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Abstract

Identification of intracellular signal transduction pathways plays an important role in 

understanding the mechanisms of how cells respond to external stimuli. The availability of high 

throughput microarray expression data and accumulating knowledge of protein-protein 

interactions have provided us with useful information to infer condition-specific signal 

transduction pathways. We propose a novel method called Gibbs sampler to Infer Signal 

Transduction pathways (GIST) to search dys-regulated pathways from large-scale protein-protein 
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interaction networks. GIST incorporates different knowledge sources to extract paths that are 

highly associated with biological phenotypes or clinical information. One of the most attractive 

features of GIST is that the algorithm will not only provide the single optimal path according to 

the defined cost function but also reveal multiple suboptimal paths as alternative solutions, which 

can be utilized to study the pathway crosstalk. As a proof-of-concept, we test our GIST algorithm 

on yeast PPI networks and the identified MAPK signaling pathways are well supported by existing 

biological knowledge. We also apply the GIST algorithm onto a breast cancer patient dataset to 

show its feasibility of identifying potential pathways for further biological validation.

I. Introduction

Signal transduction is a chain of processes triggered by external stimuli which result in a 

series of cellular responses such as change in post-transcriptional expression, cell 

proliferation or apoptosis, etc. Uncovering of signal transduction pathways in a living cell is 

essential to understand the mechanism of how different proteins interact with each other to 

form cascades of biochemical reactions. Typical pathway databases such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG) contain a collection of pathway maps 

comprising of genomic and biochemical interactions. However, knowledge from databases 

such as KEGG is usually generic and without any biological context, which makes it hard to 

be interpreted in biological or clinical studies. Recently, the fast development of 

biotechnology has provided researchers with high throughput expression data and protein-

protein interaction (PPI) data, which can be utilized for the inference of condition-specific 

signal transduction pathways.

Several methods have been proposed to identify signal transduction pathways using PPI data 

including Netsearch[1], random color coding[2], integer linear programming[3], etc. 

However these existing methods have some inherent limitations as follows: 1. Current 

methods are very sensitive to the pathway length and users need to try multiple experiments 

for selecting an appropriate length. This limits the application of these methods for inferring 

de novo signal transduction pathways where ground truth knowledge is lacking, such as in 

human cancer researches. 2. None of the existing methods addresses the problem of 

identifying potential alternative pathways or cross talk between two or more pathways.

In this paper, we propose a novel method, namely GIST, to infer signal transduction 

pathways using a Gibbs sampling strategy. From a sampling point of view, we convert the 

cost function, which is the aggregated evidence for all molecules in the path that starts from 

the membrane receptors to nuclear receptors (e.g. transcription factors), to a probability 

distribution. GIST is an effective method, which can extract multiple pathways and examine 

their interconnections using integrated data sources, including expression data, protein-

protein data, clinical information and cellular locations of the proteins. Compared with the 

existing pathway identification methods, GIST has several advantages: 1. GIST is a 

computationally efficient method for pathway identification in large-scale PPI network. By 

using a Gibbs sampling strategy, GIST can identify a path of length 8 from yeast PPI data 

within several minutes, while it takes hours for methods such as random color coding; 2. 

GIST is not sensitive to the pathway length selection; 3. GIST can identify multiple distinct 
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pathways between the selected membrane protein and transcription factor, which makes it 

possible to study alternative pathways or pathway cross talk. We demonstrate the success of 

the GIST algorithm by recovering the well-known MAPK signaling pathways using yeast 

PPI data. We also apply GIST onto a public breast cancer dataset to show the feasibility of 

the proposed algorithm for clinical cancer research.

The paper is organized as follows: in Section 2 we present the pathway model that 

incorporates multiple data sources and introduce the sampling framework using a Gibbs 

strategy. In Section 3 we show some case studies on yeast MAPK signaling pathways and 

further apply our algorithm to study a breast cancer patient dataset. Finally, in Section 4, we 

summarize the advantages of the proposed GIST algorithm in comparison to the existing 

methods and draw conclusions that the proposed algorithm can serve as a useful tool to infer 

signal transduction pathways for biological or clinical studies.

