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Abstract

Objective: HIV infection and aging are both associated with neurodegeneration. However,

whether the aging process alone or other factors associated with advanced age account for the

progression of neurodegeneration in the aging HIV-positive (HIV1) population remains unclear.

Methods: HIV1 (n570) and HIV-negative (HIV2, n534) participants underwent diffusion tensor

imaging (DTI) and metrics of microstructural properties were extracted from regions of interest

(ROIs). A support vector regression model was trained on two independent datasets of healthy

adults across the adult life-span (n5765, Cam-CAN5588; UiO5177) to predict participant age

from DTI metrics, and applied to the HIV dataset. Predicted brain age gap (BAG) was computed as

the difference between predicted age and chronological age, and statistically compared between

HIV groups. Regressions assessed the relationship between BAG and HIV severity/medical comor-

bidities. Finally, correlation analyses tested for associations between BAG and cognitive

performance. Results: BAG was significantly higher in the HIV1 group than the HIV2 group F (1,

103)512.408, p5 .001). HIV RNA viral load was significantly associated with BAG, particularly in

older HIV1 individuals (R250.29, F(7, 70)52.66, p5 .021). Further, BAG was negatively corre-

lated with domain-level cognitive function (learning: r520.26, p5 .008; memory: r520.21,

p5 .034). Conclusions: HIV infection is associated with augmented white matter aging, and greater

brain aging is associated with worse cognitive performance in multiple domains.
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1 | INTRODUCTION

Advanced age is a major risk factor for cognitive decline and neurode-

generation, including deterioration of white matter (WM) throughout

the brain (McWhinney, Tremblay, Chevalier, Lim, & Newman, 2016;

Sexton et al., 2014; Westlye et al., 2010). Older adults with HIV infec-

tion are at increased risk for cognitive decline (Rodriguez-Penney et al.,

2013; Sacktor et al., 2007) and WM neurodegeneration (Holt, Kraft-

Terry, & Chang, 2012; Nir et al., 2014; Seider et al., 2016). Importantly,

the effects of age can be augmented by factors associated with
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severity of HIV infection and medical comorbidities which may influ-

ence the trajectory of HIV infection and cognitive and brain aging.

Neuroimaging-based estimates of the deviance between an indi-

vidual’s chronological age and predicted brain age—termed brain age

gap (BAG)—are sensitive to augmented and/or accelerated brain aging

(Cole et al., 2017a, 2017b). While no current study has investigated

BAG in WM microstructure using diffusion tensor imaging (DTI),

recently, using brain volume, Cole et al. (2017a) demonstrated that

BAG in the volume of brain grey and white matter is greater in HIV-

infected individuals than in HIV2 controls. Although no significant rela-

tionships between BAG and nadir CD41 or HIV disease duration were

reported, the authors investigated white matter volume, rather than

white matter microstructure (using DTI) and in a sample of HIV1 par-

ticipants with undetectable viral loads. Thus, it is unclear to which

degree findings of “attenuated brain aging” in HIV (Cole et al., 2017a;

Horvath & Levine, 2015; Kuhn et al., 2017) may be mediated by pri-

mary or secondary processes related to the infection. It is also unclear

what effects these processes may have on WM microstructure. There-

fore, this study sought to expand on previous findings by investigating

the predicted-BAG in WM microstructure using DTI metrics of white

matter patency. This project also sought to further elucidate the effect

of HIV severity indices and non-HIV-related medical comorbidities on

accentuated WM aging.

Here, we used a machine learning approach to quantify brain aging

based on DTI. A support vector machine model trained in a large and

independent training-set of healthy controls was used to predict age in

HIV1 and comparable HIV2 individuals. We tested for group differen-

ces in BAG between HIV1 and HIV2, and for associations with cogni-

tive function and HIV disease factors and medical comorbidities within

the HIV1 group.

2 | METHODS

2.1 | Participants

Participants included a testing dataset of 104 (72 HIV1 (confirmed by

serologic testing); 32 HIV2) adults (Mage5 50.17; SD512.82) who

were enrolled as part of a larger study (K23 MH095661; PI: ADT). All

participants who had DTI imaging data available were included in this

study. All procedures were in accordance with the Declaration of Hel-

sinki, reviewed and approved by the University of California, Los

Angeles (UCLA) Institutional Review Board prior to enrollment and all

participants provided written informed consent.

