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Abstract

For a long time the effect of crowded cellular environment on protein dynamics has been largely 

ignored. Recent experiments indicate that proteins diffuse much slower in a living cell than in a 

diluted solution and further studies suggest that the diffusion depends on the local surrounding. 

Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on 

extensive all-atom molecular dynamics simulations of concentrated villin head piece solutions. 

After force field adjustments in the form of increased protein-water interactions to reproduce 

experimental data, translational and rotational diffusion was analyzed in detail. While internal 

protein dynamics remained largely unaltered, rotational diffusion was found to slow down more 

significantly than translational diffusion as the protein concentration increased. The decrease in 

diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist 

on sub-microsecond time scales and follow distributions that increasingly shift toward larger 

cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for 

different clusters extracted from the simulations with the distribution of clusters largely reproduces 

the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause 

for a slow-down in diffusion upon crowding with other proteins.
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TOC image

INTRODUCTION

The cellular environment is very crowded. Up to 40% of the cell volume, i.e. as much as 400 

mg/ml, is occupied by macromolecules such as proteins, lipids, and nucleic acids.1 More 

than half of this fraction are proteins2 that draw particular attention because of their 

functional relevance. For a long time, the importance of the cellular surrounding has not 

been fully appreciated as most of the experimental and theoretical studies were restricted 

either to the analysis of proteins in dilute solution or to simplifying considerations of cellular 

crowding effects.3 Since recently, an increasing number of studies of proteins in realistic 

cellular environments4–6 indicate that in vivo conditions can have a substantial impact on 

protein structure and dynamics,7–9 with crucial consequences for their biological function.10

One of the most important properties in the context of cellular environments is protein 

diffusion as a key determinant of biological processes.11–14 Studies conducted in vivo 
indicate that both translational and rotational motions of proteins are significantly slower in 
vivo than in dilute solution.15–18 However, the degree of retardation varies significantly, 

even within the same cell depending on the subcellular environment.19 Reduced diffusion 

may slow down reactions or speed up others, e.g. by extending the presence of a ligand in 

the vicinity of a receptor.20 The best-understood effect of crowded cellular environments is 

the so-called excluded-volume effect where crowder molecules limit the available volume 

for a given solute.21 When the volume fraction of crowder molecules increases, diffusion is 

reduced simply because the free space is diminished, but there are additional factors beyond 

the excluded-volume effect that affect protein diffusion in a cell.22 Altered solvent properties 

such as higher viscosity and a reduced dynamics of water23 could influence macromolecular 

diffusion, although some experiments indicate that the intracellular viscosity is not a limiting 

factor for protein tumbling in cells.24, 25 Finally, weak non-specific transient interactions 

with cytoplasmic components, often termed quinary interactions26, 27, have recently been 

considered as key factors governing protein diffusion.8, 15, 16, 28 However, the nature and 

time scales of how such interactions may shape diffusive properties remains unclear.

It has been shown previously, mostly for lysozyme protein solutions,29–31 that even at 

moderate concentrations proteins are prone to form dynamic clusters. As the protein 

concentration increases, solutions initially dominated by single proteins have been seen to 

develop large, branched and irregular clusters32 that persist on a finite time even above the 

geometric percolation threshold.30 Other recent studies indicate that, although dynamic, 
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such clusters persist long enough to retard the overall protein diffusion,31 as diffusion is 

simply size-dependent.33 The general expectation has been that the cluster formation 

primarily affects short-time diffusion, whereas long-time diffusion is believed to be still 

determined by individual proteins which would be reflected in time-scale dependent 

diffusive behavior. Such behavior would be consistent with colloidal suspensions, where 

cluster formation has been seen as a result of weak short-range attraction and long-range 

repulsion.34 For both, protein solutions and colloids in general, it has been shown that 

shifting the balance toward more attractive interactions, e.g. increasing the concentration, 

decreasing temperature, or screening the repulsive electrostatic by high ionic strength or pH, 

enhances cluster formation and the possibility of liquid-liquid phase separations.29, 30, 33–37 

Studies of colloids, furthermore, show that as clusters grow, a transition to glass and gel 

phases occurs where dynamically arrested states are formed before crystallization occurs.38 

Experiments, theory and simulations of colloid systems generally assume that besides the 

attraction-dominated states, where particles move together, a repulsion-dominated state 

exists, where particles are trapped in a cage formed by surrounding particles.39 All of these 

effects might be expected to contribute to the protein diffusion in a dense solution. 

Nevertheless, it is questionable to what extend the dynamics of a protein solution might be 

explained in terms of simple colloidal chemistry since the interactions between proteins are 

highly complex40, 41 and the present study aims to shed more light on such questions.

Experimental studies of protein dynamics under in vivo conditions or even in the presence of 

high concentrations of biological crowders such as other proteins are possible but do not 

always provide full detailed mechanistic insights.42–44 Molecular dynamics (MD) 

simulations are available as an alternative to study crowded systems in atomistic detail. 

