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Abstract

BACKGROUND—Many studies report smaller hippocampal and amygdala volumes in 

posttraumatic stress disorder (PTSD), but findings have not always been consistent. Here, we 

present the results of a large-scale neuroimaging consortium study on PTSD conducted by the 

Psychiatric Genomics Consortium (PGC)–Enhancing Neuroimaging Genetics through Meta-

Analysis (ENIGMA) PTSD Working Group.

METHODS—We analyzed neuroimaging and clinical data from 1868 subjects (794 PTSD 

patients) contributed by 16 cohorts, representing the largest neuroimaging study of PTSD to date. 

We assessed the volumes of eight subcortical structures (nucleus accumbens, amygdala, caudate, 

hippocampus, pallidum, putamen, thalamus, and lateral ventricle). We used a standardized image-

analysis and quality-control pipeline established by the ENIGMA consortium.

RESULTS—In a meta-analysis of all samples, we found significantly smaller hippocampi in 

subjects with current PTSD compared with trauma-exposed control subjects (Cohen’s d = −0.17, p 
= .00054), and smaller amygdalae (d = −0.11, p = .025), although the amygdala finding did not 

survive a significance level that was Bonferroni corrected for multiple subcortical region 

comparisons (p < .0063).

CONCLUSIONS—Our study is not subject to the biases of meta-analyses of published data, and 

it represents an important milestone in an ongoing collaborative effort to examine the 

neurobiological underpinnings of PTSD and the brain’s response to trauma.
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Posttraumatic stress disorder (PTSD) is a psychiatric condition that develops in about 6% to 

8% of the general population following exposure to traumatic life events (1–3), with higher 

rates in women (8% to 10% compared with 4% to 5% of men) (1,3) and select populations 

such as military combat survivors (19%) (4). With the rise in global terrorism and military 
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conflict, the public health impact of PTSD has attracted greater attention and fueled research 

on its neural and biological markers. One key goal of research on the neurobiology of PTSD 

has been to identify structural brain changes that are associated with PTSD, and much of this 

work has focused on the volume of the hippocampus and amygdala.

PTSD researchers have often focused on the hippocampus, as it plays a central role in 

regulating stress hormones and responses through the hypothalamic-pituitary-adrenal axis, 

and because it is also susceptible to the toxic effects of elevated glucocorticoids (5). Further, 

the hippocampus has been implicated in the contextual modulation of behavior (6,7). With 

its role in fear learning and suppression of fear in safe contexts, i.e., fear conditioning, 

extinction, and fear renewal, the hippocampus is integral to widely accepted behavioral 

models of PTSD (8,9). The amygdala is another subcortical region that likely plays a key 

role in the pathophysiology of PTSD. Animal models have established the role of the 

basolateral amygdala in fear learning and the centromedial amygdala in fear expression (10). 

The amygdala is hyperactive during various behavioral paradigms tested in PTSD (11). In 

addition, the amygdala is adjacent to the hippocampus, and these two highly interconnected 

regions have strong evidence of mutual modulatory influence, especially for emotional 

memory (12).

Numerous studies have examined the relationship between PTSD and the hippocampus and 

amygdala. Prior studies typically found smaller hippocampal volume in PTSD (13–16), but 

this has not been consistent (17–21). Evidence of altered amygdala volume in PTSD has 

been even more equivocal, with studies reporting both smaller (16) and larger (22) volumes. 

Meta-analyses have more consistently reported PTSD-associated reductions in hippocampal 

and amygdala volume (23–26). One meta-analysis found an association between PTSD and 

lower hippocampal volume (15 studies, n = 562), and smaller-sample meta-analyses found 

smaller volumes for the amygdala (7 studies, n = 320) (25). A more recent meta-analysis 

found smaller volumes in the hippocampus (36 studies, n = 1623) and the amygdala (14 

studies, n = 682), although the association observed with the amygdala was partially due to 

confounding with the effects of trauma exposure (26). However, major limitations of these 

meta-analyses include disparate image processing steps and the “file drawer” problem, 

which refers to the tendency to publish only those results that confirm an initial finding, 

while contradictory and null results remain unpublished and relegated to the investigator’s 

“file drawer.” Thus, previous meta-analyses have been potentially subject to publication bias 

and spuriously large effect sizes because they are based solely on published results. In 

addition, there is limited evidence for altered volumes of other subcortical structures. 