The training set used for the age prediction model comprised 765

healthy community dwelling individuals aged 20–78 years sampled

from two different cohorts, including the ongoing STROKEMRI study

at the University of Oslo (UiO; n5177, Mage557.59; SD515.05,

60% female, PI: LW) and the Cambridge Centre for Ageing and Neuro-

science (Taylor et al., 2017) (Cam-CAN) (n5588, Mage552.31;

SD517.38, 50% female) from the Cambridge Center for Ageing and

Neuroscience (Shafto et al., 2014) (CamCAN). Data used in the prepa-

ration of this work were obtained from the CamCAN repository (avail-

able at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Shafto

et al., 2014; Taylor et al., 2017). All procedures were in accordance

with relevant IRBs.

2.1.1 | Psychiatric assessment

In the test sample, the Structured Clinical Interview (SCID) for DSM-IV

(First, Gibbon, Spitzer, & Benjamin, 1997), and structured question-

naires were used to screen for neurological, psychiatric, and medical

confounds including: history of seizure disorder or other neurologic dis-

order; history of concussion or traumatic brain injury sufficient to war-

rant medical attention; history of Axis I psychiatric disorder or current

substance use disorder (SCID-IV diagnostic criteria); current prescrip-

tions for psychotropic medication, except for anxiolytics and antide-

pressants; current substance dependence or stimulant use, comorbid

infection (e.g., Hepatitis C), HIV-associated CNS opportunistic infection

(e.g., CNS toxoplasmosis), or CNS neoplasm. Participants were also

screened for contraindications to MRI.

2.1.2 | Cognitive assessments

In the test sample, participants completed a comprehensive neuropsy-

chological test battery used in prior studies (Thames et al., 2017), which

assessed neurocognitive function at both the global and domain levels.

Six cognitive domains were measured: (1) Processing Speed: Wechsler

Adult Intelligence Scale—Fourth Edition (WAIS-IV) Digit Symbol and

Symbol Search subtests (Wechsler, 2008), Trail Making Test—Part A

(Reitan, 1958), and Stroop—Color Naming and Word Reading (Golden,

1978); (2) Learning: Hopkins Verbal Learning Test—Revised (Brandt &

Benedict, 2001) and Brief Visuospatial Memory Test—Revised (Bene-

dict, 1997); (3) Memory: Hopkins Verbal Learning Test—Revised (Brandt

& Benedict, 2001) and Brief Visuospatial Memory Test—Revised

(Brandt & Benedict, 2001,Benedict, 1997) (delayed recall); (4) Lan-

guage/Verbal Fluency: Controlled Oral Word Association Test (Benton,

Hamsher, & Sivan, 1983) (FAS and Animals); (5) Executive Function:

WAIS-IV Letter-Number Sequencing subtest (Wechsler, 2008), Trail

Making Test—Part B (Reitan, 1958), and Stroop-Color-Word Interfer-

ence Test (Golden, 1978); and (6) Motor Speed: Grooved Pegboard test

(Heaton, Grant, & Matthews, 1992) (dominant and nondominant

hands).

We converted raw test scores into within-sample z scores and

then averaged them to create neurocognitive domain z scores. We cal-

culated the global neurocognition score by averaging the z scores from

all of the neuropsychological test variables. Given that the relationship

between age and neurocognitive performance in HIV is a primary aim

of this study, within-sample z scores were computed instead of demo-

graphically adjusted T scores.

2.1.3 | Immune status assessment

In the testing dataset, HIV1 participants self-reported nadir CD41 and

lifetime highest viral load were used to assess past immune status. Par-

ticipants also underwent venipuncture to test current CD41 and HIV

viral load. HIV duration was calculated as the number of years since

the participant’s self-reported HIV diagnosis. Next, participants were

classified as either “pre-HAART” (highly active antiretroviral therapy) or

“post-HAART” based on whether their initial HIV diagnosis was before

or after 1996 (Bartlett, 2006). Further, a “medical comorbidity burden”

index score was computed from the medical history taken during the

routine interview all participants completed during data collection.
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Participants were assigned a “1” if they endorsed a history of each of

the following medical conditions: cerebrovascular risk factors including

hypertension, heart failure, COPD, anemia, diabetes; endocrine dys-

function including thyroid disease, testosterone therapy, estrogen ther-

apy; kidney disease. Participants were assigned a “0” for all medical

conditions they did not endorse. The “medical comorbidity burden”

score was then computed as a sum of these conditions, resulting in a

scale ranging from 0 (no medical comorbidities) to 9 (endorsed all medi-

cal comorbidities identified).