Recent MD simulations have investigated the properties of water23, 45, the stability of 

proteins8, 9, the conformational sampling of peptides46, and interactions between proteins28 

under crowding conditions. A more extensive review is available elsewhere.6

In this study, we describe MD simulations of the well-studied globular protein villin 

headpiece (simply referred to as ‘villin’ throughout this manuscript) at a range of 

concentrations from dilute conditions to 10% volume fraction, close to the experimental 

solubility limit for villin.9 Since villin is not expected to aggregate or form specific clusters, 

it is used here as a model system for studying the effect of cellular crowding on 

macromolecular diffusion. Previous studies have indicated that current force fields may lead 

to artificial protein aggregation under self-crowding conditions47, 48, including for villin.48 

A similar observation was also made for the sampling of disordered peptides that form 

ensembles that are generally too compact with most force fields.49, 50 Both findings suggest 

that protein-water interactions may be too weak relative to protein-protein interactions. To 

restore the balance, modified force fields enhance the Lennard-Jones potential between 

water and protein atoms.49, 51 We followed the same strategy here and initially calibrated a 

modified force field with scaled water-protein interactions to match solution properties of 

villin known from experiment. The trajectories with the optimal force field were then further 

analyzed with respect to diffusive properties and their dependence on transient cluster 

formation under crowding conditions.
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METHODS

Crowded Protein Systems

The chicken villin headpiece HP-36 (PDB entry 1VII52) was simulated at concentrations of 

8, 16, and 32 mM. Systems at 8 and 16 mM concentrations consisted of eight villin copies. 

Systems at 32 mM had either eight or 64 copies of villin (see Table 1). In the initial 

configuration of each system, the proteins were placed in a cubic box in non-overlapping 

random positions and orientations (see Fig. 1). The box sizes were chosen to achieve the 

desired concentrations (see Table 1) and to be significantly larger than the characteristic 

molecular scales. The box edges are long enough to accommodate 5–10 villin molecules if 

packed together and are several times larger than average inter-protein distances. Periodic 

boundary conditions (PBC) were applied to avoid boundary effects. The systems were then 

solvated with TIP3P water and random water molecules were substituted with two Cl− ions 

per villin molecule to neutralize each system. A system consisting of one copy of villin was 

used as a reference for infinite dilution. The size of the dilute system was chosen to prevent 

the protein from interacting with its own images under PBC, even when partially unfolded, 

neither directly nor indirectly (via mediated water layers). Throughout the manuscript we 

use residue numbering 1–36 for the villin residues that correspond to residues 41–76 in the 

full biological sequence.

Molecular Dynamics Simulations

All-atom MD simulations were carried out with NAMD53 (version 2.10), CHARMM54 

(version 42a1) together with OpenMM55, and GENESIS56. The initial systems were 

subjected to energy minimization, heated to 298 K and then simulated for 2 μs. The 

CHARMM c36 force field57 was used to describe interactions involving villin and ions and 

TIP3P58 was used as the water model. Protein-water interactions were enhanced following 

the prescription by Best et al.49. Using NBFIX, scaling factors λ between 1.00 and 1.10 in a 

modified Lennard-Jones potential were applied to interactions between water atoms i and 

protein atoms j:

VLJ(ri j) = λεi j
Ri j

min

ri j

12

− 2
Ri j

min

ri j

6

(1)

The Lennard-Jones and short-range electrostatic interactions were shifted to zero at 0.9 nm 

in the one- and eight-villin systems and were cut off at 0.9 nm with a switching function 

becoming effective at 0.8 nm in the 64-villin system. Long-range electrostatic interactions 

were calculated using the particle mesh Ewald (PME) summation method59 under PBC. A 

more extensive description of the MD protocol can be found in the Molecular Dynamics 
Simulations section of the SI.

Folding Free Energy via Replica Exchange Simulations

Simulations of the one-copy villin were performed with Hamiltonian Replica Exchange MD 

(H-REMD) using λ values of 1.05, and 1.10 to obtain folding free energies, ΔGf, of villin. 
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Unfolded protein conformations were generated by biasing the distance between Cα of 

Arg15 (in the second α-helix) and Cα of Leu29 (in the third α-helix) to facilitate the 

folding-unfolding transition as introduced in a previous study60. 20 replicas were run where 

a harmonic potential using a force constant of k=4.5 kcal/mol was varied to target distances 

ranging from 1.05 to 2.19 nm with a spacing of 0.06 nm between replicas. Each replica was 

simulated over 100 ns with exchange attempts every 10 ps.

The potential of mean force (PMF) as a function of distance (d) and root-mean-square 

deviation (RMSD) was calculated using 2D Weighted Histogram Analysis Method 

(WHAM) implemented by Alan Grossfield.61 The 2D PMF was further integrated to obtain 

1D PMFs as a function of RMSD. The ΔGf was calculated as a probability ratio of finding 

the protein in unfolded (UF) and folded (F) states, according to:

ΔG f = − kBT ln K = − kBTln
∑i ∈ F p(RMSDi)

∑i ∈ UF p(RMSDi)
(2)

where kB is Boltzmann constant, T is temperature, and K is the equilibrium constant. The 

folded state was defined as RMSD<0.4 nm, whereas, the unfolded as RMSD>8.0 nm for 

λ=1.05, and RMSD>7.8 nm for λ=1.10. Averages and errors were calculated from 10-ns 

non-overlapping intervals. This protocol follows the analysis applied in Huang et al.60 for 

the same system with λ=1.00, the results of which are used here as well for comparison.

Analysis

The analysis of the MD trajectories was performed with the MMTSB Tool Set62 and the 

VMD visualization package63. Custom scripts were written for calculation of translational 

diffusion, contacts between proteins, time scales of contacts formation, and distribution of 

clusters. The SciPy package64 was applied for fitting data. The Matplotlib65 library was used 

for plotting the results.

The first 200 ns of each multiple protein copy trajectory were omitted from analysis to allow 

for full equilibration and avoid dependence on the initial configurations. Except for the 

calculation of order parameters (S2
l), only the snapshots of Cα positions saved every 100 ps 

were used.

