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Abstract

Peptidic natural products (PNPs) include many antibiotics and other bioactive compounds. While 

the recent launch of the Global Natural Product Social (GNPS) molecular networking 

infrastructure is transforming PNP discovery into a high-throughput technology, PNP 

identification algorithms are needed to realize the potential of the GNPS project. GNPS relies on 

the assumption that each connected component of a molecular network (representing related 

metabolites) illuminates the “dark matter of metabolomics” as long as it contains a known 

metabolite present in a database. We reveal a surprising diversity of PNPs produced by related 

bacteria and show that, contrary to the “comparative metabolomics” assumption, two related 

bacteria are unlikely to produce identical PNPs (even though they are likely to produce similar 

PNPs). Since this observation undermines the utility of GNPS, we developed a PNP identification 

tool VarQuest that illuminates the connected components in a molecular network even if they do 

not contain known PNPs and only contain their variants. VarQuest revealed an order of magnitude 

more PNP variants than all previous PNP discovery efforts and demonstrated that GNPS already 

contains spectra from 41% of currently known PNP families. The enormous diversity of PNPs 
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suggests that biosynthetic gene clusters in various microorganisms constantly evolve to generate a 

unique spectrum of PNP variants that differ from PNPs in other species.

After a decline in the pace of antibiotics discovery in the 1990s, antibiotics and other natural 

products are again in the center of attention as exemplified by the recent discovery of 

teixobactin1. Previous studies of natural products mainly relied on low-throughput NMR-

based technologies requiring large amounts of highly purified material that are often difficult 

to obtain. The key condition for enabling the renaissance of the antibiotics research is 

development of high-throughput computational discovery pipelines such as the recently 

launched Global Natural Products Social (GNPS) molecular network2 that already contains 

over a billion of tandem mass spectra, a gold mine for bioactive compounds discovery. 

However, natural products identification algorithms are needed to transform antibiotics 

discovery into a high-throughput technology and to realize the promise of the GNPS project.

This study focuses on Peptidic Natural Products (PNPs), an important class of natural 

products with an unparalleled track record in pharmacology: many antibiotics, antiviral and 

antitumor agents, immunosuppressors are PNPs. PNPs are produced by Non-Ribosomal 

Peptide Synthetases (NRPS)3 and Ribosomally synthesized and Posttranslationally modified 

Peptides Synthases (RiPPS)4. NRPS and RiPPS synthesize Non-Ribosomal Peptides (NRPs) 

and Ribosomally synthesized and Posttranslationally modified Peptides (RiPPs), 

respectively. NRPs are not directly inscribed in genomes but instead are encoded by NRPSs 

using non-ribosomal code, with each A-domain in NRPS responsible for a single amino acid 

in NRP5, 6. While RiPPs are encoded in the genome, the RiPP-encoding genes are often 

short, making it difficult to annotate them7.

PNP identification

Given a spectrum and a peptide database, peptide identification refers to finding a peptide in 

the database that generated the given spectrum. Identification of spectra derived from 

PNPs8–11 is more difficult than traditional peptide identification in proteomics because many 

PNPs are non-linear peptides (e.g., cyclic or branch-cyclic) that contain non-standard amino 

acids and complex modifications.

Identification of non-linear peptides is only one of the two major challenges in PNP 

identification. In many cases, a PNP is absent in the database of known PNPs, but its 

modified or mutated variant is present in this database. Identification of an unknown PNP 

from its known variants is called variable identification (as opposed to standard 
identification when a PNP is present in the database). Similarly to the problem of variable 

identification of modified peptides in traditional proteomics12–15, variable PNP 

identification is difficult because the computational space of this problem is several orders of 

magnitude larger than for standard PNP identification.

Since most PNPs form families of related peptides, variable identification is crucial for PNP 

discovery. Finding variants of known PNPs is important since these variants are sometimes 

more effective than the most abundant representatives of PNP families that currently 

dominate the PNP databases. The antifungal drug Cancidas16 or modified variants of 
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vancomycin17 are some examples of variant PNPs that proved to be effective in clinical 

applications.

Spectral networks

Given a set of PNPs P1, . . . , Pm, their peptide network is a graph with nodes P1, . . . , Pm, 

and edges connecting two PNPs if they differ by a single modification or mutation 

(substitution, insertion or deletion)18. Each component in the peptide network defines a PNP 

family. In reality, we are not given PNPs P1, . . . , Pm but only their spectra S1, . . . , Sm. 

Nevertheless, one can approximate the peptide network by constructing the spectral network 
on nodes S1, . . . , Sm, where spectra Si and Sj are connected by an edge if they are similar, 

e.g., can be aligned against each other using the spectral alignment algorithm13.

Although spectral networks19 reveal spectra of related peptides without knowing what these 

peptides are, they have an important limitation—they work only when one of the spectra 

(nodes) in the connected component of the network corresponds to an unmodified peptide 

from a database (referred to as an unmodified parent). As the result, orphan components in 

the spectral network (components without annotated nodes) represent the “dark matter of 

PNPs” since the spectral network propagation approach18, 19 lacks ability to interpret them 

in the absence of an unmodified parent (Figure 1a).

