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Abstract

Background—Electrical conduction from the cardiac sinoatrial node to the ventricles is critical 

for normal heart function. Genome-wide association studies (GWAS) have identified more than a 

dozen common genetic loci that are associated with PR interval. However, it is unclear whether 

rare and low-frequency variants also contribute to PR interval heritability.

Methods and Results—We performed large-scale meta-analysis of the PR interval that 

included 83,367 participants of European ancestry and 9,436 of African ancestry. The Illumina 

HumanExome BeadChip examined both common and rare variants. We identified 31 genetic loci 

that were significantly associated with PR interval after Bonferroni correction (P<1.2×10−6), 

including 11 novel loci that have not been reported previously. Many of these loci are involved in 

heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 (P = 

5.9×10−11) and SCN5A (P=1.1×10−7) were associated with PR interval. SCN5A locus also was 

implicated in the common variant analysis, whereas MYH6 was a novel locus.

Conclusion—We identified common variants at 11 novel loci and rare variants within two gene 

regions that were significantly associated with PR interval. Our findings provide novel insights to 

the current understanding of atrioventricular conduction, which is critical for cardiac activity and 

an important determinant of health.
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Introduction

Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal 

heart function. Abnormalities of atrioventricular conduction can cause significant morbidity, 

and have been associated with atrial fibrillation (AF),1,2 need for pacemaker implantation,2 
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cardiac malformations, and sudden death.3,4 Conduction from the sinus node through the 

atria, atrioventricular node, and His-Purkinje fibers is readily evaluated from surface 

electrocardiogram (ECG), by measurement of the duration of PR interval. Despite the 

critical role that the cardiac conduction system plays in cardiac physiology and disease, the 

formation and regulation of the conduction system remains incompletely understood.

Recent data indicate that cardiac conduction measurements are heritable5–7 and have a 

genetic basis.8–11 To date, genetic studies of PR interval have been relatively modest-sized 

largely European-ancestry samples, and have implicated cardiac expressed ion channels, 

cardiac developmental transcription factors, signaling molecules, as well as novel pathways 

not previously known to be involved in cardiac conduction processes. Nevertheless, existing 

studies have focused on the role of common and predominantly noncoding genetic variants, 

which account for only a modest proportion of trait heritability.6

To better understand the biological and potential clinical implications of genetic variation 

underlying cardiac conduction, there is a need to examine both common and rare variation 

underlying atrioventricular conduction in large, well-powered, multiethnic studies. 

Moreover, assessment of genetic variation that alters protein coding has the potential to more 

directly implicate genes involved in processes critical to cardiac conduction. We therefore 

sought to examine PR interval duration in relation to predominantly coding genetic variants, 

in large, multi-ethnic analyses using the exome chip.

Methods

The data, analytic methods, and study materials will be made available to other researchers 

for purposes of reproducing the results, subject to Data Use/Sharing Agreements adopted by 

individual participating cohorts. The summary results from the current manuscript are 

available at the Broad Cardiovascular Disease Knowledge Portal (www.broadcvdi.org).

Study participants

The current project included participants of European ancestry (EA) from 22 studies: Age, 

Gene/Environment Susceptibility Study (AGES); Atherosclerosis Risk in Communities 

study (ARIC); British Genetics of Hypertension (BRIGHT); Massachusetts General Hospital 

Cardiology and Metabolic Patient cohort (CAMP); Cardiovascular Health Study (CHS); 

Erasmus Rucphen Family Study (ERF); Framingham Heart Study (FHS); Genes for 

Cerebral Hemorrhage on Anticoagulation (GOCHA); Genetic Regulation of Arterial 

Pressure In Humans in the Community (GRAPHIC); INTER99; Cooperative Health 

Research in the Region Augsburg (KORA); CROATIA-Korcula (KORCULA); LifeLines 

Cohort Study (LifeLines); Multi-Ethnic Study of Atherosclerosis (MESA); The Netherlands 

Epidemiology of Obesity (NEO); Rotterdam Study (RS); Generation Scotland: Scottish 

Family Health Study (GS:SFHS); Study of Health in Pomerania (SHIP); TwinsUK; Utrecht 

Health Project (UHP); Women’s Health Initiative (WHI); and Young Finns Study (YFS).

In addition, we included participants of African ancestry (AA) from five studies. These 

studies included ARIC, CHS, Jackson Heart Study (JHS), MESA and WHI.
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Institutional Review Boards or Ethics Committees approved study procedures at each 

contributing site. All participants provided written informed consent to participate in genetic 

research.