Translational diffusion coefficients, Dt, were obtained from mean square displacements 

(MSD) of protein centers of mass for a given protein:

MSD(τ) = ( r (t + τ) − r (t))2
(3)

where r is the position of the protein at time t, and τ is the lag time between the two 

positions. The MSD values were obtained by sliding an observation window of size τ from 

0.1 ns to 100 ns along the trajectory in steps of Δt=0.1 ns. Dt was then calculated from the 

slope of a linear fit to MSD(τ) according to the Einstein relation:
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Dt = MSD(τ)
6τ (4)

Dt was further corrected for PBC artifacts taking account of altered water viscosity in the 

crowded systems (see Eq. S1 and S2 in the Analysis section in the SI).

The internal dynamic correlation function was calculated from the MD trajectories 

according to:

CI(t) = P2 μ(0) ⋅ μ(t) (5)

where P2(x) is the second-order Legendre polynomial, μ describes the orientation of the unit 

N-H bond vector with respect to the molecular reference frame. The resulting functions were 

fitted with:

C1(t) = Sl
2 + (1 − Sl

2)e
− t

τe (6)

where S2
l is the generalized order parameter that describes protein dynamics, and τe is the 

time constant for internal motions.

The rotational correlation function was determined from the trajectories following the 

protocol proposed by Wong and Case66. Randomly distributed unit vectors were centered 

and rotated along with the protein before fitting it to a reference structure for each frame. 

Correlation functions were then obtained as:

CO(ti, t) = P2(n j(ti + t) ⋅ n j(ti)) j
(7)

where nj(ti) is one of the randomly distributed unit vectors (generated at time ti). The 

correlation functions were then fitted to a double-exponential function:

CO(t) = SR
2e

− t
τRs + (1 − SR

2 )e
− t

τR f (8)

with fast, τRf, and slow, τRs, correlation times, and weighted by SR
2. Rotational diffusion 

estimates were then obtained according to Eq. 9 and do not require a PBC correction.67

Dr = 1
l(l + 1)τ (9)
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where l=2 and the overall rotational correlation time τ is obtained from the fast and slow 

correlation times as follows:

τ = SR
2τRs + (1 − SR

2 )τR f (10)

Additionally, averages of the inverse tumbling times were also calculated as they are more 

relevant for comparison with many experiments such as dynamic light scattering68:

τini
SR

2

τRs
+

1 − SR
2

τR f

−1

(11)

The correlation functions obtained at the highest concentrations were additionally fitted to a 

triple-exponential function since a double-exponential fit did not fully describe the data:

CO(t) = SRs
2 e

− t
τRs + SRm

2 e
− t

τRm + (1 − SRs
2 − SRm

2 )e
− t

τR f (12)

where τRf, τRm, and τRs are fast, medium and slow correlation times with the corresponding 

SRm
2 and SRs

2 weights.

For both, translational and rotational diffusion rates, errors were obtained from averaging 

over four subsequent 500 ns trajectory blocks in dilute and over the proteins copies in dense 

systems. To analyze transient cluster formation, two proteins were assumed to be in a 

contact if any of their Cα atoms were closer than 0.7 nm. Clusters were counted based on 

proteins in contact considering minimum images under PBC.

A residue contact map for interactions between proteins based on Cα coordinates was 

calculated as follows: For each residue i in a given protein copy, Pm, the minimum distance 

to residues j in other protein copies Pn, excluding m, was calculated as 

dmin ri(i ∈ Pm), r j( j ∈ Pn) . The distance for a given pair was then averaged by taking each 

protein m in turn as the starting point and by averaging over simulation snapshots. The 

example of a minimum distance calculation shown in Fig. S1 indicates that the resulting 

contact map is not strictly symmetric. The kinetics of contact formation was described by a 

correlation function depicting whether a contact is still present after a given period of time 

(see Eq. S3 in the Analysis section in SI). The correlation function was then fitted to a triple-

exponential function:

Cc(t) = Sc
se

− t

τc
s

+ Sc
me

− t

τc
m

+ (1 − Ss
c − Sc

m)e
− t

τc
l

(13)
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with short (τc
s), medium (τc

m), and long (τc
l ) relaxation times and weights Sc

s
s
, Sc

m and 

Sc
l = 1 − Sc

s − Sc
m. No constraints were applied when fitting Eq. 13 and the functional form 

implies a decay to zero at long times since we did not observe permanent contact formation 

as in aggregation.

Representative structures of clusters were extracted from the trajectories at the middle of a 

time interval when a cluster was formed for at least 1 ns. Uncertainties in the cluster 

distribution and in the diffusion of MD-derived structures were obtained by averaging over 

four subsequent 450 ns trajectory blocks (discarding 200 ns as equilibration).

Coarse-Grained Simulations

Coarse-grained simulations of purely attractive, neutral, and repulsive proteins were carried 

out for comparison. Systems of eight protein copies at 8, 16 and 32 mM concentrations were 

modeled and each of them was simulated with the three different types of interactions. For 

more details see the Coarse-Grained Simulations section in the SI.

RESULTS AND DISCUSSION

Force Field Optimization

Previous studies have indicated that current force fields may overestimate protein-protein 

interactions relative to protein-water interactions.47, 48 Therefore, we considered a modified 

force field based on CHARMM c3657 where the Lennard-Jones potential between water 

oxygen and protein atoms was scaled by a factor λ (see Eq. 1) as proposed by Best et al.49 

We tested λ values between 1.0, corresponding to the unmodified force field, and 1.2, 

corresponding to protein-water interactions that are increased by 20%. Simulations with 

different scaling factors were carried out for the eight-copy villin systems at different 

concentrations (see Table 1) to determine which value of λ provides results that are most 

consistent with experiment.