PNP identification strategies

The DEREPLICATOR algorithm11 identified many PNPs in the GNPS dataset through 

standard identification (without modifications) and variable identification via spectral 

networks (Figure 1a). However, the limitation of the spectral network approach prevents 

DEREPLICATOR from finding many PNP variants. Indeed, variable identification via 

spectral networks works only when there exists an unmodified parent in a given connected 

component. Since PNPs vary across diverse related bacteria, this condition does not hold for 

many GNPS datasets because a PNP identified in one bacterium (and present in a database) 

is often represented by its modified variant in another bacterium. This limitation raises the 

challenge of developing methods for variable PNP identification that, in difference from 

DEREPLICATOR, do not rely on spectral networks.

Modification-tolerant search reveals diverse PNP variants

Since PNP databases are dominated by the most abundant representatives of PNP families, 

existing algorithms, focusing on identification of known PNPs, annotate only a small 

fraction of GNPS spectra. To address this limitation, we developed a network-independent 

VarQuest algorithm for modification-tolerant PNP identification (Figure 1b).

VarQuest revealed that a vast majority of PNP families (78%) identified in GNPS were not 

represented by any non-modified known PNP and thus are not detectable using the spectral 

network approach. This observation suggests that not only PNPs are extremely diverse 

across evolutionary distant microbial species but that also PNP families rapidly evolve so 

that PNP variants present in one species are often mutated/modified even in closely related 
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species. This evolution of PNP families may reflect adaptation to unique ecological niches 

under various pressures, not unlike evolution of skyllamycins in Pseudomonas aeruginosa20.

The great diversity of PNP variants underscores the importance of variable PNP 

identification via VarQuest and reveals a limitation of the spectral network approach 

implemented in DEREPLICATOR (most components in the GNPS spectral network turned 

out to be orphans). VarQuest has now fixed this unanticipated limitation. We benchmarked 

VarQuest and identified an order of magnitude more PNP variants as compared to existing 

PNP identification strategies.

Results

Brute-force approach

A novel PNP is called a variant of a known PNP if it has the same topology and sequence of 

amino acid, except for a single modified/mutated amino acid. We focus on identification of 

PNP variants with mass offset up to MaxMod (the default value MaxMod=300 Da).

The brute-force approach to variable identification (BruteForce) is based on enumeration of 

all possible modifications/ mutations for each peptide from the database21. Given a spectrum 

S and each PNP P from the database (with mass difference δ < MaxMod), it considers a 

modification of mass δ on all possible amino acids in P, forms a list CandidatePeptides(S) 

containing all such modified PNPs, and finds a PNP in CandidatePeptides(S) with the best 

match to S. Since the resulting list CandidatePeptides(S) contains a large portion of the 

entire PNP database, this approach is prohibitively time-consuming. Various database 

filtering strategies and spectral alignment algorithms were developed to speed-up the brute-

force approach in traditional proteomics12–14, 22, 23. However, extending variable 

identification algorithms from linear peptides to non-linear PNPs remains a challenge.

Spectral network approach

The spectral network approach (SpecNets) constructs the spectral network of all spectra and 

identifies the connected component of the spectral network that contains a given spectrum S 
(denoted Component(S)). It further forms the set CandidatePeptides(S) as the set of 

identifications of all spectra in Component(S) that were discovered using the standard 

identification method. Afterwards, it applies the spectral network propagation approach to 

CandidatePeptides(S) to perform variable identification of S. Although this approach is fast 

(since the CandidatePeptides(S) is typically small), it fails when Component(S) is an orphan, 

i.e., does not contain any spectra originating from known PNPs.

VarQuest algorithm

VarQuest pipeline for a single spectrum S (Figure 2) starts with selection of a short list 

CandidatePeptides(S) from the PNP database. Afterwards, VarQuest scores S against each 

PNP (with a single modification) in CandidatePeptides(S) and computes P-values of 

resulting PNP-spectrum matches (PSMs)24. A peptide with the lowest P-value among all 

PNPs in CandidatePeptides(S) is reported as a candidate PNP that gave rise to the spectrum 

S.
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Efficient selection of the small list CandidatePeptides(S) is the key step of VarQuest. The 

standard identification approaches include a peptide P into CandidatePeptides(S) as long as 

Mass(S) ≈ Mass(P) with error up to Δ. Since Δ is small for high-resolution spectra, the list 

CandidatePeptides(S) is much smaller than the number of PNPs in the database, enabling 

fast standard identification but preventing detection of novel PNP variants. Var-Quest detects 

novel PNP variants by constructiong a short list CandidatePeptides(S) (in difference from a 

long list constructed by BruteForce) as described in the Methods section.

Although VarQuest searches for unknown PNPs with a single modification (as compared to 

a known PNP), it has ability to find PNPs with multiple modifications. However, in such 

cases, instead of reporting multiple modifications, it reports a single modification with 

combined mass equal to the total mass of multiple modifications. Below we illustrate how 

further analysis allows one to infer the positions and masses of multiple modifications.

Benchmarking VarQuest

We benchmarked VarQuest on five high-resolution GNPS datasets: SpectraPSEUD (≈400,000 

spectra from 260 Pseudomonas isolates25), SpectraSTREP1 (≈200,000 spectra from 

Streptomyces7), SpectraSTREP2 (≈500,000 spectra from Streptomyces11, 26), SpectraCYANO 

(≈11 million spectra from Cyanobacteria27), and SpectraGNPS (≈130 million spectra from 

GNPS11). Details on these datasets are provided in Supplementary Table 1.