Previous studies showed reduced caudate nucleus volume (27–29) and increased lateral 

ventricle volume (30) in PTSD patients. Furthermore, a smaller globus pallidus and 

thalamus were associated with more re-experiencing of symptoms (31). It is unclear if the 

absence of structural differences, limited sample size, or lack of interest in these structures 

has led to the small number of reports on subcortical structures other than hippocampus and 

amygdala.

Here, the Psychiatric Genomics Consortium [PGC]–Enhancing Neuroimaging Genetics 

through Meta-Analysis (ENIGMA) PTSD Working Group compared eight subcortical 

structure volumes (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, 
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putamen, thalamus, and lateral ventricle) between PTSD patients and control subjects in the 

largest PTSD neuroimaging study to date, including data from 1868 subjects from 16 

cohorts. A major advantage of the present study in comparison with previous meta-analyses 

examining subcortical volume in PTSD is that all 16 sites implemented a standardized image 

analysis and quality control pipeline developed by the ENIGMA Consortium that has also 

been used to identify associations between subcortical volumes and major depressive 

disorder (32), bipolar disorder (33), obsessive-compulsive disorder (34), and schizophrenia 

(35), thus avoiding potential noise introduced by varying neuroimaging processing methods 

across sites (36). Therefore, our study design avoids many of the serious limitations of prior 

meta-analyses that combined published summary statistics.

In addition to the main analysis of PTSD diagnosis, we performed separate analyses 

examining variables that have been hypothesized to influence the relationship between 

PTSD and subcortical volume, including gender effects (25), civilian versus military 

samples, childhood trauma (37), and alcohol use disorder (AUD) (38).

METHODS AND MATERIALS

Samples

The ENIMGA-PGC PTSD Working Group includes 16 cohorts from five countries, with 

neuroimaging and clinical data from PTSD patients and control subjects with varying levels 

of trauma exposure. Thirteen of the 16 sites exclusively used the Clinician-Administered 

PTSD Scale to diagnose PTSD, and 12 sites assessed childhood trauma. Detailed 

demographic information on each sample, including trauma exposure in the control samples, 

may be found in Supplemental Table S1. Further clinical information may be found in 

Supplemental Table S2. In total, we analyzed data from 1868 subjects, including 794 PTSD 

patients and 1074 control subjects. Among these, 358 PTSD patients and 478 control 

subjects came from military samples. The vast majority of participants (751 PTSD patients 

and 934 control subjects) were adults. Inclusion and exclusion criteria for each site may be 

found in Supplemental Table S3. Harmonized scales of childhood trauma and AUD were 

obtained from the sites (see the Supplement). All participating sites obtained approval from 

local institutional review boards and ethics committees. All study participants provided 

written informed consent.

Imaging and Statistical Analysis

Quality control and processing of structural T1-weighted magnetic resonance imaging scans 

was performed using FreeSurfer (39) in conjunction with standardized ENIGMA protocols. 

Our primary analysis was an examination of the average volume of eight subcortical regions 

adjusting for age, gender, and intracranial volume (ICV). Within each dataset, linear models 

of average subcortical volumes (mean of left and right) were fit as a function of current 

PTSD status, after adjusting for effects of age, gender, ICV, and scanner for sites with 

multiple scanner types. Details on scanners and acquisition parameters are provided in 

Supplemental Table S4. A random-effects meta-analysis was used to combine results across 

cohorts. Follow-up analyses included testing whether the difference between the right and 

left volumes varied as a function of case/control status (PTSD × hemisphere interaction) and 
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an analysis of the left and right volumes separately. Cohen’s d effect size estimates and the 

percentage difference in mean volume associated with PTSD are reported. Nominal 

(uncorrected) p values are reported throughout. Cases in which significance exceeds 