2.2 | MRI acquisition and analysis

Diffusion-weighted imaging (DWI) scans were collected from HIV1

individuals and demographically-matched HIV-seronegative controls at

the University of California, Los Angeles, all of whom comprised the

testing dataset. These MR data were collected using a 3T Siemens Trio

scanner (Siemens, Germany) at the UCLA Center for Cognitive Neuro-

science (CCN). Sixty-four diffusion-weighted volumes (b51,000 s/

mm2) and 6 non-diffusion-weighted volumes were obtained using a

single-shot spin-echo echo planar imaging (EPI) sequence with 60 3

2.0 mm axial slices (no gap), flip angle590, TR59,000 ms, TE593

ms, voxel size52.0 3 2.0 3 2.0 mm, b-shells50, 1,000, scan time

576 s.

Training data including MRI data from UiO and Cam-CAN. UiO

MRI data were collected on a General Electric 750 3 T scanner (General

Electric, United States) at Oslo University Hospital. Sixty diffusion-

weighted volumes (b51,000 s/mm2) and 5 non-diffusion-weighted

volumes were obtained using a single shot spin-echo EPI sequence

with 67 3 2.0 mm axial slices (no gap), flip angle590, TR58,150 ms,

TE583.1 ms, voxel size52.0 3 2.0 3 2.0 mm, b-shells50, 1,000, 60

directions, scan time 530 s. The Cam-CAN DWI images were collected

on a Siemens TIM Trio 3T scanner (Siemens, Germany) at the Medical

Research Counsel (UK) Cognition and Brain Sciences Unit (MRC-

CBSU). Sixty diffusion-weighted volumes (30 with b51,000 s/mm2

and 30 with b52,000 s/mm2) and 3 non-diffusion-weighted volumes

were obtained using a twice refocused spin-EPI with 663 2.0 mm axial

slices (no gap), TR59,100 ms, TE5104 ms, voxel size52.0 3 2.0 3

2.0 mm, scan time 573 s. Only the b50 and b51,000 shells were

used for DTI analysis in this study. All DWI images were quality con-

trolled and visually inspected prior to being preprocessed and analyzed.

DWI scans from UCLA, UiO, and Cam-CAN were processed simul-

taneously through the same pipeline to harmonize imaging methods

across sites. All imaging data were processed using FMRIB software

Library (Jenkinson, Pechaud, & Smith, 2005) (FSL, www.fmrib.ox.ac.uk.

fsl). DWI data were motion and eddy current corrected using EDDY

(Andersson & Sotiropoulos, 2016), skull stripped using BET (Jenkinson

et al., 2005), and then diffusion tensors were fit to the data using dtifit

in FSL. Tract-Based Spatial Statistics (Mori, Wakana, Van Zijl, & Nagae-

Poetscher, 2005; Smith et al., 2006) (TBSS) was used to generate a

WM skeleton comprised of WM voxels shared by all participants. This

WM skeleton was applied to each participant’s individual DTI maps

and mean Fractional anisotropy (FA), axial (AD), radial (L1), and mean

diffusivity (MD) were extracted from various regions-of-interest (ROIs)

based on the intersection between the TBSS skeleton and labels

defined in probabilistic anatomical atlases (Alzheimer’s Disease Neuroi-

maging Initiative, 2013; Hua et al., 2008; Wakana et al., 2007) in addi-

tion to a global average across the skeleton. The full list of ROIs from

which these DTI metrics were extracted follows: anterior, posterior,

and superior corona radiata; anterior, posterior, and retrolenticular por-

tions of the internal capsule; anterior and posterior thalamic radiation;

sagittal stratum; external capsule; WM underlying the cingulate bundle;

WM underling the hippocampus; inferior, middle, and superior cerebel-

lar peduncles; cerebral peduncle; pontine; fornix; stria terminalis; corti-

cospinal tract; medial lemniscus; inferior and superior longitudinal

fasciculus; superior fronto-occipital fasciculus; uncinate fasciculus;

genu, body, tapetum, and splenium of the corpus callosum.