We matched all spectral datasets against the PNPdatabase constructed by combining all 

PNPs from Anti-Marin28, DNP29, MIBiG30, and StreptomeDB31 (5021 PNPs forming 1582 

PNP families). The results were compared with BruteForce, SpecNets, and the standard 

identification (Standard) algorithms (Table 1). Time and memory requirements of these 

methods are described in Supplementary Table 2. Although BruteForce can find all VarQuest 

identifications (for a given P-value threshold) on the same set of spectra, it becomes 

prohibitively time-consuming even on moderately-sized spectral datasets such as 

SpectraCYANO. Note that all methods are based on DEREPLICATOR11 and that BruteForce 

and SpecNets failed to process the SpectraCYANO and SpectraGNPS datasets due to large 

memory requirements.

We compared the number of identified PSMs and unique peptides for all methods at 0%and 

5%False Discovery Rate (FDR) levels. To compute the FDR, VarQuest uses the concept of a 

decoy database extended to nonlinear peptides (see the Methods section). All PSMs with P-

values above 10−10 were removed beforehand and the FDR was conservatively computed for 

the remaining PSMs. Table 1 shows more than ten times increase in the number of PSMs 

and five times increase in the number of PNPs and PNP families identified in GNPS via 

variable identification with VarQuest compared to the standard DEREPLICATOR at 5% 

FDR. Figure 3 shows the peptide network of the largest PNP family (cyclosporins) in the 

PNPdatabase identified by VarQuest (Supplementary Table 3).

While DEREPLICATOR revealed spectra corresponding to only 8% of peptides in the 

PNPdatabase, VarQuest increased this number to 40%. 1605 out of 2025 PNPs identified by 

VarQuest in SpectraGNPS (at 5% FDR) have their unknown variants present in SpectraGNPS, 
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while their known variants are absent and thus can not be detected by the standard 

identification strategies.

Our analysis of the entire GNPS dataset at 5% FDR identified 648 PNP families (41% of all 

known PNP families). At the same time, only a small fraction of identified PNP families 

(143 out of 648) were identified as an unmodified parent, i.e., a vast majority of identified 

PNP families (78%) were not represented by any non-modified peptides in the PNPdatabase 

and thus are not detectable using the spectral network approach.

Modifications/mutations identified by VarQuest

Supplementary Table 4 shows the most common mass offsets identified by VarQuest in the 

SpectraGNPS dataset at 5% FDR. For each mass offset we identified its most likely position 

in the PNP. As expected, the most common offsets are −14 Da (demethylation), +14 Da 

(methylation), +28 Da (dimethylation), +18 Da (hydration), and +16 Da (hydroxylation) 

corresponding to either modifications/adducts or mutations. In addition, Supplementary 

Table 4 reveals many surprising offsets such as −95 Da offset (primarily at Leucine/

Isoleucine), −81 Da offset (primarily at Valine), and others. These offsets may correspond to 

the combination of the amino acid loss (−113 Da for Leucine/Isoleucine and −99 Da for 

Valine) and hydration (+18 Da). The abundance of such offsets suggests that the recently 

described phenomenon of amino acid deletions/insertions in NRPs25 (due to A-domain 

stuttering and skipping in NRPSs32) may be more prevalent than previously thought. 

Genome mining efforts typically rule out such events due to the consecutive arrangements of 

A-domains in NRP synthetases.

To conservatively estimate the number of indels revealed by spectra in SpectraGNPS, we 

considered identified mass offsets that matched monoisotopic masses of proteinogenic 

amino acids within a 0.02 Da error. This analysis revealed 217 (169) putative insertions 

(deletions) out of 19619 PNP variants identified by VarQuest in SpectraGNPS at 5% FDR. 

Our confidence in the deletions is higher than in the insertions since for each of them we 

also checked that the deleted amino acid is present in the known PNP structure (which 

reduced the initial number of potential deletions by 30% from 242 to 169).

Analysis of PNP diversity

VarQuest identified 19619 PNP variants related to 2025 distinct PNPs in SpectraGNPS at 5% 

FDR. More than 70% of the identified PNPs (1489) were found in at least two different 

forms. Each identified PNP was found in 9.7 various PNP forms on average with the 

maximum value equal to 239 for tolybyssidin A. Our analysis adds a “chemical” dimension 

to the recently revealed PNP diversity at the biosynthetic gene cluster (BGC) level33, 34. We 

further revealed that related bacteria are likely to produce similar PNP variants rather than 

identical PNPs (see the Methods section).

Validation of VarQuest identifications

Our analysis revealed that about 60% of the PNP variants identified by VarQuest in 

Pseudomonas and Streptomyces datasets are missed by DEREPLICATOR and SpecNets. 

We validated the most statistically significant VarQuest hits using literature search for 
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identified PNP origin which should correlate with the sample origin (see the Methods 

section) and searched for BGCs by genome mining35 whenever the genome of the analyzed 

species is available. We further analyzed three identified PNP variants (referred to as 

Massetolide-1252, Venepeptide-2154, and Surugamide-769) in more details (Supplementary 

Figure 1).

