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Abstract
Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on

our conceptualization of functional brain networks contributing to human emotion and cognition.

Traditional theories regarding the neurobiological substrates contributing to affective processing

are shifting from regional- towards more network-based heuristic frameworks. To elucidate differ-

ential brain network involvement linked to distinct aspects of emotion processing, we applied an

emergent meta-analytic clustering approach to the extensive body of affective neuroimaging

results archived in the BrainMap database. Specifically, we performed hierarchical clustering on

the modeled activation maps from 1,747 experiments in the affective processing domain, resulting

in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral

inference analyses conducted for each of these groupings suggested dissociable networks support-

ing: (1) visual perception within primary and associative visual cortices, (2) auditory perception

within primary auditory cortices, (3) attention to emotionally salient information within insular,

anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within

medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within

amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary

psychological model of affective processing in which emotionally salient information from per-

ceived stimuli are integrated with previous experiences to engender a subjective affective

response. This study highlights the utility of using emergent meta-analytic methods to inform and

extend psychological theories and suggests that emotions are manifest as the eventual conse-

quence of interactions between large-scale brain networks.
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1 | INTRODUCTION

Complex cognitive processes are often interrogated through functional

neuroimaging techniques using heterogeneous task designs that can

vary based on the given scientific question. The goal of coordinate-

based meta-analyses is to provide quantitative reinforcement for con-

sistent activation across similar studies. However, it has been demon-

strated that the differentiating characteristics of task design have a

neural basis (Barret & Satpute, 2013; Laird et al., 2015), and can pro-

vide insight regarding specialization of neural recruitment during the

performance of a given task grouping. Advanced meta-analytic meth-

odologies have emerged to probe these cognitive processes, resulting

in new information characterizing meta-analytic networks and behav-

ioral interpretations that provide support for complex psychological

theories.

The research domains of affective and cognitive neuroscience

have been influenced by the emergence of coordinate-based meta-ana-

lytic techniques that allow for statistically rigorous evaluation and inter-

pretation of functional neuroimaging results across multiple studies

(Fox, Lancaster, Laird, & Eickhoff, 2014). Initial coordinate-based meta-

analytic approaches allowed for the identification of convergent activ-

ity modulations observed across a collection of studies utilizing similar

experimental tasks. One method, termed Activation Likelihood Estima-

tion (ALE; Turkeltaub, Eden, Jones, & Zeffiro, 2002; 2012; Eickhoff

et al., 2009, 2012; 2016) offers a quantitative characterization (as

opposed to the qualitative assessment of narrative reviews) of brain

regions associated with psychological processes of interest. However,

traditional neurocognitive views focusing on regional contributions

have transitioned towards network-level perspectives that may provide

a more complete and coherent appreciation of the neural substrates

linked to multifaceted psychological processes (Seeley et al., 2007;

Bressler & Menon, 2010). As a result, meta-analytic methodologies

have likewise evolved with this network-focused shift (Laird et al.,

2013). Meta-analytic connectivity modeling (MACM) has emerged as a

useful tool for characterizing whole-brain networks co-activating with

an individual brain region of interest (ROI) across various task domains

(Laird et al., 2009a; Robinson, Laird, Glahn, Lovallo, & Fox, 2010; Eickh-

off et al., 2010; Riedel et al., 2015). Extending this framework beyond a

single isolated network co-activating with an individual seed ROI, a

recent meta-analytic methodology leverages clustering techniques to

characterize the recruitment of multiple, distinct networks across

groups of studies (Laird et al., 2015). That previous work applied clus-

tering techniques to modeled activation images associated with experi-

ments within a heterogeneous task domain (i.e., facial processing; Laird

et al., 2015), as opposed to clustering voxels within a user-defined ROI

(connectivity-based parcellation; Neumann, von Cramon, & Lohmann,

2008; Cauda et al., 2012; Bzdok et al., 2015; Balsters, Mantini, Apps,

Eickhoff, & Wenderoth, 2016).

Concurrent with the transition from regional to network-based

perspectives, the field of affective neuroscience has witnessed a similar

shift toward understanding large-scale network involvement in affec-

tive processing and the generation of emotions (Ochsner, Bunge,

Gross, & Gabrieli, 2002; 2012; Barrett & Satpute, 2013; Pessoa, 2012;