Measurement of PR interval

PR interval duration, in milliseconds, was measured from the onset of the P wave to the 

onset of the QRS interval for each cohort. The following exclusions were applied: extreme 

PR values (≤ 80 ms or ≥ 320 ms); second or third degree heart block; atrial fibrillation on 

baseline ECG; history of myocardial infarction, heart failure, or Wolff–Parkinson–White 

syndrome; pacemaker placement; use of class I or III blocking medications (ATC code 

prefix C01B); digoxin use (ATC code C01AA05) or pregnancy.

Genotyping

Genotyping was performed independently in each study using the Illumina Human Exome 

BeadChip (v1.0, 1.1, or 1.2). Data were called and cleaned according to CHARGE 

ExomeChip best practices.12 Detailed information for each study regarding genotyping 

platforms, variant calling, and quality control metrics is shown in Supplementary Table 1. 

All studies used the same set of reference alleles to recode variants to ensure consistency.

Statistical analyses

Prior to association analysis, PR interval was first adjusted for covariates by taking residuals 

from a linear regression of PR on age, sex, height, body mass index, and RR interval. Each 

cohort additionally adjusted as necessary for cohort-specific variables, such as clinic sites, 

family structure, and population structure. To reduce sensitivity to extreme PR values, the 

residuals were inverse-normal transformed and used as the outcome for association testing.

Because single-marker based analyses typically have low power to identify associations 

between rare variants and traits, we separated the analysis for common and rare variants 

based on minor allele frequency (MAF). Common variants were defined as those with 

MAF≥1%, and the remaining variants were defined as rare variants (MAF<1%). For each of 

the common variants, we evaluated its association with the transformed PR interval, and 

accounted for multiple testing by Bonferroni correction (P < 0.05/42075=1.2×10−6). For the 

rare variants, we restricted analyses to nonsynonymous or splicing variants with MAF <1%, 

because such variants are more likely to be functional than synonymous or more common 

variants. As we expect some rare variants may act in the same or opposite directions even in 

the same gene region,13 we used a modified version of the Sequence Kernel Association Test 

(SKAT),14 which avoids problems of signals cancelling out each other in burden test results. 

Many gene regions had few or no rare nonsynonymous or splicing variants. Monomorphic 

variants from each study also were reported in the cohort level results as they were used for 

the cumulative MAF computations in gene-based tests. Gene regions with a cumulative 

MAF of rare variants <1% were excluded, resulting in 5,761 gene regions that were tested 

(see results below). Therefore, Bonferroni-corrected significance threshold for our gene-

based tests was P<0.05/5,761=8.7×10−6. In secondary analyses, we limited the analysis to 

damaging variants, defined as nonsense variants or variants predicted to be damaging by 

PolyPhen-215 or SIFT.16
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Analyses were performed using the “prepScores” function of the “seqMeta” R package. 

Family-based studies implemented the “kins” option in “prepScores” to specify kinship 

matrices. Each study provided single variant z-statistics from score tests, as well as genotype 

covariance matrices, which were then combined by fixed effects meta-analysis. The 

heterogeneity across studies was assessed by the Cochran’s Q, which is a non-parametric 

statistical test defined as the weighted sum of squared differences between individual study 

effects and the pooled effect. We performed both race stratified and race combined meta-

analyses, and the race combined results were used for the remaining sections unless stated 

otherwise.

Comparison with genetic loci associated with AF and P-wave indices (PWI)

We also compared genetic loci associated with PR interval with those associated with AF 

and PWI to see if there are any shared genetic mechanisms. “AF loci” were identified by a 

recent exome chip analysis that included 22,806 AF cases and 132,612 referents.17 “PWI 

loci” were identified from a meta-analysis of P-wave duration and P-wave terminal force 

that included 44,456 participants.18 In addition, for each of the top variants associated with 

PR, we also examined its association with AF and PWI.