Since the strength of the protein-water interactions modulates the hydrophobic effect, we 

first analyzed whether the stability of villin is maintained when protein-water interactions 

are enhanced. We found that λ values up to 1.09 do not significantly compromise the 

stability of the native state (with average RMSD values generally below 0.3 nm, see Fig. S2) 

while larger scaling factors led to significant destabilization of the native fold. With scaling 

factors of λ=1.09 and less, there was only occasional partial unfolding that lasted at most for 

tens of nanoseconds before refolding. With λ=1.10, we find more pronounced native state 

destabilization in the concentrated solutions, especially at 8 and 32 mM, but not under dilute 

conditions, based on the average RMSD values. We also calculated average internal order 

parameters Sl
2 (according to Eq. 6, see Table S2) and found little change up to scaling 

factors of 1.09 but a significant increase in internal dynamics with λ=1.10. Partial 

destabilization of villin in simulations under crowding conditions has been noted previously,
9 although, in that case, the observed partial unfolding of villin was related to interactions 

with protein G that are not present here. Previous NMR experiments clearly showed that 

villin maintains its stability even at 32 mM, as there were only minor changes in chemical 
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shifts for residues at the surface.9 Therefore, based on the stability analysis, we concluded 

that protein-water scaling factors of 1.10 or larger are not consistent with the NMR 

experiments.

We further analyzed the formation of clusters based on the contact definition described in 

the Methods section. Generally, as expected, small clusters (monomers, dimers etc.) 

dominated at low concentrations, whereas larger clusters appeared increasingly at higher 

concentrations (see Fig. S3). Also as expected, increasing scaling factors shifted the cluster 

distributions within a given concentration toward smaller clusters (see Fig. S3). The systems 

are too small and sampling requirements are too large to directly determine solubility from 

these simulations.69 However, the fraction of the largest possible cluster (octamer) is an 

indicator of aggregation propensities and whether the solubility limit is approached or 

exceeded. At 8 mM, octamers were not formed to a significant extent with any scaling 

factors (see Fig. S3) indicating that villin remained fully soluble in all cases. Scaling factors 

of 1.00, 1.01, and 1.02 led to significant octamer populations at 16 mM (about 50%. see Fig. 

S3) while at 32 mM, scaling factors from 1.00 to 1.05 resulted in 50–100 % octamer 

formation. In experiments, villin is still soluble at 32 mM.9 This observation is not 

compatible with the strong aggregation found in the simulations at 16 and 32 mM with 

scaling factors below 1.03 and probably also not with larger scaling factors up to 1.05 where 

significant aggregation into large clusters is seen at 32 mM.

Since protein stability appears to be sensitive to the scaling factor in the studied range, as the 

RMSD results show, we calculated the folding free energy of a single villin using different λ 
values. PMFs as a function of RMSD are shown in Fig. S4. According to the analysis 

described in the Method section we determined ΔGf as −4.94 kcal/mol, −4.14 kcal/mol and 

−3.47 kcal/mol for λ equal to 1.00, 1.05, and 1.10, respectively. The comparison with 

experimental values of −2.4 kcal/mol70 and −3.1 kcal/mol71 (for villin without the N-

terminal methionine) suggests that the largest scaling factor gives the best agreement.

Taking all of the evidence together, it is clear that the scaling of protein-water interactions 

improves the agreement between simulations and experiment. On one hand, scaling factors 

above 1.05 are needed to prevent strong aggregation while factors of 1.10 and larger lead to 

native state destabilization in the presence of other villin molecules. The calculated folding 

free energies for a single villin in dilute conditions furthermore suggest that scaling factors 

closer to 1.10 are best. Therefore, λ=1.09 was chosen as the optimal scaling factor to 

describe the concentrated villin solutions studied here as the largest value that does not lead 

to significant destabilization under crowded conditions. Incidentally, this value is very close 

to the value of λ=1.10 chosen by Best et al. for the AMBER force field to improve the 

sampling of disordered peptides and protein-protein affinities49, although it will require 

further studies to determine whether this exact scaling factor is generally optimal for 

simulating concentrated protein systems with the CHARMM force field.

The simulations at 8, 16, and 32 mM with λ=1.09 as well as an additional simulation of 64 

villin copies at 32 mM, also with λ=1.09, were subsequently analyzed in more detail.
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Internal Dynamics of Villin

The villin structures remained largely stable at all concentrations in the simulations. The 

average Cα RMSD values with respect to the NMR structure (PDB code: 1VII) were 0.26 

± 0.009 nm at 8 mM, 0.26 ± 0.007 nm at 16 mM, and 0.25 ± 0.005 nm and 0.31 ± 0.03 nm 

in the eight- and 64-villin systems at 32 mM. In the eight-villin simulations, two proteins 

spontaneously unfolded (8 mM and 16 mM concentrations) for tens of nanoseconds forming 

a structure of an open hairpin that mostly preserved the secondary structure before refolding. 

Four proteins unfolded in the 64-copy system partially losing the secondary structure and 

remaining extended for a longer time period. Native-state destabilization of villin upon 

crowding has been seen by us before in shorter simulations under different conditions,9 but 

the unfolding seen here is likely due to a much larger amount of sampling. Villin is only 

stable by 3.1 kcal/mol and folding/unfolding rates are on the order of 5 μs.71 Therefore it 

would be expected that villin can spontaneously unfold during microsecond-scale 

simulations even under dilute conditions.