Massetolide-1252—Massetolide A is a known NRP from Pseudomonas36 that consists of 

a cycle TISLSLI and a branch EL (along with 3-hydroxydecanoic acid lipid tail of mass 171 

Da) attached to the cycle via a bond connecting T in the cycle with E in the branch. We 

represent branch-cyclic peptides as a concatenate of its cyclic sequence and its branch 

sequence, both starting from their attachment points, e.g., massetolide A is represented as 

TISLSLI*EL. VarQuest identified massetolide A and its novel variant Massetolide-1252 

(sequence TISL+113SLI*EL and mass 1252.8 Da) with P-value 4.2 · 10−19 using a spectrum 

from P. synxantha. The +113 Da offset corresponds to insertion of Leucine or Isoleucine 

residue and matches the recently identified poaeamide B with sequence TISLLSLI*EL and 

mass 1252.8 Da. Note that a single run of VarQuest instantly achieved the same goal as the 

time-consuming semi-manual discovery of poaeamide B25.

VarQuest also rediscovered bananamides, a family of PNPs discovered in the same study25. 

Bananamide (referred to as Bananamide-1093) was identified with P-value 4.3 · 10−10 as a 

variant of massetolide A (sequence TIS−46LSLI*EL and mass 1093.7 Da) using a spectrum 

from P. fluorescens. While the recent study25 did not derive the amino acid sequence from 

this spectrum, it purified and sequenced a related PNP (named bananamide 2) with sequence 

TLLQLI*DL (along with C12 3-hydroxy unsaturated acid lipid tail of mass 197 Da) and 

mass 1105.7 Da (amino acids differing from massetolide A are highlighted except for a 

change between amino acids I and L with identical masses). While amino acid sequences 

TIS−46LSLI*EL and TLLQLI*DL appear to be rather different, note that S−46LS has the 

same mass as LQ suggesting that TIS−46LSLI*EL may actually correspond to TILQLI*EL 

with a single deleted amino acid as compared to massetolide A. Note that there is only one 

difference with respect to masses of amino acids between this sequence (TILQLI*EL) and 

the sequence of bananamide 2 (TLLQLI*DL).

Our analysis of Bananamide-1093 suggests that bananamides emerged from the 

massetolides family after deletion of a single amino acid (or alternatively, massetolides 

emerged from bananamides after insertion of a single amino acid). Interestingly, while the 

PSM for Bananamide-1093 is statistically significant, PSMs for bananamides 1, 2, and 3 

identified in25 have rather high P-values that did not pass the VarQuest P-value threshold. 

Remarkably, the manual analysis in25 missed the most statistically significant PSM for 

bananamides identified by VarQuest, illustrating the power of automated approaches to PNP 

identification. Moreover, after identifying Bananamide-1093, VarQuest identifies spectra of 

bananamides 1, 2, and 3 against Bananamide-1093 as statistically significant PSMs with P-

values 1.1 · 10−13, 9.8 · 10−12, and 1.1 · 10−16, respectively.

Surugamide-769—Surugamides are cyclic NRPs from marine streptomyces11, 37. 

VarQuest identified both known PNP surugamide B with sequence IAIVKIFL and its novel 

variant IAIVK−128IFL using a spectrum from S. albus (P-value 1.7 · 10−19). The SpecNets 
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approach missed this compound because its connected component does not contain known 

surugamides.

The amino acid sequence IAIVK−128IFL of Surugamide-769 corresponds to a loss of 

Lysine. This annotation is consistent with the arrangement of the genes in the surugamide 

BGC since the deleted Lysine corresponds to the last A-domain in one of two genes in this 

BGC (Supplementary Figure 2). Thus, Surugamide-769 represents the second evidence of 

the same NRP synthetase producing two cyclic peptides with different numbers of amino 

acids, similar to poaeamide B and massetolide A25. However, further experimental 

validation of this hypothesis and many other likely insertions and deletions listed in 

Supplementary Table 4 is needed.

Venepeptide-2154—Venepeptide is a linear ribosomal peptide M
+28NVITNLLAGVVHFLGWLV that was identified from S. venezuelae38. VarQuest 

identified its variantM+28NVITN+31LLAGVVHFLGWLV (mass 2154.1 Da) with P-value 

3.2 · 10−15 using a spectrum from S. lividans. DEREPLICATOR missed this compound 

because GNPS does not contain a spectrum corresponding to the known venepeptide. 

Sequence similarity search39 of this peptide against the genome of S. lividans revealed the 

sequence MNLLTDILAGLVHFVGWLV (the differences with venepeptide are highlighted). 

A match of the spectrum against this sequence resulted in a PSM with P-value 8.5 · 10−24 

and suggested modification +44 Da on the M residue. Note that while VarQuest is limited to 

finding variants with a single modified amino acid, it was able to identify that a spectrum 

from S. lividans has arisen from a variant of venepeptide. The further manual analysis 

revealed that Venepeptide-2154 structure differs from venepeptide in four amino acids.

Discussion

Although the launch of high-throughput natural products discovery pipelines, such as the 

GNPS molecular network, is an important step towards future discoveries, the lack of 

computational approaches is still a bottleneck for spectral identifications in the GNPS 

infrastructure. Currently, the GNPS spectral library, a collection of identified spectra from 

GNPS, represents a minuscule fraction of all GNPS spectra. While molecular networks2, 19 

have already resulted in discoveries of various PNPs and their variants25, 40, these 

discoveries still requires time-consuming manual follow-up analysis. Here we demonstrated 

how the same goal can be achieved in a single push-of-a-button VarQuest run, replicating 

recent PNP discoveries and finding previously unknown PNP variants. Moreover, variable 

dereplication of the entire GNPS revealed both surprising diversity of PNPs and limitations 

of the spectral networks approach. In particular, we demonstrated that the recently 

discovered phenomenon of insertions and deletions of amino acids is widespread among 

NRPs.