Examine potential function of PR-related variants for gene expression, regulation and 
biological pathways

Pathway analysis was performed by MAGENTA19 with default settings. The summary result 

for the common variants was used as the input, and significant pathways were defined as 

those with a false discovery rate (FDR)20 <0.05. The implication of genetic variants on 

cardiac gene expression (eQTL analysis) was performed by querying the GTEx database.21 

At each PR-related locus, we identified the top variant and its neighboring variants that were 

within 500kb and in linkage disequilibrium with the top variant (r2 ≥ 0.5). Four heart and 

vascular tissues were queried, including artery aorta, artery coronary, atrial appendage and 

heart left ventricle. Significant eQTLs were defined as those with FDR<0.05. Regulatory 

regions were downloaded from the ENCODE Project22 and the NIH Roadmap Epigenomics 

Program.23 Four tracks were created: 1) included all 98 cell types from Roadmap 

epigenomics H3K27ac sites; 2) included only four heart tissues (aorta, right atrium, left 

ventricle, right ventricle) from Roadmap epigenomics H3K27ac sites; 3) included all 125 

cell lines from ENCODE DNaseHS sites; 4) included only three heart-derived cell lines 

(cardiac fibroblasts, atrial fibroblasts, cardiac myocytes). The enrichment of PR-related loci 

in regulatory regions was examined by the “VSE” R package.24 For comparison, we 

randomly created 1,000 variant sets with MAF values and LD structures similar to those 

seen for PR-related loci.

Results

The current analyses included a total of 92,803 individuals from 27 cohorts, with 83,367 

individuals from 22 studies of European ancestry and 9,436 individuals from 5 studies of 

African ancestry. Clinical characteristics of the study participants are in Table 1.
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Identification of 31 loci associated with PR interval

A total of 42,075 common variants were analyzed (MAF ≥ 1%). As shown in Figure 1 and 

Table 2, 31 loci were significantly associated with PR interval after Bonferroni correction (P 
< 1.2×10−6), including 22 loci that reached the conventional genome-wide significance 

threshold (P < 5×10−8). The results of the random effects meta-analysis were similar to those 

of the fixed effects analysis (Supplementary Table 2). The most significant locus was tagged 

by rs6795970 (P= 4.0×10−240), a missense variant in SCN10A, which encodes a sodium 

channel that has been associated previously with the PR interval (r2=0.97 with the top SNP 

rs6599250 reported previously).8 Highly associated variants clustered in the linker region 

between the second and third domains of SCN10A (Figure 2). The top variants at 12 loci are 

missense variants. In addition, the top variants at 4 loci (including 3 novel loci) are low-

frequency variants (1% < MAF < 5%), illustrating the power of exome chip analyses to 

identify low-frequency coding associations. Detailed information of the nearest gene to each 

genome wide significant locus is given in Supplementary Table 3.

We then examined the associations between these top PR variants with AF and 

electrocardiographic PWI. Eight out of 31 PR loci identified in our analysis were associated 

with AF after Bonferroni correction (P<0.05/31=1.6×10−3), consistent with some shared 

mechanisms between the regulation of PR interval and AF. Variants in SCN10A most 

significantly associated with PR interval were also significantly associated with AF 

(Supplementary Table 4). Among PR-related SNPs, rs60632610 at the SYNPO2L locus was 

most significantly associated with AF (Odds ratio: 1.90 (0.87-0.93), P=1.5×10−10). 

Supplementary Figure 1 shows the overlap among loci associated with PR interval, AF, and 

PWI.

We also performed a sensitivity analysis that separated samples of European and African 

ancestry. As shown in Supplementary Table 5 and Supplementary Figure 2, all of the 31 loci 

except rs17391905 at the 1p32.3 locus (P = 2.6×10−6) were also significant in the analysis of 

European-only samples. Supplementary Table 6 and Supplementary Figure 3 show the result 

for the analysis of African ancestry-only samples. Three loci were significant: SCN5A 
(rs3922844), SCN10A (rs6795970), and TBX5 (rs883079) after Bonferroni correction; P < 

1.3 × 10−6. All three loci were also significant in the analysis of European-only samples. 

The result from each individual study is shown in Supplementary Table 7.

Rare variations in MYH6 and SCN5A are associated with PR interval

We next examined the association between PR interval and rare variants (MAF<1%) in gene 

regions. Variation in two gene regions, MYH6 (P = 5.9×10−11) and SCN5A (P = 1.1×10−7), 

was associated with PR interval (Table 3). Supplementary Tables 8 and 9 show the 

association of each rare variant within MYH6 and SCN5A with PR interval, respectively. 