Touroutoglou, Lindquist, Dickerson, & Barrett, 2015). From a regional

perspective, extensive evidence from both human and animal studies

indicate a critical role of the amygdala in emotional processing (Ledoux

et al., 1988; Pessoa, 2010; Phelps and Ledoux, 2005). Moving beyond

the focus on the amygdala as a single node, resting-state functional

connectivity assessments have allowed for network-level characteriza-

tion of the regions that interact with the amygdala (Baur, Hänggi,

Langer, & Jäncke, 2013; Roy et al., 2009; Bzdok, Laird, Zilles, Fox, &

Eickhoff, 2013), such as selective activation of the insula during emo-

tional awareness processing (Simmons et al., 2013) and the ventrome-

dial and lateral prefrontal cortices implicated in emotional regulation

(Jackson & Moghaddam, 2001). Additionally, multiple frontal and parie-

tal regions are critically linked to emotion generation (Ramponi et al.,

2011; Fruhholz & Grandjean, 2013; Otto et al., 2014), and interactions

between limbic structures and cortical networks suggest that emotion

and cognition are not easily separated, but rather, jointly contribute to

behavior (Pessoa, 2008). Given the multifaceted nature of emotional

processing, it is not surprising that multiple task paradigms have been

employed to dissect the constituent processes. Previous emotion-

related meta-analyses have utilized corpora specifically focused on

emotional salience (Phan et al., 2004), emotional face processing

(Fusar-Poli et al., 2009), or studies resulting in the generation of dis-

crete affective responses (Murphy, Nimmo-Smith, & Lawrence, 2003;

Kober et al., 2008; Vytal & Hamann, 2010; Lindquist, Wager, Kober,

Bliss, & Barrett, 2012; Kirby & Robinson, 2015); however, the broader

affective neuroimaging literature consists of complex experimental

designs that often blur the boundaries between emotional, cognitive,

and perceptual processes in the pursuit of this multidimensional con-

struct (e.g., emotional Stroop, emotional n-back). No meta-analysis has

yet utilized data-driven methodologies and the full, complex range of

affective neuroimaging results collectively complied over the last two

decades to dissociate large-scale network involvement independent of

stimuli or tasks.

In the present study, we focused our attention on the wealth of

neuroimaging results catalogued in the BrainMap database (www.brain-

map.org) to characterize the brain networks and associated mental

processes associated with various aspects of affective processing. In

our investigation, any experiment in which an emotional stimulus was

presented (e.g., faces, words) or an instruction was given to elicit an

emotional response (e.g., recall an emotional memory) was included in

the analyses. We performed data mining across this diverse range of

experimental paradigms involving an affective component, representing

the broadest inclusion criteria of any emotion-related meta-analysis to

date. Our goals were to: (1) apply a recently developed clustering-

based meta-analytic methodology to group the wide range of affective

experiments according to similar brain activation architecture, thereby

delineating multiple large-scale brain networks associated with emo-

tional processing; (2) perform post hoc analyses utilizing metadata terms

from each individual experiment within emergent groups to highlight

the functional differentiation of identified brain networks in the larger

context of emotional processing; and (3) provide a quantitative

meta-analytic assessment to directly inform an existing psychological

theory presented by Ochsner, Silvers, and Buhle, (2012), suggesting
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differential brain networks and linked mental operations that contrib-

ute to affective processing.

2 | MATERIALS AND METHODS

2.1 | Meta-analytic data extraction and pre-processing

The BrainMap database (Fox & Lancaster, 2002; Laird, Lancaster, &

Fox, 2005; Laird et al., 2009b) is an online repository of over 15,000

published neuroimaging experiments (from over 3,000 journal articles)

archived as three-dimensional coordinates in stereotactic space (x,y,z).

Each experiment is the result of a whole-brain statistical analysis (i.e.,

no ROI analyses), and has been manually coded by expert annotators

with metadata terms established by the Cognitive Paradigm Ontology

(CogPO.org; Turner & Laird, 2012) describing the experimental design

of the archived study. Experiments in BrainMap assessing the neural

correlates of affective processing are classified under the behavioral

domain of Emotion, or one of its associated subdomains, which include

Anger, Anxiety, Disgust, Fear, Happiness, and Sadness. Furthermore,

according to the BrainMap coding scheme (Fox et al., 2005), experi-

ments may possibly be jointly classified under the additional behavioral

domains of Action, Cognition, Interoception, or Perception. This feature

of multi-label classification in BrainMap, which is dependent on the

unique behavioral conditions during which participants were scanned

and the resultant choice of experimental contrasts yielding statistical

parametric images, provides the basis for the present approach to

studying a wide range of affective processing studies. We used the

BrainMap search engine, Sleuth (www.brainmap.org/sleuth), to query

the database for experiments classified with any of the above Emotion

behavioral domains (and associated sub-domains). The search results

were filtered to identify only experiments reporting activations

(not deactivations) from healthy adult participants; this strategy was

intended to mitigate biases associated with age-, treatment-, or

disorder-related effects. In divergence from previous meta-analyses uti-

lizing only experimental contrasts resulting in an induced emotional

response, the objective of the current study was to investigate all com-

ponents of emotional processing. As such, no additional filtering of

experimental contrasts was performed (i.e., the data set was not limited

to emotional vs. neutral contrasts). We extracted activation foci (i.e.,

peak coordinates) from each identified BrainMap experiment and line-

arly transformed those coordinates reported in Talairach space (Talair-

ach & Tournoux, 1988) into MNI space (Collins et al., 1994) using the

Lancaster transform (Lancaster et al., 2007; Laird et al., 2010). Modeled

activation (MA) maps were then generated in MNI space with 2 mm

resolution by modeling foci as Gaussian probability distributions,

thereby accounting for spatial uncertainty due to brain template and

between-subject variance (Eickhoff et al., 2009; Figure 1, Step 1).

