability,1 trafficking,2 signaling,3 

and cell–cell interaction.4 N-linked glycosylation of proteins, one of the most prevalent post-

translational modifications in eukaryotes, significantly affects protein folding, stability, and 

function.5,6 However, the heterogeneity of N-glycan in natural and recombinant 

glycoproteins greatly hampered the investigation of the roles of glycan in various biological 

processes. Therefore, access to homogeneous glycopeptides or glycoproteins is a 

prerequisite for their functional studies as well as biomedical application. To date, several 

strategies have been developed to produce uniform N-glycan modifications, including in 

vitro chemical and chemoenzymatic synthesis of glycoproteins7,8 and in vivo 

glycoengineering methods.9–11 Herein, we alternatively proposed a facile approach for site-

directed glycosylation of peptide/protein (Figure 1). The method contains two sequential 

processes: (1) introduction of O-linked N-acetylglucosamine (O-GlcNAc) modification on a 

target peptide/protein by chemical or enzymatic approach, and (2) ligation of a eukaryotic 

N-glycan onto the GlcNAc moiety.

O-GlcNAc modification is a naturally existing protein modification which involves β-linked 

GlcNAc residue to a serine (Ser)/threonine (Thr) via the catalysis of O-linked GlcNAc 

transferase (OGT).12–14 To generate peptide/proteins with O-GlcNAc modification, two 

approaches were employed. The O-GlcNAcylated peptides (GlcNAc-O-peptides) were 

chemically synthesized, while the O-GlcNAcylated target protein was obtained by 

coexpression of OGT with the target protein, forming the O-GlcNAcylated protein 

(GlcNAc-O-protein) in vivo.

Then, we moved to the stage to transfer the N-glycan to the GlcNAc-O-peptide/protein. The 

N175Q mutant of endo-β-N-acetylglucosaminidase M (Endo M N175Q) is an enzyme that 

can efficiently glycosylate the GlcNAc-Asn-peptide/protein using N-glycan oxazolines as 

donor substrates.15–17 However, the feasibility of the Endo M N175Q-catalyzed trans-

glycosylation reaction on GlcNAc-O-peptide/protein needs to be evaluated. Therefore, a 

series of O-GlcNAc modified peptide segments from natural O-GlcNAc-proteins (Table 1) 

(Database: dbOGAP) were synthesized (Figure S1), and Endo M N175Q was then applied to 

glycosylate the GlcNAc-O-peptides using the sialylated complex-type glycan oxazoline 

(SCT-oxa) as a sugar donor. Both HPLC and MALDI-TOF analysis illustrated that the 

remodeled products bear natural, full-size eukaryotic N-glycans (Figure S2). All target peaks 

(GlcNAc-O-peptide or Glycan-O-peptide) in HPLC chromatograms in Figure S1 and Figure 

S2 can be traced and the retention time of each target peak is listed in the text above the 

corresponding HPLC chromatogram. In addition, all target peaks were collected and further 

characterized by MS (as shown in Figure S1 and Figure S2). These results indicated that the 

Endo M N175Q mutant can fully tolerate GlcNAc-O-peptide although its natural substrate is 

GlcNAc-N-peptide, which will help to expand its applications for either natural or unnatural 

glycosylation of peptide/proteins to increase their stability and half-life. The percentage 

yields of the glycan-O-peptide varied from 21% to 73% for different peptide substrates 

(Table 1), implying that the reason for the difference in yield compared to that for GlcNAc-

N-peptide (around 75%), the natural substrate for EndoM N175Q, may be that the 

substrates, GlcNAc-O-peptides, we used in this study are unnatural substrates for Endo M 

N175Q and the variant peptide sequences may result in the diverse yields.
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To investigate whether the O-linked N-glycan would influence the structural stability of 

peptides, we chose glucagon-like peptide-1 (GLP-1) as a candidate. GLP-1 is a well-known 

peptide drug for Type 2 diabetes and has an α-helix secondary structure.18 Liraglutide, a 

GLP-1 analogue modified with fatty acid at Lys26, is a long-acting GLP-1 agonist binding 

to receptors the same as the endogenous metabolic hormone GLP-1.19,20 Based on the 

structure of Liraglutide, we synthesized a GlcNAc-O-GLP-1 analogue with a GlcNAc 

attached to Ser26 to substitute the original Lys26 in natural GLP-1, and then applied Endo 

M N175Q to transfer a complex-type N-glycan onto it (Figure 2a). As expected, Endo M 

N175Q efficiently catalyzed the transglycosylation to form glycan-O-GLP-1 (Calculated: 

5517.3776, Found: [M+4H]4+ = 1380.3643, [M+5H]5+ = 1104.4921, Figure S2). The 

secondary structure of GlcNAc-O-GLP-1 and glycan-O-GLP-1 were further examined by 

circular dichroism (CD) spectra in the far-UV (190–260 nm) range. The negligible 

difference of the CD spectra between GlcNAc-O-GLP-1 and glycan-O-GLP-1 demonstrates 

that the N-glycan modification has no effect on the α-helix secondary structure of GLP-1 

(Figure 2b). Hence, by introducing a eukaryotic N-glycan into an O-GlcNAc site, the newly 

developed method can be potentially used to make glycosylated peptides with natural spatial 

structure, enhanced stability, and serum half-life.