MYH6 encodes a cardiac myosin heavy chain subunit, and SCN5A encodes the major 

cardiac sodium channel and was previously found to be associated with PR interval.8 MYH6 
was also recently found to associate with PWI.18 We also performed an ancestry-stratified 

analysis in the same way as the combined analysis. The same two gene regions were 

significant using data from European samples alone (P = 4.1×10−12 and 8.3×10−7 for MYH6 
and SCN5A, respectively). These two genes did not reach the significance cutoff in African 
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samples (P = 0.03 and 0.01 for MYH6 and SCN5A, respectively). Two other genes, 

HEATR2 (P = 2.2×10−−6) and THRAP3 (P = 4.2×10−6), were significantly associated in 

African samples alone. However, in the combined analysis, these two genes were not 

significant (P=0.02 and 0.06 for HEATR2 and THRAP3, respectively), probably due to a 

low cumulative allele frequency.

In our secondary analysis of pooled samples, we analyzed only damaging variants, defined 

as nonsense mutations or alternations predicted to be damaging by PolyPhen-215 or SIFT.16 

Three genes reached the signifiance cutoff (P<0.05/2030=2.5×10−5), including GORASP1 
(P=1.1×10−5), NEBL (P=1.9×10−5), and SCN5A (P=2.2×10−5) (Supplementary Table 10).

Expression quantitative trait loci (eQTL) analysis

We also performed eQTL analysis to determine if any of the novel PR-related variants were 

associated with cardiac gene expression using data from GTEx.21 Eight loci were associated 

with expression of at least one gene in the atrial appendage, left ventricle, coronary artery, or 

aorta, suggesting the importance of these loci in the regulation of gene expression in heart or 

vascular tissues (Supplementary Table 11).

Enrichment of PR-related variants in regulatory regions

We examined involvement of PR-related variants in regulatory function. As shown in 

Supplementary Figure 4, PR-related variants were significantly enriched in regulatory 

regions in both primary heart tissues (Padj=3.7×10−9) and heart-derived cell lines 

(Padj=0.002), but not in all tissues (Padj>0.05). The observed enrichment suggested 

involvement of these loci in tissue-specific regulatory functions. In addition, the variants also 

tended to locate within evolutionarily conserved regions (Padj=2.8×10−5 for primates and 

6.4×10−5 for mammals).

Enrichment of PR-related variants in biological pathways

We examined the enrichment of PR-related variants in biological pathways by MAGENTA.
19 Supplementary Table 12 shows the top pathways identified. The most significant pathway 

was heart morphogenesis (P=3.6×10−5, FDR=0.049), suggesting that many PR-related genes 

might be involved in cardiac development. The pathway was only the significant pathway 

after correction for multiple testing (FDR<0.05).

Discussion

We conducted a large-scale analysis of the genetic determinants of atrioventricular 

conduction in 92 803 individuals by studying the electrocardiographic PR interval. In total, 

we observed 31 genetic loci that were associated with atrioventricular conduction, 11 of 

which are novel. In aggregate, the results implicate loci containing genes encoding ion 

channels in the heart, sarcomeric proteins, cardiac transcription factors, and other proteins 

with unknown cardiac function. Our findings provide new insights to the current 

understanding of atrioventricular conduction, which is critical for cardiac function.
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Interestingly, rare variants in SCN5A and MYH6 were associated with PR interval. A 

missense mutation (D1275N) in SCN5A has previously been reported in a large family with 

multiple members affected by dilated cardiomyopathy, conduction disorder, and arrhythmia.
25 The mutation, together several other mutations within the same gene, has also been 

associated with dilated cardiomyopathy,26 atrial fibrillation,27 and long-QT syndrome.28–31 

Rare mutations within MYH6 were associated with sick sinus syndrome,28 congenital heart 

defects,32 and atrial septal defects.33

Our observations support and extend prior analyses of cardiac conduction. Most previous 

genome-wide association studies involved the study of common genetic variation in smaller 

samples of up to 28,517 individuals.8,10,11 In keeping with those prior studies, we again 

observed that SCN10A is the most prominent gene involved in atrioventricular conduction. 

Our recent GWAS based on 105K samples corroborates many of our current findings.34 

However, our current study had greater power than those earlier analyses for assessment of 

rare coding variation.