2.2 | Correlation matrix based hierarchical clustering

analysis

To interrogate the affective processing literature to reveal differential

meta-analytic network recruitment, we implemented a previously

developed methodological approach (Laird et al., 2015), that was devel-

oped using the same techniques as in Co-Activation Based Parcellation

(Cauda et al., 2012; Bzdok et al., 2014; Balsters et al., 2016). The only

differentiating characteristics in the current approach are the method

of experimental contrasts selection inclusive in the meta-analysis and

the use of hierarchical (as opposed to k-means) clustering. Each MA

map was reduced to a one-dimensional array and concatenated across

all experiments to form an e x v matrix, where e is the number of

experiments and v is the number of voxels in the MNI-standardized

brain (Collins et al., 1994; Figure 1, Step 2). An e 3 e symmetric cross-

correlation (CC) matrix was calculated representing the Pearson corre-

lation coefficient (r) between each pair of MA maps. Hierarchical clus-

tering analysis was then performed on the correlation matrix, in the

MATLAB environment (version 2014b; Mathworks, Inc.) to parse

experiments into meta-analytic groupings (MAGs) exhibiting similar MA

patterns (Figure 1, Step 3). First, the “correlation distance”, defined as 1

– r, was calculated between each experiment’s distribution of correla-

tion coefficients in the CC matrix to generate a vector of the e 3 e–1

pair-wise distances. Essentially, higher distance values indicated greater

dissimilarity between the pair-wise correlation coefficient distributions

of the respective experiments, inherently representative of the dissimi-

larity of each experiment’s MA map. Then, the “average linkage”

algorithm was employed to assemble experiments into MAGs by identi-

fying the smallest distance (or dissimilarity) between experiments as

defined in the previous step. Here, experiments were combined into a

single MAG based on the smallest average of dissimilarity quantities

between any constituent experiments of a MAG and any experiment

not already assigned to a MAG. The “average” method was used in the

present study to mitigate the problematic “chaining” effect in which

increasing model order (i.e., number of clusters/MAGs) results in solu-

tions differing only by the addition of one experiment. Solutions utiliz-

ing the correlation distance and average linkage parameterizations have

been previously demonstrated with fMRI data (Liu, Zhu, Qiu, & Chen,

2012) and BrainMap-based meta-analytic maps (Laird et al., 2015).

The resultant dendrogram was assessed to create MAGs of experi-

ments that clustered together, representing coherent groupings of simi-

lar activation patterns. To select a clustering solution yielding a suitable

parcellation of BrainMap experiments, we assessed the comparative

performance of multiple solutions using two metrics, “relative difference

in cophenetic distance” and “experiment separation density” (Laird et al.,

2015). Specifically, we evaluated clustering solutions with model orders

of between 3 and 10 MAGs and identified those solutions yielding high

relative difference in cophenetic distance values and low experiment

separation density values. First, the relative difference in cophenetic

distances between MAGs, dc, was used to characterize the extent to

which increasing model order resulted in substantially different activa-

tion patterns respective to each resultant MAG:

dc5
cx112cx
cx11

(1)

The cophenetic distance represents the dissimilarity between two

MAGs of experiments, and becomes increasingly larger as model order

decreases. In an exemplar dendrogram (Supporting Information Figure

S1), the cophenetic distance is represented on the y-axis, where the
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distance along the axis corresponds to a junction of clusters with

greater inherent dissimilarity. Thus, the union at the maximal height of

the dendrogram represents the cophenetic distance between the two

distinct MAGs. As one then progresses to the second highest junction,

where one MAG is then fractionated to create a total of three MAGs,

the cophenetic distance of that junction is evaluated, relative to the

previous highest junction, to obtain a quantitative index for evaluating

the dissimilarity for different clustering solutions. Here, the aim was to

maximize the relative difference in cophenetic distances (c) between

model orders (x and x11) thereby identifying clustering solutions

yielding robustly different activation patterns. Reiterated, large values

for this metric indicate that the higher model order resulted in MAGs

consisting of experiments with substantially different MA maps.

Second, the experiment separation density, ds, was used to quan-

tify the impact of increasing model order when parcellating a group of

experiments of size n0 into sizes n1 and n2, defined as:

ds5
n1
n0

(2)

where n1 is greater than n2. MAGs are composed of sets of experi-

ments, and as model order increases, all experiments in a single MAG

are distributed to two independent MAGs based on the dissimilarity

between experiments. In certain instances, a MAG may be decomposed

into two MAGs, where one of the resulting MAGs consists of a single

experiment. In such an extreme case, this model order would be

ignored because the overall impact that a single experiment would

have on the overall solution would be negligible. Here, the aim was to

avoid a clustering solution yielding a high ds, which indicates that a

resulting MAG was not substantially different from the parent MAG in

terms of experiment contribution, leading to reduced differentiation

between solutions.