Bonferroni correction for the number of volumes examined (.05/8 = .0063 in our primary 

analysis) are noted. To avoid confusion, the same correction is employed in all post hoc 

analyses. Follow-up analyses examined potential heterogeneity with meta-regression (see 

the Supplement), separate analyses of men and women, and separate meta-analyses of adult 

(nonpediatric), military, and civilian samples. In significantly associated regions, we 

additionally analyzed PTSD symptom severity (normalized within site). To examine the 

potential impact of depression comorbidity, we performed an analysis of depression severity 

within PTSD cases. Furthermore, we examined the impact of AUD and childhood trauma 

levels, given their frequent co-occurrence with PTSD and influence on subcortical volumes 

(40–42). We also examined the presence/absence of childhood trauma within PTSD cases, 

which was used as a proxy for timing of trauma exposure.

RESULTS

Associations Between PTSD and Subcortical Volumes

The results of our primary analysis of eight mean subcortical volumes as a function of PTSD 

case/control status after adjusting for age, gender, and ICV are presented in Figure 1 and 

Table 1, while the results of PTSD on ICV are presented in Supplemental Table S5. The 

hippocampus and amygdala were, on average, smaller in subjects with current PTSD 

(hippocampus: d = −0.17, p = .00054; amygdala: d = −0.11, p = .025). The hippocampus 

finding surpassed the corrected significance threshold (p < .0063), but the amygdala did not 

survive this multiple-comparisons correction. I2 and phet values indicate low levels of 

heterogeneity across samples (Tables 1 and 2). We followed up these findings with an 

analysis of current PTSD severity in samples for which severity data was available. PTSD 

severity was significantly associated with hippocampal volume (d = −0.15, p = .013), but not 

amygdala volume (d = −0.087, p = .13).

A formal test of a differential effect of PTSD between hemispheres was nonsignificant for 

all of the examined regions. Our a priori specified separate analyses of left and right 

subcortical volumes (after adjusting for age, gender, and ICV) are presented in Figure 1 and 

Supplemental Table S6. Left and right hemisphere effect size estimates had overlapping 

confidence intervals supporting a lack of differential effect by hemisphere. The association 

between PTSD and hippocampal volume was evident in both hemispheres (p < .005, in 

each). For the amygdala, the association with PTSD was borderline in the right amygdala, 

passing p < .05, but not the Bonferroni-corrected threshold (right amygdala: d = −0.12, p = .

017; left amygdala: d = −0.075, p = .13). In addition, the volume of the left lateral ventricle 

(but neither the volume of right lateral ventricle nor the total volume) was positively 

associated with PTSD at nominal significance levels (d = 0.10, p = .036).

Examining Heterogeneity

Figure 2 presents a forest plot of the effect size estimates and 95% confidence intervals of 

the 16 participating sites and meta-analyses for the association between mean hippocampal 
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volume and PTSD. Figure 3, Table 2, and Supplemental Tables S7 to S10 present the results 

of male and female stratified meta-analyses and separate analyses of the adult 

(nonpediatric), military, and civilian samples. No significant difference in effect size was 

observed in the analysis of a gender by PTSD interaction term (p = .38) on hippocampal 

volume or from the meta-regression of the proportion of women in each sample as 

predicting the effect size estimates (p = .14). However, as these tests can have low power, we 

examined the associations observed in each subgroup. The negative association between 

hippocampal volume and PTSD was significant in the female-only, adult-only, and civilian 

analyses. The association was nonsignificant in the male-only and military analyses. Even 

though the female-only analysis contained approximately 1100 fewer subjects than the full 

sample, the hippocampal results were more significant in women (Table 2; p = .00012), and 

Cohen’s d estimates indicated a stronger effect than in the full sample (d = −0.31 vs. d = 

−0.17). Similarly, effect size estimates indicated a higher impact in the civilian (d = −0.21, p 
= .0032) versus military (d = −0.11, p = .11) samples. This is perhaps unsurprising given the 

confound between variables representing gender and military status (see Supplemental Table 