II. A Gibbs Sampler for inferring Signal Transduction Pathways

A. Solving the Pathway Identification Problem Using Gibbs Sampling

We define a pathway as a chain of molecules (genes or proteins) that starts at the membrane 

receptors and ends at nuclear transcription factors through which signal is transmitted in 

response to external stimulus or specific cellular condition. PPI data reflect the affinity of 

two protein molecules that bind together as protein complex to perform certain biological 

function. Based on PPI data, the inference of pathway can be naturally interpreted as looking 

for potential paths with strong evidence of signaling transduction from PPI network, given 

some membrane proteins and transcription factors.

We denote the PPI network as a weighted undirected graph as G(V,E,W) where vertex vi ∈ 
V is the i-th and ei, j ∈ E represents the edge between protein i and j. If protein i and j are 

connected in the PPI network, e i, j = 1; otherwise, ei,j = 0. wi, j ∈ W,i ≠ j is the weight of the 

edge connecting protein i and j; Specially for i = j, wi,j □ wi is defined as node weight for 

protein i. We define a pathway of length L as a directed path consisting L proteins denoted 

as ΘL = [θ1,…,θl,…, θL],1≤l≤L where θ1 is a membrane protein which we referred to as the 

“source” and θL is some transcription factor that we referred to as the “sink”. For 1<l<L, θl 

can only be connected to θ l−1 and θ l+1 where θ l−1 is the upstream protein of θl and θ l+1 

is the downstream. Unlike protein-protein interactions without direction, signal transduction 

interactions between pathway members are directional, starting from the membrane to the 

nuclear. To impose this “directed path” concept on our algorithm, we use the cellular 

location information ui of protein i as the constraint. Hence the cost function of one pathway 

of length L is defined as:

ΘL = arg max
ΘL

f ΘL = arg max
ΘL

∑
l = 1

L − 1
wθl, θl + 1

+ ∑
i = 1

L
wθl

,

s.t. uθl
≤ uθl + 1

and eθl, θl + 1
= 1, 1 ≤ l < L .

(1)
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and eθl,θl+1 = 1,1 ≤l<L.

In equation (1), the cost associated with a pathway is jointly determined by the selection of 

all proteins in the path. Hence, the pathway identification problem is equivalent to the 

searching of optimal ΘL that yields the maximum value of the cost function. Note that there 

could be multiple solutions of ΘL, for example denoted as ΘL
1 and ΘL

2, where 

ΘL
1 ∩ ΘL

2 = θ1, θL , which satisfy: f ΘL
1 ≈ f ΘL

2 ≈ max f ΘL . This suggests that there are 

multiple distinct pathways from the given source to the sink. Hence in order to get a 

comprehensive view of the signal transduction across the PPI network, we need to traverse 

the high dimensional solution space. However, as L increases, brute force searching becomes 

infeasible. To solve this problem, we propose a Gibbs strategy to efficiently sample the 

pathways from the solution space.

By normalizing function f(ΘL) using a constant K we can convert the cost function to a 

probability distribution as follows:

p ΘL = p θ1, …, θl, …, θL = 1
K · f θ1, …, θl, …, θL . (2)

Searching ΘL that maximizes the cost function in equation (1) is equivalent to finding 

samples with the highest probability density as in equation (2). Instead of directly sampling 

the vector ΘL from the joint distribution p(ΘL), we utilize a Gibbs strategy [4, 5] to sample 

the value of θl from the conditional distribution of θl based on the current value of all other 

nodes θm, m ≠ l. The Gibbs sampling technique is drawing samples according to the 

following manner:

θ1
(t + 1) p(θ1 ∣ θ2

(t), θ3
(t)…θL

(t))

θ2
(t + 1) p(θ2 ∣ θ1

(t + 1), θ3
(t)…θL

(t))
......