The internal dynamics was further analyzed by calculating generalized order parameters Sl2 

as a function of residue (see Fig. 2). The results suggest that there is little overall effect of 

crowding on the internal dynamics as a function of concentration, but it appears that villin 

flexibility may be slightly increased for residues 11–14 and 33–35 while being decreased for 

residues 4–9.

Translational Diffusion of Villin

Translational diffusion coefficients were obtained from mean square displacements (see Fig. 

3) and were corrected for PBC artifacts as described in the Methods section. The MSD 

curves display somewhat different slopes at different time scales indicative of transient 

behavior. Therefore, we obtained diffusion coefficients for three time regimes: < 1 ns, 1–10 

ns, and 10–100 ns. Table 2 summarizes the results.

The TIP3P water model underestimates the viscosity of pure water (ηTIP3P = 0.35 cP72 (at 

293 K) compared to the experimental value of ηexp = 0.89 cP73). Therefore, the diffusion of 

solutes in TIP3P is too fast and a scaling factor based on the ratio of the viscosities, ηexp/

ηTIP3P = 2.54 (at 298 K), has previously been applied to correct diffusion coefficients 

obtained with TIP3P water.74 Based on this scaling factor, we obtain Dt = 0.187 nm2/ns 

under dilute conditions. Experimental data for Dt is not available for villin, but the program 

HYDROPRO provides theoretical estimates that generally match experimental values 

closely for dilute conditions.75 The HYDROPRO estimate is Dt = 0.177 nm2/ns, in excellent 

agreement with the MD-derived value after scaling.

Under crowded conditions, diffusion rates slow down as expected. Diffusion on different 

time scales decreases to a different extent but the effect is not very strong (see Table 2 and 

Figure 3). Time-dependent diffusion in the presence of protein crowders has been examined 

before for CI228 and discussed in the context of variable protein-protein interactions. 

Standard colloid theory based on hard sphere models predicts two main diffusive regimes 

associated with faster short time diffusion within the cage of surrounding proteins and 

longer time diffusion where a molecule escapes the cage and is then affected by macroscopic 
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solvent viscosity. In the case of CI2, this classical two-regime picture was seen in the case of 

weaker interactions with protein crowders, but when strong interactions with the 

surrounding protein crowders were present, the overall diffusion was reduced more and the 

cage effect was less pronounced as short and long time diffusion were similar.28 The 

argument made in this earlier work was that diffusion was slowed down already at short time 

scales due to cluster formation while diminishing the cage effect. The absence of a strong 

cage effect is apparent from the log-log plot in Fig. 3B and the derivative analysis in Fig. 3C 

that shows slopes near 1 throughout the entire range of time scales with only a shallow 

minimum between 10–100 ns where the slope of the log-log curves decreases to 0.85–0.9 in 

the most concentrated system. This indicates only weak subdiffusive behavior for this 

system. The observation of similar short and long time diffusion in the villin simulations 

reported here then also suggests extensive cluster formation.

Similar results for the 8- and 64-copy systems at 32mM indicate that different box sizes do 

not have a strong effect on the findings reported here. On the other hand, the slightly more 

reduced diffusion rate in the 64-copy 32mM system can be rationalized simply because 

larger clusters can be formed than in the eight-copy system.

The simulations reported here are about an order of magnitude longer than our previous 

simulations of CI2 and the size of the villin molecules is smaller than then crowders in the 

CI2 study. More formally, the limits of short time diffusion are generally considered as τH ≪ 
t ≪ τI, with

τH ≈ R2ρ
ηφ and τI ≈ R2

Dt, dilute
(12)

where R is the particle radius, ρ is the solvent density, η is the solvent viscosity, and ϕ is the 

volume fraction.41 For the 32 mM villin solution, this amounts to a time range of 25 ps ≪ t 

≪ 11 ns, which is well below the 2-μs simulation length of the present simulations. 

Therefore, villins would have enough time to diffuse out of a local cage environment and 

reach the long-time diffusion limit. Further evidence that this is indeed the case comes from 

analyzing the exchange of the nine closest partners, Nex
9, based on a quantity introduced 

earlier,45, to characterize complete exchange of the local environment for a given villin 

molecule. In the 64-villin trajectory we found that more than half of the villins in the 64-

villin system experienced at least one complete swap of the local environment. This finding 

also supports that the long time diffusion regime has been reached. As further illustration, 

Movie S1 shows the center-of-mass motion of selected villins and how one villin escapes 

from one cage and diffuses freely as a monomer and then enters another cage in the 

simulation. Another factor influencing the results may be finite-size effects, however, the 

results with the 8-copy and 64-copy are qualitatively similar with the quantitative differences 

assumed to be due to the formation of larger clusters in the 64-copy system as discussed 

above. Therefore, it is unlikely that the lack of clear two time regimes is due to insufficient 

simulation length or finite-size effects. Instead, it appears that almost uniform diffusion from 

picoseconds to at least microseconds is a feature of this system and a result of extensive 

cluster formation.
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Rotational Diffusion of Villin

In the crowded systems the rotational correlation functions based on the reorientation of 

vectors attached to the molecular frame (see Methods) were calculated for each protein copy 

separately. As Figure 4 shows, there is significant variation between the correlation decays 

in different copies and especially at the highest concentration, some correlation functions 

display non-exponential behavior that we attribute to the inhomogeneity of local 

environment and limited statistics. In the following discussion, we focus on averages over 

individual protein copies.

