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Abstract

We demonstrate a new technique for spatial mapping of multiple atmospheric gas species. This 

system is based on high-precision dual-comb spectroscopy to a retroreflector mounted on a flying 

multi-copter. We measure the atmospheric absorption over long open-air paths to the multi-copter 

with comb-tooth resolution over 1.57 to 1.66 pm, covering absorption bands of CO2, Cm, H2O and 

isotopologues. When combined with GPS-based path length measurements, a fit of the absorption 

spectra retrieves the dry mixing ratios versus position. Under well-mixed atmospheric conditions, 

retrievals from both horizontal and vertical paths show stable mixing ratios as expected. This 

approach can support future boundary layer studies as well as plume detection and source location.

OCIS codes

(010.0280) Remote sensing and sensors; (010.3640) Lidar; (120.6200) Spectrometers and 
spectroscopic instrumentation; (010.1120) Air pollution monitoring

Open-path dual frequency comb spectroscopy (DCS) has recently been shown to provide 

highly accurate and resolved broadband atmospheric spectra across kilometer-scale paths to 

fixed reflectors [1–3]. This makes DCS well suited to measurements and quantification of 

emissions of pollutants, hazardous gases, and greenhouse gases. In a recent direct 

intercomparison, two open-path DCS retrieved atmospheric traces gas mixing ratios to 

within 0.14% – 0.4% over weeks, well below the natural atmospheric variability [3]. Here 

we describe an advance in open-path DCS that enables measurements of the horizontal and 

vertical spatial profile of atmospheric gases in near real time. This technique, especially 

when extended to other spectral regions, has a variety of potential applications such as 

emissions quantification, boundary-layer profiling, and hazardous plume detection. For 

example, emissions from oil and gas facilities are important both for understanding global 

methane sources [4–6] and for understanding the impacts on ozone and aerosol formation 
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[7–9]. By flying box type patterns around a distributed source and using a mass-balance 

approach [10,11], such a system could be used to quantify CH4 as well as volatile organic 

compounds. In addition, the mixing of gases within the planetary boundary layer is currently 

a major source of uncertainty in atmospheric transport models [12–14], which results in 

errors in source quantification using point sensors or satellites. Finally, this technique could 

be used to rapidly scan an area for the presence of hazardous gases [15] and threat chemicals 

[16].

Unlike differential absorption LIDAR [17,18], which measures the atmospheric absorption 

at only a few laser frequencies, DCS measures the spectrum at many tens of thousands of 

individual frequencies with eye-safe near-infrared (or, in the future mid-infrared) laser light 

[19,20]. As a consequence of this massively broadband nature, open-path DCS requires a 

reflector at the far end of the path to provide sufficient signal-to-noise ratio. Here, we 

demonstrate DCS to a retroreflector that is mounted on a multi-copter, part of a small 

unmanned aircraft system (sUAS), as illustrated in Figure 1. This combined sUAS-DCS 

system is used to scan horizontal and vertical paths and retrieve the column-integrated 

mixing ratios of water, CO2, and CH4. With future extensions across even broader near-

infrared bandwidths and into the mid-infrared, such a system could provide spatial mapping 

across multiple gas species at high precision and accuracy.

The DCS system is described in detail in Ref. [21]. It is based on two near-infrared, self-

referenced, optically coherent fiber frequency combs [22] with repetition rates of fr ~ 200 

MHz that differ by Δfrep = 624 Hz. A portion of each frequency comb is amplified, 

spectrally broadened in highly nonlinear fiber, combined in fiber, and filtered to cover 1.57–

1.66 pm (or 6000 cm−1 to 6330 cm−1) which allows simultaneous measurements of CO2, 

CH4, H2O and isotopologues. The mutual comb linewidth was below 1 Hz and the absolute 

long-term linewidth was below 120 kHz, enabling ultra-high resolution sampling of the 

atmospheric spectrum at fr ~200 MHz point spacing over ~50,000 comb teeth. The entire 

system is compact and portable [21], and has been operated in non-laboratory environments 

[3,23].