2.3 | Statistical analysis

2.3.1 | Group demographics

Participant characteristics (e.g., age, education, past drug use) between

HIV1 and HIV2 groups were compared using one-way analysis of var-

iance (ANOVA). Group differences in dichotomous factors (e.g., sex,

ethnicity, urinalysis results) were assessed using chi-square analyses.

We used p< .05 as our cutoff for statistical significance for these

demographic analyses.

2.3.2 | Age prediction and brain age gap

UiO and Cam-CAN data were used to train a support vector regression

model (SVR) to predict participant age using FA, L1, RD, and MD from

atlas-derived ROIs (the exact same regions described above; Gaser

et al., 2013; Hua et al., 2008; Wakana et al., 2007) as features. Similar

methods have been employed using imaging data previously (Cole

et al., 2017a,b; Mwangi, Hasan, & Soares, 2013) including using DTI to

assess participant age in a healthy cohort (Wilkinson & Robertson,

2006). SVR was conducted in Matlab (https://mathworks.com/help/

stats/fitrsvm.html) using the implementation “fitrsvm” with a linear ker-

nel, automatic hyperparameter tuning and Sequential Minimal Optimi-

zation. Given that multiple MR scanners were used to collect the HIV

and training data, scanner was used as a regressor on the features to

control for interscanner variability. The model accuracy was validated

using 10-fold cross-validation on the training set. After successful vali-

dation, the trained SVR was used to predict age of participants in the

independent UCLA sample (HIV1/HIV2). For each individual, BAG

was computed by subtracting the participant’s predicted brain age by

their chronologic age. Univariate analysis of covariance (ANCOVA)

then compared BAG between UCLA HIV serostatus groups, controlling

for chronological age and sex.

2.3.3 | Associations between brain age gap immune status

and cognitive performance

Within HIV1 subjects, a stepwise hierarchical linear regression was

conducted to investigate the relationship between BAG and chronolog-

ical age, nadir CD41, lifetime highest HIV RNA viral load, and medical

comorbidity index, and all possible interactive relationships between

age and other dependent variables using a stepwise entry model.
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Correlation analyses were used to investigate the relationship

between BAG and cognitive performance in the UCLA HIV1 group.

Correlations were conducted between BAG and individual cognitive

domains (e.g., attention, memory) and global cognitive performance. We

report both bivariate correlations as partial correlations covarying for

premorbid intellectual ability (Wide Range Achievement Test, 4th Edition

(WRAT-4; Brew, Crowe, Landay, Cysique, & Guillemin, 2009). False dis-

covery rate (FDR) was used to correct for multiple comparisons.

3 | RESULTS

3.1 | Demographic group comparison

In the test dataset, the HIV1 and HIV2 seronegative groups did

not significantly differ on age, years of education, ethnicity, or sex

(Table 1). The HIV1 group had significantly higher medical comorbid-

ity burden (i.e., greater number of medical comorbidities) than the

HIV2 control group (v257.39, p5 .007). None of the participants

tested positive for barbiturates, cocaine, methamphetamine, phency-

clidine, or MDMA. Significantly more HIV1 participants tested posi-

tive for prescribed benzodiazepines (v255.93, p5 .015) than did

HIV2 participants. The HIV serostatus groups did not differ on cur-

rent alcohol or substance abuse, past (i.e., self-reported lifetime) sub-

stance dependence, past substance abuse, past alcohol dependence,

or past alcohol abuse (all ps>0.10). Participants were not included in

the study if they reported previous methamphetamine abuse or

dependence.