2.3 | ALE convergence of meta-analytic groupings

After selecting a suitable clustering solution, we investigated conver-

gent activation patterns within MAGs, thereby delineating meta-

analytic networks of activation across grouped experiments. Conver-

gent activation patterns from sets of foci contributing to each MAG

were produced using the Activation Likelihood Estimation (ALE)

method (Turkeltaub et al., 2002) (Figure 1, Step 4) implemented in the

MATLAB environment. The revised ALE algorithm was employed

which accounts for between-subject variability and between-template

variance due to differences in spatial normalization methods across

publications (Eickhoff et al., 2009), as well as within-experiment effects

(Turkeltaub et al., 2012). This procedure was carried out to characterize

convergent brain activity modulations across experiments within a sin-

gle MAG. Voxel-wise ALE scores were computed as the union of the

MA maps, which provided a quantitative representation of convergent

FIGURE 1 Data analysis pipeline. Using a data-driven approach, we categorized affective processing experiments according to similar brain
activation architecture. Step 1: Experiments in the BrainMap database catalogued under the behavioral domain of Emotion were identified,
and the corresponding activation coordinates were extracted and blurred using a Gaussian filter to generate modeled activation (MA) maps.
Step 2: The three-dimensional MA map of each experimental contrast was reduced to one-dimension, and concatenated to create an
experiment-by-voxel matrix. A cross-correlation matrix was calculated to quantify the pair-wise correlations between each experimental
contrast’s one-dimensional MA map. Step 3: Hierarchical clustering was performed on this correlation matrix using the “correlation distance”
method and “average linkage” method to define meta-analytic groupings (MAGs) of experiments. Step 4: After identifying the most suitable
number of MAGs, Activation Likelihood Estimation (ALE) images were calculated utilizing the experiment foci assigned to each MAG [Color
figure can be viewed at wileyonlinelibrary.com]
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brain activation patterns; statistical significance was assessed by ana-

lytically deriving the null distribution of random spatial association

between experiments (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012).

According to recent guidelines based on massive ALE simulations

(Eickhoff et al., 2016), ALE images for each MAG were differentially

thresholded based on the number of experiments contributing to each

MAG. Any MAG consisting of greater than 500 experiments was sub-

jected to the more conservative voxel-level FWE threshold (pvoxel-

level < .05), while all other MAGs were thresholded at pcluster-level < .05

(cluster-level FWE corrected for multiple comparisons; cluster-forming

threshold: pvoxel-level < .001).

2.4 | Functional decoding of meta-analytic groupings

Once the convergent spatial activation patterns for each MAG were

delineated, we examined the experimental design of the contributing

experiments to identify which task-related features (e.g., stimulus,

response, or instructions) most likely led to these similar activation pat-

terns. For example, for a dendrogram yielding n groupings of MA

maps/experiments, we evaluated the behavioral tasks utilized in the

experiments grouped together in MAG 1, the tasks in MAG 2, and so

on for all n MAGs. Each experiment in BrainMap is annotated with

metadata describing the behavioral domain, paradigm class, stimulus

modality and type, response modality and type, and instructions uti-

lized by the original neuroimaging study. We note that multiple meta-

data descriptors within the same class (e.g., behavioral domain) may be

assigned to a single experiment (e.g., Emotion and Cognition), allowing

BrainMap annotations to capture the complexity of the original study’s

experimental design (Laird et al., 2009a).

Forward and reverse inference analyses (Poldrack, 2006; Yarkoni,

Poldrack, Nichols, Van Essen, & Wager, 2011) were performed on the

metadata terms associated with experiments to quantitatively assess

the functional/behavioral properties of each MAG relative to the Brain-

Map database (Cieslik et al., 2013; Nickl-Jockschat et al., 2015). For-

ward inference analyses were performed to determine the probability

that brain activation among the experiments within an individual MAG

was the result of a specific metadata term. Specifically, we used a bino-

mial test to determine if the probability of activation given a metadata

term P(activation | term) (Equation 1) was significantly higher than the

base-rate probability of activating the MAG. The probability of activa-

tion given a metadata term was calculated (Equation 3) using the num-

ber of experiments within a MAG j coded with the term i and the total

number of foci reported active in all experiments in the BrainMap data-

base coded with term i. If a binomial test between this quantity and

the number of experiments in MAG j divided by the total number of

coordinates in the BrainMap database (Equation 4) resulted in a signifi-

cant difference (p < .05, FDR-corrected), then the likelihood ratio

(Equation 5) was determined using the ratio of the two quantities.

P activationjtermð Þ5#Expi;j
#Focii

(3)

P activationð Þ5#Expj
#Foci

(4)

Likelihood5
P acitvationjtermð Þ

P activationð Þ (5)

Reverse inference analyses were also performed to identify the

likelihood that a specific metadata term resulted in brain activation

among the experiments within a MAG. Specifically, a chi-square test

was employed to determine if the probability of a metadata term given

activation in the MAG P(term|activation) was significantly (p < .05,

FDR-corrected) higher than the terms representation across the

database.