The telescope system, sketched in Fig. 1a, was designed for a large collection aperture while 

remaining relatively lightweight and compact for rapid scanning. About 5 mW of the filtered 

light is sent to the launch telescope system for the open-path measurements. This launched 

power is below 9.6 mW at the telescope aperture, which is the Class 1 ANSI accessible 

emission limit (AEL) [24]. Only reflective optics were used to enable broad spectral 

bandwidth operation. The telescope uses two off-axis parabolic mirrors with a 3″-diameter 

collection aperture, resulting in a launched beam diameter of ~45 mm with a nearly 

diffraction-limited beam divergence of ~30 prad (half-angle). This telescope was mounted 

on a gimbal to allow pointing and tracking to the retroreflector. The gimbal was capable of 

both elevation and azimuthal motion with a velocity of 80 deg/s and an acceleration of400 

deg/s2.

The multi-copter (xFold Cinema x8 [25]) with payload is shown flying in Figs. 1b and 1c. 

The primary payload is a commercially available, light-weight, 2.5″-diameter, 5-arcsecond 

angular-deviation hollow corner-cube retroreflector. The use of a corner-cube retroreflector 
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on the multi-copter, rather than a plane mirror, drastically reduces the multi-copter pointing 

requirements. Since the retroreflector has a wide field-of-view (approximately ±15°), we can 

rely solely on yaw control of the multi-copter to maintain sufficient pointing back to the 

telescope. The payload included a radiosonde (i-Met RSB 1 [25]) for temperature, pressure, 

relative humidity, and realtime coarse GPS location. Finally, the payload also included a 

real-time kinematic GPS (RTK GPS, Swift Navigation Piksi [25]) for high-precision 

differential path length measurements.

The precision of the mixing ratios retrieved by the DCS depends on both received power and 

averaging time. Received powers range from a minimum of ~ 15 μW up to typical levels of a 

few hundred microwatts, above which the detector saturates. At typical average received 

power levels of ~50–100 pW, the measurement precision in ~10 seconds was 2 ppm of CO2 

and 16 ppb CH4 and improved to 0.6 ppm of CO2 and 6 ppb of CH4 in ~100 s (see [3] for a 

full Allan deviation. To support these averaging times, we used a “step scan” approach: the 

sUAS moves the retroreflector to a specific location where it hovers for a user-selected time 

before moving to a new location. The total flight time for a single battery charge was ~15 

minutes under our flight conditions.

The telescope system must track the motion of the retroreflector as it moves and hovers in 

order to obtain sufficient return power of the DCS comb light. Ideally, this tracking is within 

the ~30-prad beam divergence but this requirement is reduced (at the cost of reduced return 

power by about a factor of two because of turbulence-induced fast angular jitter [26]. The 

telescope tracking was based on feedback from a focal plane array (FPA) that imaged the 

return from the retroreflector. Direct use of the near-infrared DCS light would require an 

expensive InGaAs camera and would not provide a large angular capture range. To 

circumvent these limitations, we launch a high-power, low-divergence 850 nm LED co-

aligned with the DCS light. At this wavelength, the reflected LED light can be detected by a 

silicon FPA. The return LED light is bandpass filtered and imaged onto this FPA with a 500-

mm-focal-length, 85-mm-diameter camera lens (typical image shown in Fig. 1b). The 

images are read out at 30-Hz into a computer, averaged over two frames, smoothed by a 3-

pixel Gaussian filter, and then processed to find the retroreflector location via two-

dimensional peak finding. The offset of the identified intensity maximum from the target 

location (shown as cross hairs in Fig. 1b) was input to a proportional plus double-integral 

loop whose output controlled the telescope pointing at 15 Hz with a ~2 Hz integration 

bandwidth, which was sufficient for these measurements. In the future, the feedback 

bandwidth could be improved by a higher frame rate camera and the tracking during 

movement could be improved with more sophisticated estimation algorithms (such as a 

Kalman filter). The retro-reflected dual comb light is collected by the off-axis telescope and 

focused onto a ~100-MHz-bandwidth amplified InGaAs photodetector using a non-

polarizing beamsplitter, as shown in Fig. 1a. The total loss of the telescope system (collected 

return power compared to input power to the telescope) was typically ~8–20 dB depending 

on atmospheric conditions (e.g. turbulence-induced scintillation or wind gusts impacting 

sUAS yaw stability). We achieved ~ 5 dB higher overall collected light by use of a 

polarizing beamsplitter and quarter-wave plate to act as an optical circulator; however, this 

created additional etalons which negated the benefits of higher power.
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For the analysis, we need the path length, air temperature, and air pressure. The path length 

is determined using either the radiosonde GPS and known GPS location of the telescope 

system, or preferably with the RTK GPS, which measures the differential path length 

between a receiver on the sUAS and a receiver located near the telescope system. The RTK-

GPS provides the path length to < 6 cm accuracy at 10-Hz sampling rate, but requires 

signals from at least 7 GPS satellites and was available for only one of the two flight tests 

described below. We used an average temperature determined from the radiosonde on the 

sUAS and a sensor located near the telescope. The pressure is taken from the radiosonde.