Within the HIV1 group, participants diagnosed in the pre-

HAART era were significantly older (M556.85, SD58.93) than

those diagnosed in the post-HAART era (M548.24, SD512.16)

TABLE 1 Demographic comparison between HIV1 & HIV2 groups

N570 N534

Demographic variable HIV1 UCLA HIV2

Male sex (%) 58 (83%) 17 (50%)

Education (years) 13.3261.93 14.0062.56

Age 50.7611.93 53.25610.28

Age range 24–76 24–66

Ethnicitya 35% C, 65% AA 50% C, 50% AA

HIV duration 16.376 8.13

Pre- HAART diagnosis 32 (46%)

Nadir CD4 (#/mm3) 246.16212. 26

Current CD4 (#/mm3) 663.616282.426

# (%) with detectable viral load 8 (11%)

Peak viral load (IU/mL) 395055.976 767296.72

(%) with major depression (SCID) 4 (7%) 1 (5%)

# (%) current barbiturate use (urine screen)b 24 (34%) 3 (9%)

# (%) current opiate use (urine screen) 7 (10%) 1(3%)

# (%) current marijuana use (urine screen) 23 (33%) 11 (33%)

Medical comorbidity burdenb (range/median) 0–6/1 0–3/0

Heart failure 4 (6%) 1 (3%)

Diabetes 5 (7%) 1 (3%)

Hypertension 18 (26%) 6 (18%)

COPD 4 (6%) 1 (3%)

Kidney disease 5 (7%) 0

Anemia 13 (19%) 5 (15%)

Thyroid condition 4 (6%) 1 (3%)

Testosterone treatment 13 (19%) 2 (6%)

Estrogen treatment 3 (4%) 1 (3%)

aC5Caucasian; AA5African American.
bp< .05.
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(F(1, 70)58.22, p5 .006). The pre- and post-HAART HIV1 groups

did not significantly differ on current CD41, current HIV viral load,

nadir CD41, or lifetime highest viral load (all ps> .1). Furthermore,

there was not a significant difference between the younger (50 years

old and below) and older (51 years old and above) HIV1 participants

on current CD41, current HIV viral load, nadir CD41, or lifetime

highest viral load (all ps >0.1). Table 1 and Figure 1 provide addi-

tional detail on group demographics.

3.2 | Age prediction

Predicted brain age, derived from DTI metrics extracted from ROIs

(previously described), was strongly correlated with chronological age

in the training set (r50.84, R250.70, MAE57.39, RMSE510.64,

p< .0001, 10-fold cross-validation), indicating successful tuning of the

trained SVR model. Applied to UCLA testing data, the model success-

fully predicted brain age in the independent sample, both in the UCLA

HIV2 (r50.78, R250.61, MAE57.64, RMSE59.43, p< .0001) and

HIV1 groups (r50.64, R250.41, MAE59.48, RMSE512.004,

p< .0001). Participant true chronological age was not correlated with

prediction error (r52.10, p50.31). Figure 2 depicts the age prediction

results. Figure 3 is the scatterplot depicting the 10-fold cross-validation

of the SVR within the training data set.

In the testing dataset, HIV1 individuals showed higher differences

between their brain age and their chronological age than HIV2 coun-

terparts (F (1, 103)512.408, p5 .001, partial h250.21). As participant

chronologic age increased, BAG also increased (F (39, 103)55.57,

p5 .010, partial h250.37). There was no age 3 HIV interaction on

BAG (p> .05).

3.3 | Neurocognition, immune status, and brain age

gap

All results reported below withstood FDR correction.

A regression that used chronological age, HIV duration, pre- versus

post-HAART diagnosis, medical comorbidity burden, nadir CD41 count,

and lifetime highest HIV RNA viral load (log transformed) as predictors

of BAG (R250.38, F(6, 70)54.13, p5 .004) revealed associations

between BAG and chronological age (b520.38, p5 .006) and highest

HIV RNA viral load (b50.34, p5 .004) in the HIV1 group. No other

dependent variable was significantly associated with BAG (all ps> .10).