There is a yet another reason why variable identification is important. Recent Genomic 
Encyclopedia of Bacteria and Archaea study41 revealed many BGCs with PNPs representing 

the largest group of secondary metabolites encoded by these BGCs. However, the vast 

majority of the predicted BGC products remained unknown, reflecting the limited 
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information available for characterized natural products and the lack of genome mining and 

peptidogenomics tools for matching BGCs and spectra.

While databases in traditional proteomics consist of known peptides, the ongoing genome 

mining efforts for PNP discovery35 generate vast databases of still uncharacterized putative 

PNPs7, 42, 43. Since predicting an NRP encoded by an NRPS is a difficult problem, various 

tools for predicting specificities of A-domains44 output multiple rather than a single 

candidate amino acid for each A-domain. Supplementary Figure 2 presents three top 

candidate amino acids for each of eight A-domains in suragamide-encoding NRPS resulting 

in 38 candidate NRPs. As the result, genome mining efforts typically generate large 

databases of error-prone putative PNPs, and matching spectra against such databases is 

prohibitively time-consuming. Thus, development of fast algorithms for variable PNP 

identification is important for the success of genome mining efforts.

We have presented VarQuest algorithm for variable PNP identification via database search of 

mass spectra, the only modification-tolerant approach capable of searching the entire GNPS 

spectral network. Our method revealed an order of magnitude more PNPs than the standard 

search by DEREPLICATOR illuminating the “dark matter of PNPs”45. It also greatly 

increased the spectral library of PNPs in GNPS by identifying 41% of all known PNP 

families in the PNPdatabase. Iterative run of VarQuest has a potential to identify even more 

PNP variants with multiple modifications.

VarQuest revealed a surprising diversity of PNPs that may reflect evolutionary adaptation of 

various bacterial species to changing environment and competition, e.g., a continuous 

change of the repertoire of variants of peptidic antibiotics in response to developing 

antibiotic resistance. It also revealed a limitation of existing NRP mining tools that were 

developed based on “NRPS – a single NRP” pairs as the training datasets44 aimed at 

predicting a single NRP. A more biologically adequate approach would be to use the training 

datasets “NRPS – NRP network” that have recently become available. With growing 

availability of paired genomics and mass spectrometry datasets, it is now possible to 

generate such training datasets using VarQuest.

Methods

Scoring PNP-spectrum matches

A PNP graph of a PNP P is defined as a graph with nodes corresponding to amino acids in P 
and edges corresponding to generalized peptide bonds11. The mass of a PNP graph (referred 

to as mass(P)) is defined as the total mass of its amino acids and TheoreticalSpectrum(P) is 

defined as the set of masses (theoretical peaks) of all connected components of the PNP 

graph resulting from removal of two edges (a 2-cut in cyclic and branch-cyclic PNPs) or a 

single edge (a bridge in a branch-cyclic PNP)11. Note that each such removal results in two 

peaks with total mass equal to Mass(P).

Given a peptide P and a spectrum S, SPCScore(P, S) is defined as the Shared Peak Count, 
the number of peaks shared between TheoreticalSpectrum(P) and S. Two peaks are shared if 

their masses are within a threshold ε (0.02 Da for high-resolution spectra). We compute this 
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score only if the precursor mass of the spectrum, denoted as Mass(S), matches Mass(P) with 

error up to Δ (0.02 Da for high-resolution spectra).

If (A1, . . . , An) is the list of amino acid masses in a PNP P, we define Variant (P, i, δ) as 

(A1, . . . , Ai + δ, . . . , An), where P and Variant (P, i, δ) have the same topology and Ai + δ 
≥ 0. VariableScore(P, S) is defined as

max(SPCScore(Variant(P, i, ω), S)), (1)

where ω is Mass(P) − Mass(S) and i varies from 1 to |P| (|P| stands for the number of amino 

acids in the peptide P). We define a variant of peptide P derived from a spectrum S (referred 

to as Variant(P, S)) as Variant(P, i, ω) of peptide P that maximizes SPCScore(Variant(P, i, 
ω), S) across all positions i in P.

Selecting candidate peptides

Consider a peptide P and its variant P* = Variant(P, i, δ). TheoreticalSpectrum(P) and 

TheoreticalSpectrum(P*) share approximately half of their peaks while the remaining peaks 

in TheoreticalSpectrum(P* are shifted by δ with respect to the corresponding peaks in 

TheoreticalSpectrum(P) (Supplementary Figure 3). Thus, if an experimental spectrum S is 

produced by a peptide P* and shares N peaks with TheoreticalSpectrum(P*), we expect that 

SPCScore(P, S) ≈ N
2 . However, this condition often does not hold in practice due to many 

noisy and missing peaks in experimental spectra. In practice, we reduce the size of 

CandidatePeptides(S) by retaining all PNPs that satisfy the condition:

SPCScore(P, S) ≥ η, (2)

for a small value η. To select the threshold η, we analyzed the values of SPCScore for 

peptides reported by the brute-force method at various significance levels (Supplementary 

Table 5). Since the vast majority of statistically significant PSMs (P-value ≤ 10−10) share at 

least 5 peaks with the corresponding known peptides (74%, 80% and 72% for SpectraPSEUD, 

SpectraSTREP1 and SpectraSTREP2, respectively), we set the default value η = 5.