P termð Þ5#Expi
#i

(6)

P activationjtermð Þ3P termð Þ
P activationð Þ (7)

The reverse inference probability (Equation 7) was calculated using

the probability of activation given a metadata term (Equation 3), multi-

plied by the probability of a given metadata term occurring within the

BrainMap database (Equation 6; where #i indicates the total number of

metadata assignments within a field across experiments), divided by

the probability of activation within a MAG (Equation 4). The combined

results of forward and reverse inference analyses were exported for

visual assessment in the Cytoscape environment (Shannon et al., 2003).

To further enhance interpretation of each MAG’s behavioral rele-

vance, we also reviewed the prose descriptions of the constituent

experiments, which provide a concise summary of the original study’s

purpose and experimental design. These short descriptions were man-

ually coded by expert annotators associated with the BrainMap Project.

Specifically, prose descriptions explicitly state the conditions (e.g., “sub-

jects viewed a probe letter and recalled if that letter was a previously

encoded letter”) and experimental contrasts (e.g., “Finger Tapping>Rest”)

that resulted in the reported activation foci. Naming conventions for

experimental contrasts are often adopted from the manuscript itself.

Thus, these prose descriptions offered a more precise level of detail to

appreciate the mental operations contributing to each MAG. To aid in

summarizing these prose descriptions, simple term and phrase (consist-

ing of no more than four sequential terms) frequencies were totaled

for the assembly of prose descriptions associated with each MAG.

Here, the prose descriptions associated with a single MAG were

imported into the MATLAB environment and concatenated. All non-

alphanumeric characters (e.g., “&<>: , # .”) were removed to avoid any

situation usage bias (e.g., a term appearing at the end of a sentence,

contrast effects). Then, in an iterative fashion, terms and sets of contig-

uous terms or phrases, were assessed for frequency of occurrence

within the concatenated text descriptions to determine how often

each appeared across all prose descriptions for the experiments within

a MAG. Assessments of term and phrase frequency were then utilized

in the review process to enhance insight into the most consistent

experimental strategies employed within each MAG.

3 | RESULTS

From a potential 7,363 experiments archived in BrainMap reporting

coordinates of activation in healthy participants, our search for
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experiments classified under the behavioral domain of Emotion (and

associated sub-domains) yielded 1,747 experimental contrasts from

905 papers, reporting 22,760 peak-activation foci among 27,542

healthy participants. We generated MA maps for each of these 1,747

experiments and conducted a spatial correlation analysis to compare

the topography of each pair of experiments.

3.1 | Correlation matrix based hierarchical clustering

analysis

We grouped experiments exhibiting the highest degree of similarity in

MA topography using a hierarchical clustering analysis approach. To

identify the most suitable number of MAGs (i.e., model order) for par-

cellating the 1,747 BrainMap experiments, we evaluated differences in

cophenetic distance and experiment separation density values across

increasing model order (i.e., from 3 to 10 MAGs; Supporting Informa-

tion Figure S2). The difference in cophenetic distance values between

the current solution and its predecessor was highest for solutions of 3,

4, and 5 MAGs. These high values indicated that the MA maps associ-

ated with those MAGs were substantially different in topographic dis-

tribution than those at the model order just below it. Regarding

experiment separation density values, solutions of 4, 5, 7, and 10

exhibited smaller values than the immediately preceding lower model

order. Here, the tendency for the experiment separation density to

decrease indicated that increasing model order resulted in the for-

mation of new MAGs composed of a substantial number of experi-

ments, and were not merely the result of an arbitrary collection of

potentially “noisy” experiments. Based on convergence of both met-

rics, 4 and 5 MAGs emerged as candidate solutions. Ultimately, we

proceeded with the more discriminate 5-MAG solution due to a

continued decrease in experiment separation density and substan-

tial divergence of neural systems (see Supporting Information Figure

S3 for comparison of 4- and 5-MAG solutions). The resulting 5-

MAG solution visualized in a dendrogram (Figure 2), depicts individ-

ual MAGs consisting of 123 (orange), 98 (purple), 808 (blue), 321

(green), and 397 (red) experiments, respectively (Supporting Infor-

mation Table S1). To further highlight the degree of similarity of

experimental contrast MA maps within each MAG and differentiation of

MA maps between MAGs, the correlation coefficient between MA maps

was calculated and averaged for each MAG and each pair-wise compari-

son (Supporting Information Figure S4).

3.2 | ALE convergence of meta-analytic groupings

ALE maps were generated for each of the 5 MAGs using a MATLAB

implementation of the ALE algorithm to identify regions of convergent

activation (Figure 3, Table 1). The ALE map for MAG 1 (Figure 3;

orange) exhibited convergent activations within the visual cortex

(cuneus and lingual gyrus) and bilateral middle frontal gyri. The ALE

map for MAG 2 (Figure 3; purple) exhibited convergent activations

within the bilateral temporal gyri, and (mid)cingulate gyrus. Significant

convergence was observed in MAG 3 (Figure 3; blue) within the bilat-

eral insula, bilateral caudate, dorsal anterior cingulate cortex (ACC), and

inferior frontal gyri. Significant convergence in MAG 4 (Figure 3; green)

was observed in the medial prefrontal cortex (mPFC) and posterior cin-

gulate cortex (PCC). Lastly, MAG 5 (Figure 3; red) exhibited convergent

activations within the bilateral amygdala, parahippocampal gyri, and

bilateral fusiform gyri.