Next, the following step in the stepwise hierarchical regression

resulted in the inclusion of the significant interactive effect of

FIGURE 1 Age of groups. Age distribution for training (UiO,

Cam-CAN) and test (UCLA; HIV1/HIV2) samples. Distributions are
displayed as density functions [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 SVR-based age prediction. HIV1 was estimated significantly older compared to HIV2. (a) Predicted brain age versus
chronological age stratified for group. (b) Corresponding brain age gap [Color figure can be viewed at wileyonlinelibrary.com]
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chronological age and lifetime highest HIV RNA viral load. No other

interactive effects were significant (all ps> .10). There was a significant

interactive effect of chronological age and highest HIV RNA viral load

(b50.23, p5 .033) on BAG (R250.29, F(7, 70)52.66, p5 .021). Both

main effects for chronological age (b520.42, p5 .007) and highest

HIV RNA viral load (b50.22, p5 .035) remained significant. In other

words, older HIV1 participants who reported a history of higher viral

load had the greatest discrepancy between their estimated brain age

and chronological age.

We also found significant associations between BAG and learning

(r520.26, p5 .008) and between BAG and memory (r520.21,

p5 .034). When controlling for premorbid intellectual ability (WRAT),

both associations remained (learning: r520.27, p5 .008; memory:

r520.20, p5 .041).

4 | DISCUSSION

This study used machine learning along with a large training data set of

normal WM aging to examine HIV-associated WM microstructural

alterations and related this WM degeneration to cognitive impairment.

Using an SVR trained with this healthy aging cohort to reliably predict

participant age based on metrics of WM microstructure, we found that

the brain WM age difference (BAG) was significantly higher in our

HIV1 group than in the highly comparable HIV2 group. Further, BAG

widened with increasing age, suggesting that advancing age is a risk

factor for neurodegeneration. Additionally, larger BAG was associated

with worse cognitive performance, indicating that this neurodegenera-

tion may be related to deleterious changes in cognition. Although chro-

nological age was not significantly correlated with prediction error,

confirmatory analyses verified that these significant associations

between BAG and cognitive performance remained after controlling

for participant true age.

Importantly, in our sample in which 11% of the HIV1 participants

evidenced a detectable HIV RNA viral load, current CD4 and detectable

viral load were not related to BAG. Conversely, highest lifetime HIV

RNA viral load, which was not the current viral load for any participant,

was related to BAG in the HIV1 group, even after controlling for fac-

tors such as HIV duration, pre- versus post-HAART diagnosis and medi-

cal comorbidities. Highest lifetime viral load also was not different

between the younger and older HIV1 groups. Furthermore, older

HIV1 participants who reported high plasma viral load had the greatest

discrepancy between their estimated brain age and chronological age,

suggesting that history of high viral burden contributes to accentuated

brain aging. These findings suggest that the impact of early disease bur-

den, even among a sample comprised 11% of participants with cur-

rently detectable HIV RNA viral load, has adverse effects on brain/

cognition as HIV1 individuals age. This provides further support of pre-

vious findings (Cole et al., 2017a) that demonstrated this augmented

aging effect in a sample with no participants with detectable HIV RNA.

The relationship of the past plasma viral load to current brain reservoirs

of HIV are not known, and we can only speculate that persons with a

higher plasma viral burden in blood may have also acquired more viral

seeding in brain; this may be the stimulus for greater neuroinflamma-

tion and more neurodegeneration over years of exposure. Taken

together, these findings may suggest that HIV is associated with an

augmented aging process in WM which is itself associated with lower

cognitive performance.

The mechanisms by which HIV and age result in augmented neuro-

degeneration are unclear. Holt et al. (2012) suggest two potential

explanations regarding the relationship between HIV infection and

increased brain aging. First, the increased brain age (BAG) may be

explained by premature WM aging resulting from the virus facilitating

neurodegenerative processes (Rickabaugh et al., 2015), such as axonal

injury, loss of axonal density, and reduced patency of axons. Alterna-

tively, advanced age may increase the effects of the virus on the CNS,

thereby creating a synergistic interaction effect between HIV and aging

(Holt et al., 2012). Our finding that lifetime highest HIV RNA viral load,

particularly in the context of advanced chronological age, was related

to augmented WM aging (i.e., BAG) supports the first hypothesis. In

line with this hypothesis, HIV effects on the brain have been shown to

occur via similar cellular mechanisms as normal aging (Von Bernhardi,

Tichauer, & Eugenín, 2010), including alterations of the neuroprotective

and inflammatory functions of microglia (de Groot et al., 2015), white

matter microvasculature changes (Richter et al., 2017), cholinergic defi-

cit (Walhovd, Johansen-Berg, & Karadottir, 2014), and accumulation of

amyloid-beta and tau plaques (Watson et al., 2017). Any single or com-

bination of these mechanisms could lead to loss of WM microstructural

organization through axonal injury (in line with AD contributions to

SVR model), loss of axonal density (MD contributions), and/or reduced

patency of axons (RD contributions).