For a given spectrum S, VarQuest forms the list CandidatePeptides(S) by selecting all PNPs 

satisfying the equation 2 (among all PNPs with mass differing from Mass(S) by at most 

MaxMod). Checking this condition requires computing SPCScore(P, S) values for each 

peptide P from the PNP database Peptides. Since a naive approach (computing SPCScore for 

each PNP) is time consuming, VarQuest preprocesses the PNP database, and scores a 

spectrum S against the entire database at once.

Preprocessing a PNP database

For a given PNP database Peptides, the preprocessing starts from generation of theoretical 

spectra for each PNP in the database (Stage 1 in Supplementary Figure 4). All peaks from all 

theoretical specta are combined altogether and sorted to form the array 
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SortedPeaks(Peptides) (Stage 2). The peaks in SortedPeaks(Peptides) are partitioned into M 
bins of size θ (the default values M = 20000 and 8 = 0.2 Da). Afterwards, VarQuest 

constructs an indexing table Index(Peptides, M, θ) (Stage 3). The table is designed in such 

way that the i-th cell Index[i] contains a pointer to the smallest peak p, such that p ≥ i · θ for 

all i ∈ [0..M − 1].

Scoring a spectrum against a PNP database

To score a given spectrum S against all PNPs in a PNP database Peptides, VarQuest iterates 

through all the peaks in S and stores PNPs matching the peak into a counting set 

FeasiblePeptides(S) (Supplementary Figure 5). To match a peak s against all the PNPs, 

VarQuest counts all the matching theoretical peaks in the interval (s − ε, s + ε) by finding 

plower (the smallest matched peak) and pupper (the largest matched peak). VarQuest sets 

ilower = ⌊ s − ε
θ ⌋ and uses binary search to search for the smallest matching peak in the 

interval between Index[ilower] and Index[ilower + 1] (pupper is found in a similar way). Since 

the interval is small, the binary search is much faster than the search on the entire array 

SortedPeaks(Peptides).

After processing all peaks in the spectrum S, the number of occurrences of a PNP P in 

FeasiblePeptides(S) corresponds to the number of shared peaks between P and S. Thus, the 

list FeasiblePeptides(S) contains information about SPCScore(P, S) for all PNPs P sharing at 

least one theoretical peak with S.

Computing false discovery rate

The target-decoy approach46 for estimating FDR is based on generating a decoy database 

DecoyPeptides from a target database Peptides and searching all spectra against combined 

DecoyPeptides and Peptides databases. The target-decoy approach further uses the numbers 

of PSMs found in both databases to evaluate FDR. We refer to the set of all PSMs found in 

Peptides (DecoyPeptides) and having P-values below τ as PSMτ(Peptides, Spectra) 

(PSMτ(DecoyPeptides, Spectra)). As the decoy database consists of randomly generated 

peptides, we expect to find very few PSMs in PSMτ(DecoyPeptides, Spectra) for an 

appropriately chosen τ. Note that the size of DecoyPeptides is not necessary equal to the size 

of Peptides. We consider the situation when the frequencies of target and decoy peptides in 

the combined database are t and d, respectively (t + d = 1). We define the decoy ratio D as d
t

and compute FDR as follows:

FDRτ = 1
D

|PSMτ(DecoyPeptides, Spectra)|
|PSMτ(Peptides, Spectra)| . (3)

Since VarQuest algorithm is linear with respect to the size of the PNP database, larger 

DecoyPeptides lead to increased running time. On the other hand, small database 

DecoyPeptides may result in an inaccurate estimate of FDR. We thus benchmarked VarQuest 

with various values of D to show that D = 1 is a good trade-off (Supplementary Table 6).
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Generating decoy database

A popular method for generating decoy databases in traditional proteomics is random 

shuffling of amino acids for each target protein. However this strategy (Supplementary 

Figure 6b, further referred as Classical) is not suitable for PNPs because (i) PNPs are much 

smaller than proteins, (ii) many PNPs are cyclic or branch-cyclic, and (iii) many PNPs 

contain multiple copies of the same amino acid (Supplementary Figure 7). This results in 

decoy peptides that are similar to the target peptides after the shuffling procedure, resulting 

in an inflated FDR.

To address this challenge, DEREPLICATOR11 randomly redistributes the total mass of a 

peptide over the nodes of its PNP graph (Supplementary Figure 6c, DEREPLICATOR 
strategy). This strategy is motivated by the fact that PNPs often contain non-standard amino 

acids with a wide range of masses.

VarQuest uses a novel decoy generation approach based on amino acid shuffling and random 

bond displacement (Supplementary Figure 6d, VarQuest strategy). For each target PNP, 

VarQuest first generates a decoy PNP by rearranging amino acids. Afterwards, it randomly 

selects an edge in the PNP graph and substitutes it by a new edge, connected to a randomly 

selected position, such that the resulting decoy structure represents a connected graph. This 

strategy takes into account the complex structures present in many PNPs, resulting in a more 

diverse decoy database.