3.3 | Functional decoding of meta-analytic groupings

The ALE analyses above delineated convergent regions of activation

across experiments within MAGs, as well as differential spatial topogra-

phies across MAGs. To elucidate the functional/behavioral properties

of these MAGs, we then characterized the metadata terms significantly

associated with each MAG using forward and reverse inference analy-

ses. Figure 4 illustrates the results of these analyses and represents sig-

nificant BrainMap metadata terms for each MAG as a connection/line

between the MAG number and the specific metadata term. Terms in

which multiple lines project to different MAGs indicate those fields

that were observed to be significant across multiple MAGs. All MAGs

shared a number of significant metadata terms, located in the center of

the groupings, which encompassed various emotional sub-domains

(e.g., sadness, disgust, happiness, fear, anger, anxiety), paradigm classes

(e.g., emotional picture discrimination and face monitor/discrimination)

and stimulus types (e.g., pictures and faces; for a list of all emotion-

related behavioral domains and paradigm classes represented in the

database see Supporting Information Table S2). In addition, the forward

and reverse inference analyses revealed a number of unique metadata

terms associated with individual MAGs (Figure 4), which facilitated

interpretation of the mental processes and tasks specifically related to

each MAG. These uniquemetadata terms were found to be significantly

represented in only a single MAG, and although those terms may be

associated with experiments assigned to other MAGs, the cumulative

amount did not reach the statistical threshold required for significant

FIGURE 2 Hierarchical clustering of MA maps. Hierarchical
clustering was performed to assemble emotional processing
experiments into groupings with similar MA maps. Meta-analytic
groupings, distinguished by different colors in the dendrogram,
were comprised of 123 (orange), 98 (purple), 808 (blue), 321
(green), and 397 (red) experiments [Color figure can be viewed at
wileyonlinelibrary.com]
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association. Beyond these unique metadata terms, we also reviewed

the prose descriptions annotated with each experiment assigned to a

given MAG, which provided a concise summary of the original study’s

purpose and experimental design. Joint evaluation of the metadata

terms and prose descriptions allowed us to generate interpretations of

the behavioral relevance of each MAG:

MAG 1 consisted of experiments yielding convergent activation

primarily in the visual cortex and bilateral medial frontal gyri. Forward

and reverse inference analyses of metadata terms indicated significant

within-MAG representation of the paradigm classes of affective pic-

tures, passive viewing, imagined objects/scenes, and subjective emotional

picture discrimination, as well as the pictures stimulus modality. Exami-

nation of experimental design trends indicated an emphasis on partici-

pant instructions to discriminate or attend to emotional faces, words,

or scenes. Together, the constituent experiments suggested this MAG

was associated with Visual Perception.

MAG 2 consisted of experiments yielding convergent activation in

the bilateral temporal gyri and (mid)cingulate cortex. Forward and

reverse inference analyses of metadata indicated significant within-

MAG representation of the paradigm classes of passive listening

and classical conditioning, as well as the auditory stimulus modality.

Examination of experimental design trends indicated a focus on the

identification or discrimination of vocal expressions based on tone or

gender. Additional examples of experimental designs included passively

listening to music and evaluating congruent or incongruent prosody of

presented stimuli. Together, the constituent experiments suggested

this MAG was associated with Auditory Perception.

MAG 3 consisted of experiments yielding convergent activation

in regions comprising the salience network (Seeley et al., 2007),

including the bilateral insula and dorsal ACC. Forward and reverse

inference analyses of metadata indicated significant within-MAG

representation of the paradigm classes of pitch monitor/discrimina-

tion and deception. Examination of experimental design trends indi-

cated a large representation of tasks requiring participants to

intently focus on the presented stimulus, with instruction to either

discriminate or respond to a secondary stimulus. Specifically, experi-

ments took the form of gender, emotion, number, or orientation dis-

crimination, and anticipation to respond to a forthcoming physical

stimulus, or monetary gain or loss. Additional examples of experi-

mental designs involved physical stimulation in the form of electrical

shock, hand-holding, or breath-holding, as well as the shifting of

attention toward external environmental factors. Together, the con-

stituent experiments suggested this MAG was associated with

Attending to Emotionally Salient Information.

MAG 4 consisted of experiments yielding convergent activation in

regions comprising the default mode network (Raichle et al., 2001;

Laird et al., 2009a), including the mPFC and PCC. Forward and reverse

inference analyses of metadata indicated significant representation of

the paradigm classes of theory of mind and delay discounting, as well as

the behavioral domain Cognition.Social Cognition. Examination of

FIGURE 3 ALE images of meta-analytic groupings of affective experiments. ALE images identified significant (MAGs 1, 2, 4, 5: p < .05,
cluster-level FWE; p < .001, cluster-forming threshold; MAG 3: p < .05 voxel-level FWE) convergence of activation in each meta-analytic
grouping (MAG) of experiments. Overlay colors reflect the corresponding MAGs displayed in Figure 2. See Supporting Information Table S1
for coordinates of each MAG’s identified clusters of convergence [Color figure can be viewed at wileyonlinelibrary.com]
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experimental trends indicated a large representation of tasks requir-

ing participants to imagine themselves experiencing emotions or

events in different social situations, or to predict potential outcomes

given different scenarios (e.g., predict expected behavior or whether

a given outcome resulted in a reward). Additional examples of

experimental designs included tasks associating an emotional

response with familiar and unfamiliar visual stimuli, or the recogni-

tion of previously presented images. Together, the constituent

experiments suggested this MAG was associated with the Appraisal

and Prediction of Emotional Events.