To the best of our knowledge, this is the first study to demonstrate

an HIV-associated accentuated aging process in WM microstructure,

FIGURE 3 Ten-fold cross-validation of training data used by sup-

port vector regression machine model. Scatterplot depicting the
-fold cross-validation results from the dataset used to train the
support vector regression machine to predict participant chronolog-
ical age based on DTI metrics of white matter microstructural
integrity
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using DTI. These findings are generally consistent with the literature,

including a recently published study showing an HIV-related accentu-

ated aging process in combined grey matter/white matter volume (Cole

et al., 2017a). Similar to that reported by Cole et al., we did not find sig-

nificant relationships between WM BAG and Nadir CD4 or HIV dura-

tion. Our findings expand upon these previous results by providing

data suggesting the mechanism through which this augmented aging

process deleteriously affects WM microstructure. Our results also fur-

ther the literature in that we found a significant relationship between

BAG and peak HIV RNA viral load and a significant age 3 peak viral

load interactive effect on BAG, indicating that the effects of disease

burden on brain integrity are more pronounced with advanced age.

Furthermore, these findings indicate the significant advantages of

using BAG to predict HIV-associated white matter aging over other

methods. The BAG findings were much stronger than our conventional

age-trajectory findings, indicating that the SVR-based brain age approach

we used is a sensitive approach to reveal group differences beyond sim-

ple differences in mean DTI measures. Additionally, BAG outperformed

each individual DTI metric in its ability to discriminate between HIV1

and HIV2 participants and demonstrate the effect of HIV infection on

advancing brain white matter age. BAG also may be more useful than, or

at the very least a meaningful compliment to, hyper-/hypointense lesion

volume and count which has been shown to relate to HIV infection and

cognitive performance, but not to HIV clinical variables or HIV-

associated aging (Ciesla & Roberts, 2001; McMurtray, Nakamoto, Shi-

kuma, & Valcour, 2008; Su et al., 2016). Additionally, BAG is a relatively

easy metric to understand and thus it circumvents the cumbersome and

difficult to interpret multivariate score often used with DTI metrics

which are inherently difficult to connect to clinical variables. In contrast,

BAG was successfully and clearly connected to both HIV clinical varia-

bles (e.g., HIV RNA viral load) and neurocognitive performance.

It is important to consider these findings also in the context of the

psychosocial stressors and associated comorbidities associated with liv-

ing with HIV. For example, the HIV1 sample evidenced greater rates

of comorbidities, both medical (which were included in the model

herein) and psychiatric (e.g., depression, which was not included in the

model). It is unclear in the literature to what extent depression is a sec-

ondary reaction to living with HIV or is a neurologic symptom of the

predominantly frontal-subcortical clinical profile of the disease. There-

fore, it remains unclear whether the augmented aging findings are

related directly and solely to the effects of the HIV virus on the brain

or if they are also related to secondary effects of these HIV-associated

increased comorbidities. This is particularly worthy of follow-up investi-

gation given that depressive disorders are the most prevalent mental

health disorders associated with HIV (Koutsouleris et al., 2013) and

studies have shown that depression can be associated with neurode-

generation and increased brain age (Cole et al., 2018).

There are limitations of this study worth noting. First, the cross-

sectional nature of this study hinders our ability to make inferences

about the rates of neuroanatomic changes in HIV. Importantly, this lim-

ited our ability to determine whether our findings relate to a more

static, vestigial process which adds to or augments the aging process in

HIV, or whether in fact these results are related to a dynamic,

accelerated aging process. This is an important distinction and clinically

meaningful question, particularly as the HIV1 population continues to

age in the post-HAART era, and must be addressed using a longitudinal

model. A recent longitudinal publication (Cole et al., 2018) demon-

strated that HIV1 participants demonstrated greater predicted brain

age than HIV2 controls when analyzed at cross-section. However,

when followed longitudinally, the HIV1 and HIV2 groups evidenced

comparable rates of change in neuroimaging markers, suggesting that,

when receiving successful treatment, people living with HIV are not at

risk for accelerated brain aging over 2 years. Longer longitudinal studies

will help clarify whether or not this pattern remains steady over time.