S1). These differences may relate more strongly to gender than military status: the effect size 

in military women (d = −0.23, p = .34, n = 88), while nonsignificant, was stronger (more 

negative) than in the overall meta-analysis estimate (d = −0.17), and the effect in civilian 

men (d = −0.025, p = .87) is smaller than the overall meta-analysis. However, it should be 

noted again that the confidence intervals in effect size for men and women overlapped, and 

the formal test of heterogeneity by gender was nonsignificant. The nominal association with 

the amygdala in the full dataset was not significant in the subgroup meta-analyses, 

potentially due to sample size. An analysis of PTSD severity and hippocampal volume in 

women was nominally significant (d = −0.22, p = .031), but the analysis of PTSD severity 

and amygdala volume was not (d = −0.12, p = .20).

Potential Confounding Variables

Finally, we examined the relationship between hippocampal and amygdala volume and 

confounding variables including AUD and childhood trauma. In a linear model adjusting for 

age, gender, and ICV, we found AUD was not associated with hippocampal volume whether 

or not PTSD was included as a covariate (without PTSD: p = .12; with PTSD: p = .25). 

Childhood trauma was negatively associated with hippocampal volume in a model adjusting 

for age, gender, and ICV (d = −0.17, p = .0031) but was not significant if PTSD was added 

as a covariate (d = −0.11, p = .064). AUD was associated with smaller amygdala volume 

whether or not PTSD was included as a covariate (without PTSD as a covariate: d = −0.012, 

p = .036; with PTSD: d = −0.012, p = .048). Similarly, childhood trauma was associated 

with reduced amygdala volume whether or not PTSD was included as a covariate (without 

PTSD: d = −0.16, p = .0044; with PTSD: d = −0.13, p = .019). We then examined the effects 

of PTSD on hippocampal and amygdala volume, adjusting for these potential confounding 

variables in datasets where this covariate data was available. The association between 

hippocampal volume and PTSD was attenuated but remained significant when AUD or 

childhood trauma were added as covariates (with AUD: d = −0.14, p = .014; with CT: d = 

−0.14, p = .015). In the subset of subjects with AUD data (n = 1443), the association 

between the amygdala and PTSD was not significant whether or not AUD was included 

(with AUD: p = .41; without AUD: p = .21). Similarly, the association between PTSD and 
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amygdala volume was not significant in the subsample with childhood trauma data (n = 

1423) whether or not the adjustment for childhood trauma was included (with: p = .33; 

without: p = .11). We additionally examined the presence/absence of childhood trauma 

within PTSD cases as a proxy for chronicity of trauma exposure (childhood vs. adult). In 

both the hippocampus and the amygdala, there was a trend toward smaller volumes for 

PTSD cases with the presence of childhood trauma compared with PTSD cases with no 

childhood trauma (for hippocampus: n = 513, d = −0.17, p = .088; for amygdala: n = 513, d 
= −0.20, p = .053). In an analysis of female PTSD cases, effect size estimates for both the 

hippocampus and the amygdala were larger (more negative), but the p value for the test of 

association in the amygdala was no longer close to significant, potentially due to the great 

reduction in sample size (for hippocampus: n = 103, d = −0.51, p = .096; for amygdala: n = 

102, d = −0.46, p = .28).

Finally, to examine the effect of comorbidity between depression and PTSD, we examined 

depression severity within PTSD cases. Depression severity was not significantly associated 

with either hippocampus or amygdala volume either in the overall sample or in women (all p 
> .19).

DISCUSSION

In the largest study of neuroimaging and PTSD to date, our multisite consortium found 

evidence of lower hippocampal volume in subjects with current PTSD. Robust hippocampal 

findings remained significant after controlling for multiple comparisons, AUD, and 

childhood trauma, and within smaller subcohorts. We additionally report smaller amygdala 

volume in PTSD, but this result did not survive the Bonferroni correction for multiple 

comparisons and must therefore be interpreted with caution. Similar effects have been 

observed in retrospective meta-analyses of published data, but these studies had smaller 

sample sizes and may be biased by the file drawer problem. Our meta-analysis was 

prospective and performed with harmonized analysis of original data. Therefore, it is 

unlikely that our effect size estimates are inflated by excluding studies with nonsignificant or 

contradictory findings. We also observed associations between PTSD and the left lateral 

ventricle in the full meta-analysis, the volume of the nucleus accumbens in women, and the 

pallidum in civilians, but these did not survive multiple testing correction, thus requiring 

replication. The strength of the associations observed with the hippocampus (d = −0.17, d = 