The DCS signal is a series of interferograms that repeat at a rate of Δfrep = 624 Hz, or once 

every 1.6 ms. We coherently sum 100 of these interferograms on a field-programmable gate 

array, and then further carrier-phase correct and sum N sets in software, yielding one 

interferogram (and thus spectrum) every 100 N/Δfrep seconds (here N ranged from 60–200, 

resulting in one spectrum every10–30 s). Each spectrum is fit to an absorption model based 

on HITRAN 2008 [27] plus a piecewise-polynomial baseline to account for the comb 

spectral structure, as discussed in [3].

We flew two different flight patterns on December 1, 2016. The first flight pattern, shown by 

the yellow track in Fig. 2a, consisted primarily of horizontal movement with respect to the 

telescope. Near real-time results are shown as a movie in Visualization 1. In Visualization 1, 

the lower right quadrant shows the real-time updates of the measured atmospheric spectrum 

and the lower left quadrant shows the real-time mixing ratios retrieved under a simplified 

assumption of a fixed 2-km path length, fixed temperature, and fixed pressure. In post 

processing, we re-fit the raw spectra with the measured time-dependent path length, 

temperature, and pressure. Figure 2b shows the retrieved path-length-corrected mixing ratios 

as a function of time at 9.6-s averaging times along with the multi-copter location, and 

radiosonde GPS-measured path length. Prior to 13:07 local time the multi-copter was 

stationary on a platform. After take-off at ~13:07, it hovered for 1–3 minutes at five different 

locations, as indicated in the position graphs. During transit, the return power fluctuated, but 

it was generally well above the 15-μW minimum threshold during hovering. From 13:16 to 

13:17, the sUAS did not maintain sufficient multi-copter yaw to point the retroreflector back 

to the telescope and signal was lost. Signal was regained at ~ 13:17, but subsequent loss of 

sUAS telemetry caused the multi-copter to then return to the platform. The mixing ratios are 

fairly constant over the flight pattern as expected over this ~100×60 m2 area and prevailing 

~1 m/s wind speed.

The second flight pattern consisted of a series of slant-column measurements - as illustrated 

in Fig. 3 – from near ground level up to the 120-meter (400-foot) ceiling height imposed by 

current Federal Aviation Agency (FAA) regulations [28]. Higher flights are possible with 

FAA approval and will be pursued in the future to study boundary layer variations of the 

trace gas concentrations. As with the horizontal path measurements, a move-hover pattern 

was used; the multi-copter was flown to a specific altitude, where it hovered for ~4 minutes 

before ascending/descending to another altitude. From 14:33 to 14:36, the multi-copter 

returned to the platform to exchange batteries. The overall flight duration was ~25 minutes. 

The RTK-GPS was operational during the full flight. In addition, a fixed horizontal path was 
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acquired simultaneously using a second output from the same DCS instrument directed by a 

second telescope to a fixed retroreflector located near the launch point of the multi-copter.

The fitted mixing ratios for both paths as well as corresponding sUAS height from the RTK 

GPS are shown in Fig. 3b. These data were acquired at wind speeds of ~0.5–5 m/s and with 

a forecast boundary layer height of ~2 km [29]; therefore, we also expect strong mixing of 

the atmosphere over the measured altitudes and relatively constant mixing ratios. We can 

determine the variation in slant column versus height by averaging all measurements at a 

given height bin, as is shown in Fig. 3c. The residual scatter of these binned data is ~0.87 

ppmv CO2, 5.7 ppbv CH4, and 0.0021 % H2O. As expected from the atmospheric 

conditions, there is no clear structure versus height. This lack of variability contrasts with 

the measurements of Ref. [3], acquired over longer timescale and sometimes at lower wind 