θl
(t + 1) p(θl ∣ θ1

(t + 1), …, θl − 1
(t + 1), θl + 1

(t) , …θL
(t))

......
θL

(t + 1) p(θL ∣ θ1
(t + 1), θ1

(t + 1)…θL − 1
(t + 1))

, (3)

where t is the number of the iteration. The empirical distribution constructed by samples 

from the Gibbs sampler well approximates the joint distribution p(ΘL) when the number of 

iterations is large enough. Based on the estimated p(ΘL), we can determine the most likely 

signal transduction pathways inferred from the integrated data.

B. Avoiding Local Optima by Increasing Step-size of the Sampler

The proposed sampling process draws one sample for each node in the path according to the 

conditional distribution with the following constraints: the newly selected node should be 

connected to its direct upstream and downstream nodes in the protein-protein interaction 
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network. We define the above Gibbs sampler has a unit step-size of 1 considering that each 

time it only updates one node in the path. However, if the cost function is very complicated 

with many local dents, the searching algorithm may be trapped into local optima when 

starting from an inappropriate initialization. To prevent the proposed sampler from being 

trapped in the local optima, we increase the step-size to 2 by sampling a pair of connected 

nodes in the path conditioned on the rest of the nodes in the current path as is shown in Fig. 

1.

Fig. 1(a). illustrates a protein-protein network with the selected source (triangle) and sink 

(diamond). The current pathway is highlighted using green color and we need to update two 

connected nodes (marked red, corresponding to node 2 and 7 in Fig. 1(b)) in the current 

path. Fig. 1(b). shows that based on the PPI network structure between the nearest neighbors 

(marked yellow) of node 2 and 7, we have in total 8 possible pairs for selection which are 

(1,5), (1,7), (2,4), (2,6), (2,7), (2,8), (3,7) and (3,8). By sampling from the conditional 

distribution of the 8 pairs of nodes, we select one (e.g. nodes 1 and 5), to update the current 

pair (2,7) as is shown in Fig. 1(c). By increasing the step-size, we make it easier for the 

searching algorithm to jump out of local optima.

III. Experiments and Results

A. Yeast Protein-Protein Interaction Data

We tested our GIST algorithm on yeast PPI data set to validate its efficacy of extracting 

biological meaningful signal transduction pathways. The protein-protein interaction network 

was obtained from the Database of Interacting Protein (DIP) which contained 4389 proteins 

with 14,319 interactions[6]. We took the MAPK signaling pathways inference as a case 

study and compared GIST to the integer linear programming (ILP) and random color coding 

method with regard to their performance in detecting known yeast pathways. We first tested 

the GIST algorithm on pheromone response pathway using Ste3 as the source and Ste12 as 

the sink. From the Venn diagram shown in Fig. 2, the identified pathway from GIST is the 

most consistent with the canonical pathway from KEGG database. GIST detected all 12 

proteins in the KEGG pathway that were also detected by the other two methods. Meanwhile 

GIST was able to identify proteins which were supported by the KEGG database but was not 

detected by ILP (Gpa1, Dig1 and Dig2) or random color coding (Ste20).

We further demonstrate how GIST identifies multiple pathways in yeast PPI data. We used 

GIST to detect yeast filamentation growth pathway between membrane protein Ras2 and 

transcription factor Ste12. Fig. 3 shows the identified pathways between the source and sink.

From Fig. 3 we see that GIST found two distinct pathways between protein Ras2 and Tec1. 

The upper path which includes Ste5, Ste7, Kss1 and Ste12 can be well supported by KEGG 

database and was also detected by ILP and random color coding. In addition to the above 

path that was discovered by all three methods, GIST was able to detect one unique path that 

was missed by both competing methods: RAS2 -> CYR1 -> SRV2 -> ACT1 -> ESA1 -> 

ARP4 -> HHF1. It has been studied that RAS2, CYR1 and SRV2 are associated with cAMP-

protein kinase A (PKA) pathway, which is known to be important for cell growth and stress 

resistance [7]. Moreover, it is also studied that both MAP kinase and cAMP can affect 
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filamentation process of yeast cells, as mutations of either pathway will affect a cell surface 

protein [8], which again supports the cross-talk between two pathways. Several enriched 

function items (shown in Table. 1) such as stress response, cell growth and filamentation 

growth further suggests the relevance of discovered pathway.