−0.31 in women) and the amygdala (d = −0.11) are within the range of associations observed 

by other groups using the ENIGMA protocols to study major depressive disorder (32), 

bipolar disorder (33), obsessive-compulsive disorder (34), and schizophrenia (35) (absolute 

value of d from 0.11 to 0.46 across subcortical structures and disorders).

Although we found an association between PTSD and hippocampus volume, there are still 

many unanswered questions about underlying causation. High levels of glucocorticoid 

receptors in the hippocampus make it particularly prone to effects of the elevated levels of 

glucocorticoids released in response to stress (43–45). Some magnetic resonance imaging 

studies in PTSD patients also concluded that reduced hippocampal volume is a result of 

stress exposure. This conclusion is based on observations of reduced hippocampal volume in 

trauma-exposed control subjects without PTSD relative to trauma-unexposed control 
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subjects (46,47). In contrast, other magnetic resonance imaging studies did not detect group 

differences between trauma-exposed and healthy control subjects (48–50), suggesting that 

lower hippocampal volume is specifically related to the presence of a psychiatric disorder 

rather than exposure to trauma. These studies are consistent with the hypothesis that lower 

hippocampal volume is a heritable risk factor for developing PTSD as demonstrated in twin 

studies. In these studies, one twin was exposed to military combat, and one was not. Of the 

combat-exposed individuals who developed PTSD, the unexposed twin (without PTSD) also 

had reduced hippocampal volume (51).

There is also evidence that amygdala volume may be negatively associated with stress and 

stress-response mechanisms. Exposure to high levels of chronic stress in rodents produces 

corticosterone-mediated spinogenesis, dendritic arborization, and hypertrophy of the 

amygdala (52). One study has found that inbred recombinant mice strains with a relatively 

small basolateral amygdala showed a stronger conditioned fear response and corticosterone 

response to stress than mice strains with a large basolateral amygdala (53). A recent study 

that showed reduced amygdala volume following childhood trauma suggested that severe 

adversity during childhood may at first enhance amygdala sensitivity through dendritic 

growth and synaptic connectivity, as shown in rodents (52), but repetitive activation induces 

“wear and tear,” eventually resulting in a smaller amygdala in adulthood (54). However, our 

amygdala results did not survive multiple comparisons corrections, and any speculations 

regarding the molecular mechanisms involved in reduced amygdala volume must be 

interpreted with caution. Further, potential confounding remains a plausible alternative 

explanation for the observed association (see below).

Gender Differences

PTSD is more prevalent in women than in men (55). Our results show that the PTSD 

association with smaller hippocampal volume was primarily due to a strong negative 

association in women. However, we were unable to conclusively demonstrate a larger effect 

size in women compared with men, because the PTSD by gender interaction term was not 

significant. There are several potential reasons for the observed strong effect in women apart 

from a true differential effect by gender. Demographic differences between samples may 

have inflated the strength of the association in samples that are primarily female. Differences 

in the type of trauma experienced by men and women may play a role in the observed 

differential effect. Information on mean age, PTSD severity, depression severity, AUD, and 

childhood trauma broken down by site and gender are presented in Supplemental Tables S12 

to S18. Future studies should include both males and females when possible to better assess 

gender differences in the negative association between PTSD and hippocampal volume.

Childhood Trauma Exposure

In the current study, childhood trauma was negatively associated with hippocampal volume, 

but not when PTSD was included as a covariate. Controlling for childhood trauma 

attenuated our hippocampal results, but hippocampal volume was still significantly smaller 

in PTSD patients. These findings suggest that reduced hippocampal is associated with PTSD 

and not with childhood trauma itself.
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Lower amygdala volume, on the other hand, was significantly associated with more 

childhood trauma, both with and without PTSD as a covariate. This is in line with prior 

studies showing a negative correlation between childhood trauma and amygdala volume 

(54,56,57). However, the relationship between PTSD and amygdala volume was not even 

nominally significant in the subsample with available childhood trauma information, so we 

could not evaluate childhood trauma effects on the negative association between amygdala 

volume and PTSD.