To compare accuracy of the FDR estimation using these methods we conducted the 

following experiment. We took 200 top-scoring unique PNP identifications from 

DEREPLICATOR run on the entire GNPS11. These annotations were manually curated and 

validated as reliable. In Experiment 1, we ran VarQuest on the spectra with the same PNP 

database as in11. In Experiment 2, we excluded 200 target peptides and all their known 

variants from the PNP database and ran the VarQuest again. We expect FDR around 0% in 

Experiment 1 (all mass spectra are highly trustable) and around 50% in Experiment 2 (the 

correct peptides are missing from the database, and matches to the target and decoy PNPs 

are equally likely). Supplementary Table 7 shows FDR estimations for both experiments 

computed based on various decoy generation approaches. Classical strategy overestimates 

FDR in Experiment 1 while DEREPLICATOR method underestimates FDR in Experiment 
2. VarQuest decoy generation strategy has an acceptable performance in both cases (0.5% 

and 55.0% respectively).

Constructing the PNPdatabase

We combined all compounds with at least 4 generalized peptide bonds from AntiMarin28, 

DNP29, MIBiG30, and StreptomeDB31 into a single non-redundant database with 10067 

distinct compounds (Supplementary Table 8). These chemical entities were classified into 

chemical classes using ClassyFire47 software tool. Compounds related to peptidic classes 

were included into our target database (referred to as PN-Pdatabase) that consists of 5021 

distinct PNPs forming 1582 PNP families (Supplementary Table 9). Supplementary Tables 

10–14 show distributions of PNP origins, PNP family sizes, PNP structures, number of 

peptide bonds and the most frequent amino acids in the PNPdatabase.
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Revealing PNP diversity in related bacteria

Spectral libraries in metabolomics2, 48 rely on the comparative metabolomics assumption 

that assumes that two related bacteria are likely to produce identical metabolites. Our 

analysis revealed that, in the case of PNPs, such cases are relatively rare and that related 

bacteria are likely to produce similar rather than identical PNPs. To illustrate this point, we 

visualized strain relations based on DEREPLICATOR (identical known PNPs) and VarQuest 

(PNP variants of the same origin) identifications in SpectraCYANO (the largest) and 

SpectraSTREP1 (the less contaminated) datasets at 5% FDR. To illustrate the diversity of 

PNPs across related bacteria, we introduced the concept of the strain graph with nodes 

representing strains and edges connecting two strains if they produce variants of the same 

known PNP (see Supplementary Figure 8)

SpectraCYANO—DEREPLICATOR identified 42 known PNPs in 68 out of 352 

Cyanobacteria strains. The strain graph constructed on these PNPs has 284 edges (two 

strains share identical PNP) and consist of 13 connected components (Supplementary Figure 

8a). VarQuest detected PNP variants of 334 known PNPs in the same set of 68 strains. The 

strain graph has 618 edges (two strains produce PNP variants of the same known PNP) and a 

single connected component (Supplementary Figure 8b). VarQuest strain graph on the entire 

SpectraCYANO contains 272 nodes, 3791 edges and 19 connected components.

SpectraSTREP1—DEREPLICATOR identified 20 PNPs in 10 out of 17 Streptomyces 

strains. Its strain graph has only 6 edges and consists of 6 connected components 

(Supplementary Figure 8c). In contrast, VarQuest identified 78 PNP variants in these 10 

strains and enlarged the graph by 29 additional edges (35 total) turning it into a single 

connected component (Supplementary Figure 8d). Moreover, VarQuest was able to identify 

PNP variants in all 17 Streptomyces strains in this dataset. The full strain graph has 73 edges 

and 3 connected components.

Validating VarQuest identifications using literature search

Supplementary Table 15 shows the list of 244 peptide variants identified by VarQuest in 

Pseudomonas and Streptomyces datasets. We considered all PNP variants at 5% FDR (871, 

287, and 56 for SpectraPSEUD, SpectraSTREP1, and SpectraSTREP2, respectively), and 

excluded identifications of known PNPs with zero mass offsets (resulting in 662, 239, and 

43 remaining peptide variants, respectively). Afterwards, we analyzed 100 peptide variants 

with the lowest P-values per dataset (for SpectraSTREP2 we considered all 43 variants). 

Origin of each PNP family was determined based on literature search. The most 

contaminated dataset is SpectraPSEUD where only 52% of variants have Pseudomonas origin. 

Four large non-Pseudomonas families (Surfactins, Xentrivalpeptides, Bacillomycins and 

SNA-60-367) cover 26 variants in this dataset. SpecNets identified 19 out of these 26 

variants which indirectly suggests that these spectra are true contaminants rather than 

VarQuest false positives. Half of the singleton (PNP families with a single identified member 

of the family) contaminants (10 out of 22) are also reported by SpecNets. Both Streptomyces 

datasets have higher rate of PNPs originally found in Streptomyces (94% for SpectraSTREP1 
and 65% for SpectraSTREP2).
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There are a few reasons why spectra from SpectraPSEUD dataset form PSMs with PNPs from 

other bacterial sources apart from being false PSMs, e.g., laboratory contamination and 

morphology misidentification as many laboratory collections contain organisms that are 

misidentified11. Also, Luria Broth growth media prior to autoclaving is not sterile, e.g., 

surfactins are commonly found in the growth media (even freshly opened bottles).