speed, where significant temporal variations are observed both on diurnal timescales and 

shorter timescales as plumes traverse the open-path beam. We do observe some temporal 

variability here, as seen for example in the ~ 5 ppm decrease in XCO2 over the measurement 

time in Fig. 3b. However, this same XCO2 decrease is observed simultaneously on the slant 

paths and fixed horizontal path, indicating it reflects a temporal rather than vertical 

variability, again reflecting the well-mixed conditions. (The ~25 ppb constant offset in CH4 

between the horizontal and slant path measurements is attributed to nonlinearities when 

combining the two combs in fiber and have been resolved [3]. In contrast, in less-well-mixed 

conditions or if the retroreflector height had exceeded the boundary layer, one would expect 

stronger variations. For example, photosynthesis can cause CO2 gradients in the boundary 

layer of 1–10 ppm [30]. In regions with higher emissions, the variations in CO2 or CH4 

between the boundary layer and free troposphere could be 20 ppm or more for CO2 [31] and 

100 ppb or more for CH4 [32]. These changes are easily within our precision of <1 ppm for 

CO2 and <6 ppb for CH4; we intend to explore such vertical structures in future campaigns.

Here, we demonstrated simultaneous detection of CO2, CH4, and H2O along a 2-km-

roundtrip path using dual comb spectroscopy with a retroreflector located on a sUAS. In the 

future, additional species could be detected with broader wavelength coverage and extension 

into the mid-infrared. Longer flight times will be available with the continued strong 

development of UAS. Finally, we have already demonstrated much longer path lengths of up 

to 12-km round-trip [2] with similar launched optical power levels. Operation at the ANSI 

maximum permissible exposure level of 100 mW/cm2 [24] would allow for still longer path 

lengths. As sUAS flight times improve and FAA regulations evolve, more applications will 

become possible.
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Figure 1. 
Setup for DCS to a sUAS. (a) The light from both combs is combined in fiber, then launched 

from a telescope to a retroreflector on a small multicopter. A co-aligned 850-nm LED and 

silicon focal plane array (Si FPA) camera are used in the tracking servo to control the 

azimuth-elevation gimbal. PD: photodetector: BS: beam splitter: OAP: off-axis parabolic 

mirror (b) Image from Si FPA showing the multi-copter above the tree line. The bright spot 

is the retroreflected 850 nm LED light. A software feedback loop to the telescope gimbal 

centers this spot on the cross hairs, which simultaneously maximizes the DCS signal on the 

photodetector, (c) Photo of the small commercial multi-copter. The dual-comb light is 

launched from the telescope located in the 1-km distant rooftop laboratory, as indicated.
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Figure 2. 
(a) Flight path (yellow) recorded by the radiosonde GPS for the first flight pattern. The 

orange star indicates the DCS and telescope location. Map data: Google, DigitalGlobe, U.S. 

Geological Survey, USDA Farm Service Agency. A video ofthe real-time data collection 

software for this flight is given in Visualization 1. (b) Mixing ratios for H2O (blue), CH4 

(black), and CO2 (red) obtained from the horizontal flight path shown in Fig. 2b. These data 

are from spectra acquired every 9.6 seconds and are corrected for measured path length, 

temperature and pressure. The upper four panels show the latitude, longitude, altitude, and 

path length derived from the radiosonde GPS.
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Figure 3. 
Results of a flight to obtain a vertical concentration profile. (a) Diagram showing 

simultaneous slant column and fixed path measurements. (b) The path-corrected H2O 

(medium blue), dry CH4 (black), and dry CO2 (red) mixing ratios obtained for 32-s averaged 

data from the sUAS-DCS. The data in lighter colors were obtained along the fixed path. The 

corresponding retroreflector height above ground (from the RTK GPS) is also shown (right 

axis, dark blue). (c) Slant-column mixing ratio versus altitude from averaging approximately 

ten points over 4–5 minutes at each height in (b). The error bars are the standard error of the 

mean. Averaged over height (dashed line), the mixing ratios are 421.5 ± 0.9 ppm, 1.996 

± 0.006 ppm, and 0.236 ± 0.002 % for CO2, CH4, and H2O, respectively. The scatter about 

the mean is attributed to temporal, rather than spatial, variations under these well-mixed 

conditions.
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