Role of AUD

AUD was not associated with hippocampal volume, and hippocampal results remained 

significant after controlling for alcohol. Our finding supports other studies that show that 

hippocampal differences persist (13,48) or show bilateral effects (50) after controlling for 

lifetime alcohol use or abuse, suggesting that reduced hippocampal volume in PTSD is not 

due to a confound with AUD.

In contrast, we observed a significant association between AUD and smaller amygdala 

volume, irrespective of PTSD. This finding is in line with prior studies showing smaller 

amygdala volumes in alcohol-dependent perpetrators of intimate partner violence (58), 

individuals with a family history of alcoholism (59), and alcohol-dependent individuals, who 

also showed an association with increased alcohol craving and intake (60). The negative 

association between the amygdala and PTSD in the subsample possessing alcohol 

information was not significant; hence, we were not able to determine the degree to which 

our observed nominally significant association with the amygdala was due to confounding 

between PTSD and AUD.

Limitations

Our study has some limitations. The uneven availability of covariates across sites precluded 

an examination of important factors such as PTSD duration, comorbidity (apart from 

depression), trauma chronicity, and treatment. Inclusion of information on PTSD duration, 

chronicity, and treatment in particular might have altered findings, and their absence limits 

interpretation of the findings. The presence or absence of childhood trauma was our only 

available proxy for chronicity of trauma exposure, as detailed information of chronicity of 

trauma exposure was unavailable from the majority of sites. We did not control for 

psychotherapy or medication, and all patients included in our analysis had current PTSD, 

and some were recent-onset PTSD patients. Recent treatment studies suggest that smaller 

hippocampal volume may be specifically related to persistence of PTSD after treatment 

(50,61) and smaller hippocampal volume was not observed in (recent-onset) patients who 

recovered from PTSD (50,61–63). Follow-up data on the chronicity of PTSD symptoms and 

treatment could help strengthen the current findings.

While this is the largest multisite consortium study and the largest meta-analysis of 

subcortical structures in PTSD to date, the inclusion of additional cohorts with specific 

characteristics and more detailed clinical information across cohorts will be needed to 

evaluate the role of stratifying factors such as age, gender, and type of trauma. For example, 

we only had one nonadult (pediatric) cohort. Our adult-only analyses were sufficient to 
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demonstrate that the inclusion of this cohort did not unduly bias results, but additional 

pediatric samples are needed demonstrate if results are consistent across adult and nonadult 

samples. We also lack sufficient data to assess the overall impact of adult trauma load or to 

assess specific types of adult and childhood trauma. We distinguished military and civilian 

samples. However, individuals in the military samples have also been exposed to nonmilitary 

trauma, and vice versa, civilians were not excluded for deployment. Therefore, the military-

civilian distinction is not synonymous with different types of trauma exposure. Much larger 

sample sizes will be needed to robustly evaluate the role genetic variants play in the 

observed associations.

An additional limitation is the absence of cross-site standardization of raters performing 

clinical assessment and absence of standardization of scanners or acquisition sequences, 

operating system, and hardware platform running FreeSurfer. Similarly, there were 

differences in the instruments used to assess PTSD, trauma, and AUD across sites, and 

potentially even differences in how the instruments were applied and interpreted. However, 

these weaknesses and many others not present in the current research would be faced by 

every literature-based meta-analysis of PTSD. A major strength of our study is the 

standardization of segmentation technique, and running a harmonized analysis protocol 

across all sites. Methodological consistency was promoted by using the same statistical 

models across all samples, making this the most powerful study of subcortical volumes in 

PTSD to date.