With the site-directed glycopeptides in hand, we further explored their resistance to GlcNAc 

hydrolase (OGA), the hydrolase widely distributed in mammalian cells and highly efficient 

in removing the O-GlcNAc from diverse proteins.21,22 OGA was recently found to be very 

sensitive to a substitution of the N-acyl group of O-GlcNAc. The extension of this group in a 

substrate can markedly decrease the hydrolyzing efficiency of OGA.23 Several OGA 

inhibitors have been designed as GlcNAc analogues with an extended N-acyl group, such as 

PUGNAC or Thiamet-G.24 In light of this, N-glycan could be regarded as a GlcNAc with an 

extended N-acyl group. We thus assume that the glycopeptides we produced with O-linked 

N-glycans would be inert to OGA. To this end, we monitored the glycan loss on selected 

GlcNAc-peptides and N-glycan-O-peptides in the presence of OGA. As expected, OGA 

efficiently removed GlcNAc moiety from the GlcNAc-O-peptides (Table S1 and Figure S3), 

but cannot cleave glycan from N-glycan-Opeptides. This demonstrates that the O-linked N-

glycan modification is capable of preventing the glycan-O-peptide or glycan-O-protein from 

OGA digestion in mammalian cell, which will benefit the maintaining of their stability in 

vivo. In addition, N-glycan tagged at O-GlcNAc site can also resist the hydrolysis of 

peptide-N-glycosidase F (PNGase F), which can exclusively remove all asparagine-linked 

complex, hybrid, or high mannose oligosaccharides. Therefore, our synthesized chimeric 

glycan-O-peptides may have improved stability and increased half-life.

Next, we applied the glycosylation strategy on a model protein, a bovine α-Crystallin 

mutant (Crys-A) with a single O-GlcNAc modification site at Ser116. We have previously 

shown that Crys-A is prone to be modified by O-GlcNAc via its coexpression with OGT in 

Escherichia coli BL21 (DE3) cells,25 which is a convenient and effective approach to 

produce O-GlcNAcylated proteins. In this study, milligram-scale GlcNAc-O-Crys-A was 

produced in E. coli BL21 (DE3) and purified via Ni-NTA affinity chromatography, and then 

served as a substrate for Endo M N175Q catalyzed transglycosylation in the presence of 

SCT-oxa. Both substrate GlcNAc-O-Crys-A and product glycan-O-Crys-A were observed 

and identified by immunoblot and mass spectrometry (Figure 3). A total conversion yield of 
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~30% was observed as calculated by gray value analysis. These findings proved that glycan-

Crys-A can be successfully produced by the combined approach involving O-GlcNAc 

modification in vivo and enzymatic glycan remodeling in vitro. Based on previous research, 

glycosylation can increase the activity and half-life of pharmaceutical proteins. For example, 

Avonex is a marketed glycosylated interferon-β and has a single N-linked complex 

carbohydrate moiety, the half-life and activity of which are longer and more increased than 

marketed Betaseron, the nonglycosylated interferon-β.26 According to this, a single glycan 

should be helpful for increasing the half-life and activity of pharmaceutical protein. 

Therefore, the strategy in this manuscript for producing homogeneous glycoprotein could be 

applied for increasing the stability of pharmaceutical proteins in the future.

In summary, the approach provides a general platform for producing homogeneous peptides/

glycoproteins with O-linked eukaryotic N-glycans in a site-directed manner, which may 

contribute to the enhancement of therapeutic efficiency of modified peptides/proteins. The 

proof-of-concept study can be extended to produce significant pharmaceutical peptides and 

proteins in the future.

Supplementary Material
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Figure 1. 
Site-directed glycosylation of peptide/protein with uniform eukaryotic N-glycan. a. 

Chemically synthesized GlcNAc-O-peptide can be glycosylated by Endo M N175Q with 

complex-type glycan oxazoline (SCT-oxa) as a donor. b. GlcNAc-O-protein can be 

generated by coexpression with OGT and then linked with homogeneous eukaryotic N-

glycan.
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Figure 2. 
Glycosylation of GLP-1 and circular dichroism study. a. Scheme of glycosylation of GLP-1. 

b. Far-UV CD spectra of GlcNAc-O-GLP-1 and glycan-O-GLP-1.
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Figure 3. 
Glycosylation of bovine α-Crystallin-A (Crys-A) and identification by immunoblot and in-

gel digestion plus mass spectrometry. a. Immunoblot analysis of GlcNAc-O-Crys-A and 

glycan-O-Crys-A. (i) Anti-O-GlcNAc antibody is a primary antibody to detect GlcNAc. (ii). 

Anti-His antibody is a primary antibody to detect His-tag in Crys-A. b. In-gel digestion by 

trypsin for mass spectrometric characterization of glycan-Crys-A, calculated 4754.9837, 

found [M+5H]5+ = 952.4069, [M+6H]6+ = 793.8413. MS/MS characterization can be found 

in Figure S4.
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Table 1

N-Glycan Modification of Selected Peptides

entry peptide sequence protein source product yields (%)

Ser-01 MVLSPADK HBA_HUMAN 61

Ser-02 PQFSYSA AKT1_HUMAN 73

Ser-03 PHTSGMNR FOXO1_HUMAN 30

Ser-04 KQVSQAQT TAF4_HUMAN 32

Ser-05 KIGSLDNI TAU_HUMAN 47

Thr-01 TKITGGSS EMSY_HUMAN 37

Thr-02 PKGTEITI MLL5_HUMAN 23

Thr-03 LLPTPPLS MYC_HUMAN 21

Thr-04 PTGTQATY EMSY_HUMAN 23
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