Finally, to test GIST for pathway inference on clinical research, we applied our method to a 

public breast cancer dataset [9] which had samples from two conditions: early relapse 

patients and late relapse patients. For each gene or protein in the network, we calculated its 

t-test p-value between two conditions and converted the p-value to z-score as the node score. 

The edge z-score was calculated from the p-value of the correlation coefficient between the 

expressions of the two proteins in the network. Instead of using solely protein-protein 

interaction data from HRPD database, we also downloaded binary pathway interaction data 

from 3 databases: Reactome, NCI/Nature Pathway Interaction Database and MSKCC 

Cancer Cellmap. The entire PPI/Pathway network contains 9,264 proteins and 68,111 

interactions. Moreover, we also collected the cellular location information of each protein 

using Ingenuity Pathway Analysis software. We heuristically set the maximum length of the 

pathway to be 10 and ran the Gibbs sampler for 5,000 iterations.

Even with the skeleton pathway inferred by proposed method (shown in Fig. 4.), functional 

activities related with cancer is highly enriched in KEGG database (Pathways in cancer, 

FDR=2.48E-06%). The collection of red nodes, which indicate up-regulated genes in early 

relapse patients, mainly consists of genes responsible for cell-cycle and DNA-damage 

processes, such as CCNE1, CCNA2 and TP53 (Cell cycle, FDR = 8.25E-04%). By checking 

the genes up-regulated in late relapse patients, which have green color, some signaling 

relationships are enriched (ErbB signaling pathway, FDR=1.9%). Furthermore, the 

recurrence of breast cancer has been associated with the up-regulation of epidermal growth 

factor receptor (EGFR) and activation of mitogen activated protein kinase (MAPK) pathway 

[10]. Possible anti-estrogen mechanism is also explained by cross-talk between EGFR and 

ESR1 (estrogen-receptor alpha) signaling pathways through experimental study [11]. From 

the inferred pathway, it is also interesting to observe that ESR1 and androgen receptor (AR) 

can potentially interact with each other, and both of them are over-expressed in late relapse 

patients. Our computational results are well supported by a recent patient study that AR in 

estrogen receptor (ER)-positive breast tumors is a prognostic maker, associated with better 

clinical outcome and lower proliferation activities [12].

IV. Conclusions

In this paper, we propose a novel method to infer intracellular signal transduction pathways 

using Gibbs sampling. Our method, namely GIST, has effectively revealed MAPK signaling 

pathways in yeast data and can be utilized to study pathway cross-talk. We have 

demonstrated the feasibility of GIST on a breast cancer dataset and we plan to carry out 

more experiments for a comprehensive study of breast cancer datasets.
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Fig. 1. 
Sampling a pair of nodes in the pathway using a Gibbs sampler of step-size 2. Fig. 1(a) 

shows the selection of the current path between the source and sink. In Fig. 1(b), one pair of 

nodes is selected from all possible pairs. Fig. 1(c) shows the path is updated using the newly 

sampled nodes.
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Fig. 2. 
Computational results for identifying pheromone response pathway. The left panel is a Venn 

diagram comparing the identified molecules that are included in KEGG database from the 

three methods. The right panel shows the entire pheromone response pathway extracted from 

KEGG database.
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Fig. 3. 
Multiple pathways are identified for yeast filamentation growth pathway using GIST. The 

pathway connected by solid arrow is overlapped with the canonical yeast filamentation 

pathway from KEGG. The pathway connected by dashed arrow is the alternative pathway 

that was identified by GIST algorithm.
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Fig. 4. 
The identified pathway between EGFR and JUN for Loi’s breast cancer dataset. The color of 

the node reflects log2 fold-change between early and late relapse patients. The line width is 

proportional to the sampling frequency of the specific edge by GIST algorithm. The pathway 

components are laid out according to their cellular locations.
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Table 1

Functional Analysis of The Alternative Path for Filamentation Growth

GO Term Name p-value

filamentous growth of a population of unicellular organisms 0.00981

cellular response to stimulus 0.00286

Ras protein signal transduction 0.00155

growth 0.00129

histone modification 0.00032
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