Conclusions

The ENIGMA-PGC PTSD Working Group has demonstrated that PTSD is associated with 

smaller hippocampus and possibly amygdala volume. Both structures have ample a priori 

evidence implicating their role in PTSD starting with the report of reduced hippocampal 

volume in PTSD by Bremner et al. in 1995 (64). Our study confirms this finding across a 

large number of demographically and clinically heterogeneous cohorts analyzed with 

standardized segmentation technique, and running a harmonized analysis protocol across all 

sites. Methodological consistency was promoted by using the same statistical models across 

all samples, making this the largest and most powerful study of subcortical volumes in 

PTSD to date. Reduced hippocampal volume was the most robust finding and survived a 

conservative correction for childhood trauma and AUD. Although we had nearly equal 

sample sizes across eight subcortical structures, only the hippocampus was unequivocally 

associated with PTSD. Therefore, the outsized role of the hippocampus in the literature is 

not attributable solely to greater attention paid to this structure. The hippocampus is crucial 

for fear processing, episodic and contextual learning, and memory processes related to 

PTSD symptomatology. This meta-analysis firmly establishes the importance of the 

hippocampus in PTSD, which by itself represents a substantial step forward in the 

neurobiology of PTSD. Nevertheless, many questions remain unanswered, and this study is 

part of an ongoing extensive investigation into the neurobiological underpinnings of PTSD. 

The ENIGMA-PGC PTSD Working Group has several studies underway, including the 

association between PTSD and white matter integrity, cortical thickness, regional cortical 

volumes, hippocampal subfield volumes, and subcortical shape. Forthcoming cross-disorder 

analyses are planned to study the effects of childhood trauma on the brain. An investigation 
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of the impact of genetic variation on PTSD risk and response to stress is also planned, which 

will leverage the work of the PGC-PTSD workgroup—a large-scale genomics consortium to 

study PTSD genomics (65). Taken together, these future investigations will advance our 

understanding of PTSD neurobiology and potentially yield new targets for treatment, 

improve personalized medicine with existing treatments, and identify new targets to 

ameliorate the negative effects of trauma exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cohen’s d estimate of the association between posttraumatic stress disorder and subcortical 

brain volumes as well as confidence intervals on effect size. Included is a primary analysis 

adjusted for age, gender, and intracranial volume and followup analyses with left and right 

volumes analyzed separately. A plus sign (+) indicates that the comparison of posttraumatic 

stress disorder cases and control subjects was significant at the p < .05 level. An asterisk (*) 

indicates that the comparison was significant after a Bonferroni correction for the eight 

subcortical regions examined (p < .0063). Lat., lateral.
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Figure 2. 
Forest plot of the effect size estimates and 95% confidence intervals of 16 participating sites 

and meta-analyses for the association between mean hippocampal volume and posttraumatic 

stress disorder. For detailed descriptions and full names of participating sites see 

Supplemental Tables S1–S3. Adult meta-analysis includes all sites but University of 

Washington. The military meta-analysis includes Department of Defense (DoD) Alzheimer’s 

Disease Neuroimaging Initiative (ADNI), Duke/Durham Veterans Administration (VA), the 

VA Translational Center for Traumatic Brain Injury and Stress Disorders (TRACTS), 

University Medical Center (UMC) Utrecht, and West Haven VA. The civilian meta-analysis 

includes the Academic Medical Center (AMC) Amsterdam, Cape Town, Emory Grady 
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Trauma Project (GTP), McLean, University of New South Wales (UNSW), University of 

Sydney (U of Sydney), University of Michigan (U Michigan), VU University Medical 

Center (VUMC) Amsterdam, Western Ontario, and Yale studies.
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Figure 3. 
Cohen’s d estimate of the association between posttraumatic stress disorder and subcortical 

brain volumes as well as confidence intervals on effect size for subsets of the data. Included 

are analyses of men and women analyzed separately, as well as all adult samples 

(nonpediatric), military, and civilian datasets meta-analyzed separately. A plus sign (+) 

indicates that the comparison of PTSD cases and control subjects was significant at the p < .

05 level. An asterisk (*) indicates that the comparison was significant after a Bonferroni 

correction for the eight subcortical regions examined (p < .0063). Lat., lateral.
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