Running VarQuest iteratively

While VarQuest is limited to searching for PNP variants with a single modification, this 

limitation can be potentially addressed by an iterative run of VarQuest. In this case, PNP 

variants identified in the initial VarQuest run are iteratively used as an input PNP database 

for the subsequent run on the same spectral dataset. Supplementary Table 16 presents results 

of iterative VarQuest run on SpectraCYANO. On the initial run on this dataset, VarQuest 

identified 2083 and 95 PNP variants in the target and decoy versions of the PNPdatabase, 

respectively. For the second iteration, we selected PNP variants with the most reliable mass 

offsets equal to ±14 Da (methylation), ±28 Da (dimethylation), ±18 Da (hydration), and ±16 

Da (hydroxylation) and ended up with a new PNP database with 81 PNP variants (78 targets 

and 3 decoys) representing 53 unique PNPs. We further refer to this database as 

FirstIterationDB.

Out of 385 PNP variants identified on the second iteration, 69 were already identified among 

2083 PNP variants reported in the first VarQuest run and the remaining 284 are novel (14% 

increase). We investigated why 353 PNP variants identified at the 2nd iteration were not 

reported on the first run of VarQuest (Supplementary Figure 9). It turned out that a large 

fraction of newly identified PNP variants (114 out of 353) were actually identified (but not 

reported) by VarQuest since they have P-values slightly above the default P-value threshold 

of 10−10 (varying from 10−10 to 10−7). Thus, FirstIterationDB indeed presents a better PNP 

database for identifying PNPs with multiple modifications as compared to the original PNP 

database.

To provide additional evidence that the newly found PNP variants represent correct rather 

than erroneous modifications, we further checked if the most frequent offsets identified in 

the 2nd iteration are consistent with the most frequent offsets identified in the initial run of 

VarQuest (Supplementary Table 17). It turned out that most of these offsets correlate with 

the most common offsets identified by VarQuest in SpectraGNPS (Supplementary Table 4).

Code availability

VarQuest is available both as a command line tool (http://cab.spbu.ru/software/varquest) and 

as a web application at the GNPS website (http://gnps.ucsd.edu).

Data availability

LC–MS/MS data are publicly accessible under MassIVE accession nos. MSV000079450 

(SpectraPSEUD), MSV000078604 (SpectraSTREP1), MSV000078839 (SpectraSTREP2), and 

MSV000078568 (SpectraCYANO) at http://gnps.ucsd.edu/ProteoSAFe/datasets.jsp. The list 

of 120 MassIVE accessions numbrers for SpectraGNPS is available at http://cab.spbu.ru/

software/varquest. The PNPdatabase is available at http://cab.spbu.ru/software/varquest.
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Figure 1. Network-based and network-independent strategies for variable PNP identification
Variant PNPs are colored by the same color as their known compounds in the database; 

modified/mutated amino acids are highlighted by darker color. (a) Network-based PNP 

identification starts from the standard identification of spectra (i) and construction of a 

spectral network (ii). Next, the network is annotated (iii) using the identified PNPs via the 

spectral network propagation approach. In this example, the network component on the left 

has a single unmodified parent colored green as the related PNP, while the component on the 

right is an orphan. Annotation propagation (iv) through the network results in two variable 

PNP identifications represented by additional green nodes. (b) Network-independent PNP 
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identification relies on an efficient enumeration of all PNP variants (i) and further matching 

of spectra against these variants using the standard identification strategy (ii).
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Figure 2. VarQuest pipeline
For a spectrum and a PNP database, VarQuest starts from scoring the spectrum against the 

entire database (i) to form the list of candidate PNPs. All possible modifications are 

considered for each candidate (ii) and the spectrum is scored against all variants (iii) to 

select the highest scoring variant per candidate PNP. Statistical significance of the scores is 

computed (iv) and the most statistically significant PSM is reported (v).
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Figure 3. Peptide network of the cyclosporin family in the PNPdatabase (a) extended by the 
newly identified cyclosporin variants (b)
The peptide network was constructed for 47 known cyclosporins using the GNPS interface 

(the Molecular Networking workflow2). Each node represents theoretical spectrum of a 

cyclosporin variant, the number inside each node stands for monoisotopic mass in Da 

rounded to integers. Two nodes are connected by an edge if the corresponding theoretical 

spectra are similar (cosine score at least 0.8). Blue edges corresponds to characteristic mass 

shifts of 14, 16, 28, 32, and 42 Da, the remaining edges are black. (a) Peptide network of 

cyclosporin variants present in the PNPdatabase. Red nodes are 29 cyclosporins identified in 

SpectraGNPS as known PNPs (both by DEREPLICATOR and VarQuest). Blue nodes are 
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theoretical spectra of the rest 18 PNPs which are not present in GNPS in their known form 

and added to the network for the sake of completeness. (b) Peptide network of known and 

novel cyclosporin variants. Green nodes are theoretical spectra of 18 novel variants 

identified by VarQuest in GNPS. Each novel variant is the most statistically significant 

identification of the corresponding blue node (an absent known cyclosporin PNP). Likely 

insertions/deletions are shown on corresponding edges, Hiv stands for Hydroxyisovaleric 

acid, mLeu stands for methylated leucine.
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