The correlation functions were fit with a double-exponential with two time scales. The fits to 

the average correlation functions (black lines in Figure 4) are shown in Figure 5. For the 

highest concentration solutions, we also fitted a triple-exponential function (Eq. 12) to better 

represent the initial decay of the correlation functions. Anisotropy in rotational diffusion was 

not considered here. The resulting double-exponential fit parameters averaged over fits of 

individual correlation functions are given in Table 3. The results for the triple-exponential fit 

to the average correlation functions for the 64-copy 32mM system are:τRf = 0.845 ns, τRm = 

5.762 ns, and τRs = 29.596 with the weights SRm
2 = 0.390 and SRs

2 = 0.200 resulting in 

Dr=0.011 nm2/ns, which is similar to the result from the double-exponential fit. The dilute 

value is again about three times faster than the value of Dr = 0.068 ns−1 obtained from 

HYDROPRO due to the underestimated viscosity with the TIP3P water model.

As the concentration increases in the lower range (8 – 16 mM), the contribution to the 

overall diffusion, described by SR
2, shifts toward the slow time scales, whereas, the fast, τRf, 

and the slow, τRs, correlation times remain mostly constant. In the higher concentration 

range (16 – 32 mM), both τRf and SR
2 are relatively unaltered, whereas τRs significantly 

increases. This is generally consistent with observations from NMR studies for the same 

systems.76 The resulting values of Dr decrease with increasing concentrations. We are 

reporting results both based on linear averaging of tumbling times according to Eq. 10 and 

averaging of inverse tumbling times according to Eq. 11. The latter quantity is more 

commonly discussed when analyzing experiments such as depolarized dynamic light 

scattering and focuses on the initial decay slope. One interpretation of this data is that as the 

solutions become denser, a diminishing fraction of villin rotates as a free monomer, while 

the remaining villin copies experience increasing crowding effects that cause the formation 

of larger clusters. Interestingly, the rotational diffusion slows down more significantly at 

higher concentrations (to 16% of dilute value at 32mM based on averaging inverse tumbling 

times) than the translational diffusion (48–56% of dilute value at 32mM). This generally 

agrees with the results from the Pielak group for crowded systems involving weakly 

interacting proteins15, but it differs from results from the Saalwächter group68 where 

rotational properties of largely non-interacting proteins were studied. This may be expected 

as the decoupling between translational and rotational diffusion under crowding conditions 

has been suggested to be protein-specific, although methodological differences may also 

play a role.68
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Transient Cluster Formation

At high concentrations, frequent encounters between proteins are unavoidable. The previous 

analysis is already suggesting that such interactions may lead to transient clusters and we 

analyzed this aspect further. The interactions between the proteins were characterized by the 

calculations of an average number of contacts a single protein forms with others. The results 

are summarized in Table 4. The number of contacts doubled when the concentration 

increased from 8 to 16 mM, and rose by another 50% when the concentration increased 

further from 16 to 32 mM. To shed light on the nature of the interactions governing the 

contacts formation, we compared with coarse-grained (CG) simulations, where residues 

were assigned purely attractive, neutral, or repulsive interactions (see Methods section for 

more details) (Table 4). We find that the number of contacts in the all-atom simulations is 

roughly one order of magnitude larger than in the CG model with neutral interactions but 

still significantly less than with purely attractive interactions. We note that the available 

volume at any of the concentrations does not force interactions as there were no protein-

protein contacts in the CG simulations with the repulsive potential. This comparison 

suggests that the villin interactions are weakly attractive.

The weak attraction led to transient cluster formation. Fig. 6 shows the size of clusters as a 

function of concentration. At 8 mM, 60% of the proteins exist as monomers but there is a 

small fraction of dimers, trimers, and tetramers. At 16 mM, the fraction of monomers 

decreases to 35% and clusters as large as hexamers are observed. At 32 mM, the eight-copy 

system is too small to adequately characterize the cluster distribution. In the 64-copy system, 

we find significant fractions of clusters as large as 45-mers while the fraction of monomers 

is decreased to less than 10%. Since larger clusters than 50-mers were not observed, we 

conclude that villin still remains soluble at 32 mM in the simulations but higher-order 

clusters are present in the simulations with non-negligible fractions. The average cluster size 

in the 64-copy system, Nc, is 13, a number that is close to Nc = 3–5, previous SAXS 

experimental values for lysozyme at a volume fraction of 0.1.34 Given the differences in 

proteins, protein sizes and protein-protein interactions, this is reasonable qualitative 

agreement. Furthermore, the average number of contacts obtained at 32 mM from 64 protein 

copies system (Table 4), i.e. 2.05±0.07, corresponds well to the maximum number of 

neighbors (2) determined from colloids interacting by the centrosymmetric potential as well 

as patchy colloids at the volume fraction ϕ = 0.1.41

Villin is not known to form specific clusters and we also did not find a strong preference for 

specific complexes as the population of cluster structures for a given cluster size is quite 

diverse (see Fig. S5). However, according to our simulations, certain parts of the villin 

structure are more likely to be involved in the protein-protein interfaces than others (see Fig. 

7). Favorable interactions were found for the residues belonging to the N-terminal α-helix 

(residues 5–10) and the last few residues at the C-terminus. The contact maps are in rough 

agreement with a previous simulation study of villin contacts in a crowded mixture of villin 

and protein G.9 When mapped onto the three-dimensional villin fold (Fig. 8A), it becomes 

apparent that there is a preference for one side of the structure to interact. The residues 

involved in these interactions are largely acidic and basic suggesting that the interactions 

that lead to non-specific clusters are driven more by electrostatics and salt-bridge formation 
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than by hydrophobic interactions. These interactions can also partially explain the observed 

weak concentration-dependency of specific regions in Sl
2 (see Fig. 2). Favorable interactions 

at residues 5–10 and at the C-terminus are enhanced as the concentration increases. 