MAG 5 consisted of experiments yielding convergent activation

across the bilateral amygdala, parahippocampal gyri, and fusiform gyri.

Forward and reverse inference analyses of metadata indicated signifi-

cant representation of the paradigm classes of affective pictures, affec-

tive words, emotion induction, and encoding, as well as the behavioral

domain Cognition.Memory. Examination of experimental design trends

indicated a large representation of encoding and memory tasks coupled

with various emotional terms. Participants in these experiments were

asked to elicit memories associated with previously presented emotion-

ally charged images. Additional examples of experimental designs

involved attending to a spectrum of emotional categories presented as

objects, scenes, or faces, or involved the identification of emotional

states through the presentation of faces. Together, the constituent

experiments suggested this MAG was associated with the Induction of

Emotional Responses.

4 | DISCUSSION

We delineated meta-analytic groupings of neuroimaging experiments

associated with convergent brain activations reported during affective

processing via data mining of 1,747 experiments from 905 published

papers archived in the BrainMap database. Operating under the pre-

mise that tasks resulting in similar brain activation patterns should be

categorized as functionally similar, while tasks demonstrating differ-

ential activation patterns should be classified as functionally distinct,

we grouped experiments together using a hierarchical clustering

approach (Laird et al., 2015). The observed MAGs revealed affective

processing to have an underlying architecture comprised of separate

meta-analytic networks associated with visual and auditory input as

well as several other well-known large-scale functional brain net-

works, including the salience, default mode, and limbic networks.

Furthermore, functional decoding of each MAG suggested five dis-

tinct roles for these networks in the context of affective experiments:

(1) visual perception, (2) auditory perception, (3) attending to salient

information, (4) appraisal and prediction of emotional events, and (5)

induction of emotional responses.

4.1 | Neural systems involved in emotional processing

Our findings describe the meta-analytic architecture underlying affec-

tive processing via systematic and data-driven classification of

emotion-related BrainMap experiments into separate MAGs according

to similar activation patterns. Our results are in agreement with prior

work suggesting that coherent interactions among an ensemble of

large-scale brain networks engender psychological processes and emo-

tional states (Seeley et al., 2007; Smith et al., 2009; Spreng, Mar, &

Kim, 2009; Lindquist et al., 2012). One contemporary psychological

model of emotions (Ochsner et al., 2012) contends that emotional

states are the result of self-referential exposure (and subsequent

response) to the emotional context of a perceived stimulus and are

comprised of four stages. Accordingly, the first stage of emotion

TABLE 1 MNI coordinates of ALE-derived meta-analytic groupings

Meta-analytic
grouping Region Volume x y z

1 Middle frontal gyrus (BA10) B 5448 237 47 5

Lingual gyrus (BA17) B 5048 6 288 0
Middle frontal gyrus (BA10) R 3464 33 55 6
Cuneus (BA18) L 2760 210 293 16

2 Insula (BA13), Superior temporal gyrus (BA41) L 17400 250 214 8

Superior temporal gyrus (BA41) R 14352 51 218 9
Cingulate gyrus (BA24) R 2960 3 23 46

3 Frontal gyrus (BA6/9/10/44/46), Insula, Thalamus B 134544 0 11 2

Cingulate gyrus (BA32) B 30144 0 22 40

4 Medial frontal gyrus (BA9) B 41296 21 48 3

Posterior cingulate (BA31) L 13184 23 250 26

5 Middle temporal gyrus R 22144 41 268 29

Parahippocampal gyrus (Amygdala) R 19936 26 26 217
Parahippocampal gyrus (Amygdala) L 19712 222 24 217
Fusiform gyrus (BA37) L 16648 243 267 28