Next, the SVR-modeling of the DTI data appeared to be less accu-

rate (MAE57.39 years) than that using T1-MRI to measure brain vol-

ume (MAE55.01 years) (Cole et al., 2017a). This could be due to

differences in the neuroimaging methodology used (e.g., size, variability,

and number of features of training sample set). However, it is also the

case that we sought to test a different biological entity (DTI-based

WM microstructure), and as such a direct comparison between SVR-

derived brain ages may not be appropriate, as Cole et al sought to

determine a best-predicted brain age based on grey/white matter vol-

ume and we sought to determine the best-predicted age of WMmicro-

structure. The fact that data were acquired at multiple sites using

different MR scanner could be a factor and a limitation. However, scan-

ner was included as a variable in the model and the data was homoge-

nized using a single, uniform processing pipeline which has become an

accepted standard of practice in the field and indeed has been used in

similar machine learning papers (Cole et al., 2017a, 2017b) where the

training data and the disease-specific data were collected at separate

sites using different scanners and non-identical scanning parameters.

Therefore, this is a limitation of note but one whose impact on the

findings was minimized to the best of our abilities. Additionally,

although the TBSS method applied should limit the impact of atrophy

on our findings, this study did not employ any specific control regarding

possible WM lesions. Given that WM lesions have been reported in

the brains of HIV1 patients, it is possible that our prediction of WM

age could be improved had we included WM lesions from any affected

patient in the model. Further, there are some inherent demographic dif-

ferences (e.g., race/ethnicity) in the training datasets (from England and

Norway) and the test dataset (from Los Angeles). While we attempted

to control for these by comparing our UCLA HIV1 participants to

UCLA HIV2 participants who were highly matched on demographic

variables and assessing the effect of race/ethnicity on the outcomes, it

remains possible that such demographic or even genetic variables could

contribute to our findings, though we believe this is less likely for sev-

eral reasons including the SVR model fit statistics and similar findings

from Cole et al. (2017a). Furthermore, there are some limits to the gen-

eralizability of this study. These include the exclusion of participants

with substance use disorders and Axis I diagnoses, the (although non-

significant) fact that our sample included fewer HIV1 women, and the

fact that the older HIV1 adults are long term survivors from the pre-

HAART era and may not be representative of HIV1 adults reaching

older age in the near future who were diagnosed in the post-HAART

era. Importantly though, it is possible that comorbid substance abuse
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and/or psychiatric disorders may increase the risk of premature brain

aging. Although the current CD41 and viral load data used in this study

were extracted from blood samples collected during the course of this

study, nadir CD41 and highest lifetime viral load were self-reported by

participants. Additionally, the DTI-based WM metrics were extracted

from the entire white matter skeleton, rather than from individual WM

tracts (e.g., uncinate fasciculus). This method limits the spatial resolu-

tion of our technique. Future examinations between specific tracts

with respect to white matter aging are warranted.

Despite these limitations, the findings of this study support the

hypothesis of HIV-associated augmented brain aging and provide a

unique contribution to the existing literature by demonstrating that the

mechanism by which this process occurs in WM microstructure

appears to be related to HIV-associated neurodegeneration, including

axonal injury, loss of axonal density, and reduced patency of axons that

likely occurs via similar cellular mechanisms as typical aging. Impor-

tantly, neuroimage-derived age predictors may indeed be biomarkers

of normal and pathologic aging processes. Therefore, this technique

may be generalizable to other disease processes which may affect the

aging process, including neurodegenerative disorders (e.g., Alzheimer’s

disease) and other neuro-medical illnesses. This technique may also be

useful in identifying patients at risk for cognitive decline, functional lim-

itations, and early mortality (Cole et al., 2017b).
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