Enhanced interactions result in the decreased flexibility at residues 5–10. In contrast, 

favorable interactions at the C-terminus result in the increased flexibility at the C-terminus. 

The difference is that, bulkier residues are facing outward at the C-terminus (e.g. Phe36) but 

those residues are facing inward at residues 5–10 (e.g. Phe7), interacting with other 

phenylalanines (Phe11 and Phe18). In the crowded environment, favorable interactions at 

residues 5–10 are strengthened without being affected by Phe7 but these residues are 

weakened by a flexible Phe36. Also in residues 11–14, crowding partially affects the 

stability of the three interacting phenylalanines, so the flexibility in this region increases 

(See Fig. 2 and 8B).

Although the range of minimum distance decreases with increasing concentration (Fig. 7) 

the pattern of favorable contact is very similar at all three concentrations. The contact maps 

obtained at 32 mM concentration with eight (Fig. 7C) and 64 (Fig. S7) protein copies are 

also in good agreement suggesting that contact preferences are not sensitive to finite-size 

effects.

The kinetic nature of cluster formation was characterized by defining a conditional contact 

function as given in Eq. S3 and fitting a triple-exponential function. The results in Table 5 

reveal three distinct time scales: 0.74–1.9 ns, 12.5–42.0 ns, and 108–342 ns. The longest 

time scale contributes most at the lowest and medium concentrations, but at the highest 

concentration the contribution from all the three time scales is comparable. Furthermore, if 

the 8-copy 32 mM results are excluded, which may be too small to obtain reliable statistics, 

the longest time scale clearly increases with concentration as may be expected, but even at 

32mM, cluster formation remains highly transient. However, clusters form mostly on time 

scales that are long (τc
l) compared to characteristic rotational time scales of 1–25 ns (see 

Table 3) and the time it takes to diffuse by the size of villin (on the order of 10 ns; based on 

data in Table 2). Therefore, although cluster formation is dynamic, clusters persist long 

enough to significantly affect diffusional properties. This prevents a pronounced cage effect 

for single villins as they frequently associate with other molecules rather than moving 

independently in a cage of surrounding crowders. On the other hand, a cage affect at the 

larger cluster level is also prevented because clusters frequently reorganize and do not persist 

long enough to experience diffusion on different time scales. As a result, the effective 

diffusion of villin becomes less time-dependent than standard colloid theory would predict 

as discussed above.

The longest obtained time scales of contact formation between villins are consistent with 

findings for lysozyme solutions studied by neutron spin-echo spectroscopy (NSE) that set 

the lower limit of the cluster lifetime to 25 ns29. Other studies show that the lifetime of 

lysozyme clusters is finite on millisecond time scales77, 78. The presented lifetimes are also 

not in contradiction with reports for solutions of bovine β-lactoglobulin (BLG) that indicate 

that BLG clusters are static on NSE observation time scale, i.e. up to 50 ns33, but have a 

limited lifetime on the microsecond observation time scale of dynamic light scattering33.
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Diffusion Slow-Down as a Consequence of Cluster Formation

The simulation results present a picture where villin molecules engage in the formation of 

transient clusters that persist on time scales on the same order or larger than rotational and 

translational diffusion time scales. This suggests that the observed slow-down in diffusion 

for the villin system is largely related to cluster formation.

We extracted representative structures of clusters of different sizes from the trajectories and 

estimated their translational and rotational diffusion coefficients via HYDROPRO.75 The 

resulting diffusion coefficients as a function of cluster size are shown in Fig. S6. Dr 

decreases more sharply with increasing clusters size than Dt. We then estimated overall 

diffusion coefficients by summing the cluster-size dependent diffusion coefficients with 

weights according to the cluster distributions observed in the simulations (see Fig. 6). The 

results are shown in Table 6 in comparison with the values of Dt and Dr extracted from the 

simulations. For translational diffusion, there is close agreement between the cluster-based 

estimates and the actual MD diffusion rates. Rotational diffusion rates also match well. Best 

agreement is found with the linear-average rotational diffusion constants for lower 

concentrations but with the inverse tumbling time averages at 32 mM villin concentration. 

This indicates that additional factors may affect rotational diffusion beyond simple cluster 

formation such as reduced solvent viscosity due to crowding or electrostatic friction. As 

electrostatic friction may be orientationally dependent, this could explain the larger 

discrepancy for rotational than for translational diffusion between the MD-derived results 

and the cluster-based estimates. Finally, a simple cluster-based estimate of rotational 

diffusion also does not reflect the significant heterogeneity and overall non-exponentiality 

seen in the rotational correlation functions for individual copies at the highest concentration 

(see Fig. 4) which may explain additional discrepancies.

CONCLUSIONS

We describe out all-atom MD simulations of crowded villin systems in explicit solvent at 

different concentrations. Simulations of crowded protein systems remain challenging and we 

had to increase the strength of protein-water interactions to obtain good agreements with 

experiments.

After adjusting the force field, we found that both, translational and rotational diffusion, 

slow down to different extents in the crowded environment. Rotational diffusion is slowed 

down more significantly apparently because of the transient formation of clusters. In the 

simulations, we observe cluster formation due to weakly attractive but mostly non-specific 

interactions between villins. As the concentration increases, the distribution of clusters shifts 

towards higher-order clusters at higher concentrations but the peak of the distribution 

remains at monomers, suggesting that villin is still soluble in the simulations. The transient 

cluster formation also appears to be responsible for a lack of the typical cage effect expected 

for colloids that is manifest by two distinct diffusive regimes but not strongly present for the 

villin system studied here.