Our study has two major implications. First, our results underscore the utility of assessing 

coding variation as an efficient way to identify functional molecular domains. In particular, 

our findings provide insights into the functional topology of SCN10A. The SCN10A sodium 

channel gene is widely expressed in the nervous system and heart,21 but it has only recently 

been implicated in cardiac conduction8,34–36 and arrhythmias such as AF35 and Brugada 

syndrome.37 SCN10A encodes an alpha subunit (with six transmembrane spanning regions), 

which forms tetrameric, voltage gated sodium channels responsible for the Nav 1.8 late 

sodium channel current.38,39 We found a collection of amino acid substitutions in the linker 

region between the second and third domains of SCN10A that were associated with PR 

duration (Figure 2). Variants in this linker region that were associated with the PR interval 

also were associated with AF, suggesting that function of this domain may have important 

clinical implications.

Prior work on the homologous SCN5A cardiac sodium channel gene – which is also a 

cardiac conduction locus – indicates that this linker region is critical for sodium channel 

inactivation. Sodium influx is predominantly responsible for cardiomyocyte depolarization. 

Moreover, channel inactivation is essential for restoration of the hyperpolarized state needed 

for cyclic cardiomyocyte depolarization and contraction. Therefore, variations in this linker 

region might be involved in Nav 1.8 inactivation. Other data are necessary to identify 

relationships among variation in the linker region, the late sodium channel current, and 

channel inactivation in both healthy and diseased states.

Together with previously discovered susceptibility genes, our findings implicate genes in 

different functional classes that regulate atrioventricular conduction such as ion channels and 

cardiac transcription factors. In many cases, anomalies in these genes have been found to 

cause human cardiac diseases, such as congenital heart defects, primary cardiac conduction 

abnormalities, and syndromes predisposing to sudden cardiac death (Supplementary Table 

3). Interestingly, some of the genes are not expressed (in high abundance) in the right atrial 

appendage or the left ventricle, according to existing data sets – although most are active in 

the heart (Supplementary Table 13). Atrioventricular nodal conduction also can be 
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influenced by external tone from the autonomic nervous system. Therefore, further work is 

necessary to determine the mechanisms by which identified genes that are not expressed in 

the heart influence the PR interval.

We acknowledge several limitations of our study. Because PR interval was measured across 

many cohorts, it is possible that there is some heterogeneity that would diminish our power 

to detect modest associations. We excluded individuals with extreme values of PR interval, 

which might have been gleaned from large variations in cardiac conduction. We also 

performed inverse normal transformation on the raw PR interval to reduce the heterogeneity, 

which on the other hand might reduce the interpretability. Although we performed single-

variant and gene-based tests, we did not examine the association of haplotype patterns with 

PR interval, so it is unclear if there are any haplotypes that might be associated with PR 

interval. Most of the genetic variants analyzed were in exons. Therefore the effects of 

variants within regulatory regions were not investigated. We note that the variants identified 

may not be causally related to the studied phenotypes (PR interval, AF, and PWI), but may 

be in LD with causal variants. We anticipate that future increases in sample size with 

additional replications and more comprehensive genotyping platforms, such as denser SNP 

arrays or genome sequencing, will help address these limitations.

In conclusion, we studied genetic variants associated with PR interval duration and 

identified 31 common loci – including 11 that were novel – and two rare variant regions. Our 

findings greatly expand our knowledge of the genes that underlie atrioventricular conduction 

in the heart.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

The duration of PR interval is an important biomarker of the cardiac conduction system. 

Increasing evidences suggest that cardiac conduction measurements including PR interval 

are heritable. It is thus interesting to understand the biological and potential clinical 

implications of genetic variation underlying cardiac conduction. We performed a large-

scale meta-analysis of PR interval that included 83,367 participants of European ancestry 

and 9,436 of African ancestry using the Illumina exome chip. Thirty-one genetic loci 

were significantly associated with PR interval after Bonferroni correction, including 11 

loci that have not been previously reported. Our findings provide new insights to the 

current understanding of atrioventricular conduction, which is critical for cardiac activity 

and an important determinant of health.
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Figure 1. Manhattan plot showing the association between common variants and PR interval 
from combined ancestry analysis
The x-axis represents the chromosomal position for each SNP, and the y-axis represents the 

–log10(p-value) of the association with PR interval. The dashed line represents the genome-

wide significance cutoff of 5×10−8, and the blue line represents the Bonferroni P-value 

cutoff of 1.3×10−6. Black color represents known loci, whereas red color represents novel 

loci.
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Figure 2. Diagram of sodium voltage-gated channel alpha subunit 10 (SCN10A)
Each yellow circle represents a genetic variant with a P-value less than the significance 

cutoff (1.2 × 10−6). Each red circle represents a genetic variant with a P-value greater than 

the significance cutoff, but less than 0.05.
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