When we predicted diffusion coefficients from clusters observed in the simulations and 

weigh those values according to the observed cluster fractions, we largely reproduce the 
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overall observed translational and rotational diffusion coefficients. This suggests that the 

slow-down in diffusion is primarily due to transient cluster formation rather than reduced 

solvent viscosity or other types of molecular friction. The observed rotational diffusion does 

not fully match the cluster-based estimates suggesting that additional factors are involved, 

with electrostatic friction being the most likely explanation. This aspect will be investigated 

in more detail in future studies.

Although we studied only villin here, we assume that the findings have broader implications 

for diffusive properties in crowded cellular environments. Essentially, the finding is that 

diffusion depends largely on transient cluster formation, which in turn depends on the 

strength of interactions between different macromolecules and ultimately the surface amino 

acid composition. Therefore, experimental studies could probe this aspect by determining 

diffusion rates for proteins with sequence variants that alter their surface properties.

The differential slow-down in rotational and translational diffusion rates is interesting and 

may have some implications for diffusion of proteins and ligands in a cell. In diffusion-

limited enzymatic reactions, relatively slower rotational diffusion would allow enzymes to 

remain pre-oriented, especially when part of metabolic pathways and thereby increase 

metabolic efficiencies. On the other hand, the apparent prevalence of weak attractive 

interactions allows for related metabolic enzymes to be close so that products of one enzyme 

can quickly find the active site of the next enzyme in a given pathway. However, since we 

only studied villin here, further studies of metabolic enzymes in the presence of ligands will 

be needed to test these ideas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Configurations after 100 ns for concentrated systems of eight villins at 8 mM (A), 16 mM 

(B), and 32 mM (C) as well as 64 villins at 32 mM (D) concentration. Colors are used to 

distinguish different villin copies, water molecules are shown in grey.
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Figure 2. 
Order parameter Sl

2 for villin residues (except for Met1 and Pro22) at 8 mM (blue), 16 mM 

(green) and 32 mM (red: eight-villin system; orange: 64-villin system; magenta: 64-villin 

system without the four villins that unfold during the simulation). Results under dilute 

conditions are shown for reference as a black dashed line. Statistical uncertainties are shown 

as error bars.
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Figure 3. 
Mean square displacement vs. time based on center of mass of villin at 8 mM (blue), 16 mM 

(green), and 32 mM (eight-copy: red; 64-copy: orange). Linear functions fitted to different 

time scales (<1 ns, 1–10 ns, and 10–100 ns) are shown as dashed lines (dotted, dash-dotted, 

dashed, respectively). The values are shown in regular (A), logarithmic (B) scales. The 

derivative of the log-log plot is shown in (C). Gray dashed lines with the slop equal to 1 are 

shown for reference.
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Figure 4. 
Correlation functions for scalar product between random vectors fixed to the molecular 

frame used for describing rotational diffusion (see Methods) of individual villin copies 

(color lines) at 8 mM (A), 16 mM (B), 32 mM with eight copies (C), and 32 mM with 64 

copies (D). Correlation functions averaged over villin copies are shown with error bars 

(black lines).
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Figure 5. 
Correlation functions for scalar product between random vectors fixed to the molecular 

frame used for describing rotational diffusion (see Methods) averaged over villin copies at 8 

mM (blue), 16 mM (green), and 32 mM (eight-copy: red; 64-copy: orange). Villin in dilute 

solvent is shown as a black line (averaged over trajectory blocks). Exponential functions fit 

to the average correlation functions are shown as dotted lines. Triple-exponential fits (at 32 

mM with 8 and 64 protein copies) are shown as dashed lines (B). All fits have R2 values of 

larger than 0.995 and χ2 values of less than 0.05. Values of τ are shown in regular (A) and 

logarithmic (B) scales.

Nawrocki et al. Page 25

J Phys Chem B. Author manuscript; available in PMC 2018 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Distribution of cluster sizes for simulations of eight proteins (A) at 8 mM (blue), 16 mM 

(green) and 32 mM (red) and of 64-copy system (B) at 32 mM based on contacts defined as 

Cα-Cα distances of less than 0.7 nm (see Methods).
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Figure 7. 
Contact map of residues between proteins at 8 mM (A), 16 mM (B), and 32 mM (C). Colors 

indicate the average Cα distances from a given residue to the closest residue of another 

nearby villin molecule. Residue numbers 1–36 correspond to 41–76 in the biological 

sequence.
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Figure 8. 
Structure of villin colored according to the average Cα distance to nearby villin molecules 

(A) (short: red, medium: green, long: blue) and by residue type (B) (hydrophobic: white, 

polar: green, acidic: red, basic: blue). Residue numbers 1–36 correspond to 41–76 in the 

biological sequence.
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Table 4

Average number of contacts per protein obtained from all-atom and CG simulations

[villin] (mM) all-atom CG attractive CG neutral CG repulsive

8 0.48 (0.13) 3.73 (0.32) 0.065 (0.005) 0.00 (0.00)

16 0.94 (0.12) 3.90 (0.33) 0.093 (0.011) 0.00 (0.00)

32 1.46a (0.19); 2.05b (0.07) 3.85 (0.23) 0.229 (0.016) 0.00 (0.00)

a
eight copies,

b
64 copies
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