Note: MAGs 1, 2, 4, and 5 were subjected to cluster-level FWE thresholding (pcluster-level < .05 (FWE-corrected); pvoxel-level < .001), while MAG 3 was
subjected to voxel-level FWE thresholding (pvoxel-level < .05) because of the extremely large experiment contribution (Supporting Information Table S1).
The peak cluster coordinates associated with each thresholded (pcluster-level < .05 [FWE-corrected]; pvoxel-level < .001) ALE map corresponding to the
meta-analytic groupings. Data for each cluster include anatomical and functional (Brodmann area) labels (L: left hemisphere, R: right hemisphere, B:
bilateral), spatial-cluster volume, and the weighted center-of-mass reported in MNI coordinates.
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processing involves perceiving a stimulus in context, whether inter-

nally or externally driven. The stimulus is then attended to during

the second stage to discriminate the aspects or features that are

contextually most important from those that may be excluded from

subsequent processing (Luo et al., 2014). The third stage involves

the appraisal of the salient stimuli in terms of relevance to the indi-

vidual’s goals, wants, or needs, which under certain circumstances

may include consequences of predicted affect in other individuals in

social situations. According to appraisal theories of emotion, this

phase corresponds to the mechanism that precedes positive vs. neg-

ative reactions or specific emotional responses (Scherer, Schorr, &

Johnstone, 2001). The final stage of emotion generation translates

the subjective appraisals into changes in experience, affective mem-

ory, emotionally-expressive behavior, and/or autonomic physiology.

The following discussion of the brain regions and associated behav-

ioral inferences are presented in the context of the theory proposed

by Ochsner et al., (2012).

Emotions emerge as contextual responses to external sensory

inputs and/or internal stimuli, and MAGs 1 and 2 collectively encom-

pass brain regions prioritized for perceptual processes. Convergent

activation across MAG 1 was observed in the cuneus and lingual gyrus,

and additionally in bilateral inferior and middle frontal gyri. This meta-

analytic network of regions has been implicated in basic visual process-

ing, participating in visual memory (Todd, Won Han, Harrison, & Mar-

ois, 2011), as well as recognition and naming of words (Price et al.,

1994; Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 1995;

Mechelli, Humphreys, Mayall, Olson, & Price, 2000). The involvement

of the visual perception network in emotion is well documented

(Keightley et al., 2003; Kehoe, Toomey, Balsters, & Bokde, 2013;

Isenberg et al., 1999), and has been discussed in several meta-analyses

(Kober et al., 2008; Fusar-Poli et al., 2009; Vytal & Hamann 2010). Fur-

thermore, neuroimaging evidence has suggested that activation in the

visual cortices may be modulated by affective stimuli (Vuilleumier &

Pourtois, 2007; Stolarova, Keil, & Moratti, 2006) or by differential eye

fixation strategies when perceiving affect-laden stimuli (van Reekum

et al., 2007). Whereas MAG 1 was associated with visual input, experi-

ments in MAG 2 were primarily associated with auditory processing,

including regions consistently activated across the bilateral superior

temporal gyri (Brunetti et al., 2005; Chang et al., 2010; Nourski et al.,

2013; Mesgarani et al., 2014). Within the context of affective process-

ing, the auditory network is consistently recruited across studies irre-

spective of specific emotional domains (Lindquist et al., 2012). More

specifically, regions in this meta-analytic network have demonstrated

involvement in the recognition of emotional prosody and verbal com-

ponents of spoken language (Buchanan et al., 2000), as well as partici-

pating in the judgment of emotional prosody when considering either

words or music (Ethofer et al., 2006; Koelsch, Fritz, Cramon, Muller, &

Friederici, 2006). Beyond simple acts of auditory perception, the role of

this meta-analytic network in the domain of affective processing may

be one of interpreting emotional subjectivity of rhythm, intonation

(Wildgruber et al., 2005), and/or pitch (Zarate, Wood, & Zatorre, 2010).

Thus, we interpret MAGs 1 and 2 as meta-analytic networks associated

with perception of external stimuli, which in the current context were

utilized to elicit emotional experiences.

In contrast, MAGs 3, 4, and 5 were associated with “higher-order”,

non-perceptual functions associated with emotional processing. Experi-

ments in MAG 3 revealed significant convergence of activation in

FIGURE 4 Functional decoding of meta-analytic groupings of affective experiments. Forward and reverse inference analyses were per-
formed across metadata fields to identify terms significantly associated with each meta-analytic grouping (MAG) of experiments. Terms con-
nected by multiple lines indicate significant associations with multiple MAGs. Bolded terms indicate those highlighted in the main text. The
appearance of certain terms twice served only to distinguish MAGs 1 and 2 as separate from MAGs 3, 4, and 5 [Color figure can be viewed
at wileyonlinelibrary.com]
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regions associated with the salience network (Seeley et al., 2007),

including the dorsal anterior cingulate and orbital frontoinsular cortices,

regions also involved in the detection and evaluation of emotional pic-

tures (Phan et al., 2004), facial stimuli (Britton, Taylor, Sudheimer, &

Liberzon, 2006), and auditory pitch (Zarate et al., 2010). Here, assessing

and evaluating relevant stimuli is thought to be the product of integrat-

ing processes associated with executive attention (Corbetta et al.,

2002; Touroutoglou, Hollenbeck, Dickerson, & Barrett, 2012), intero-

ception (Critchley et al., 2000; Critchley et al., 2004), and representa-

tions of affect, which in turn guide attention and behavior (Lindquist &

Barrett 2008; Medford & Critchley, 2010). MAG 3 also included the

inferior frontal and cingulate gyri, regions characterized by their collec-

tive involvement in attentional processes and response selection (Aron,

Fletcher, Bullmore, Sahakian, & Robbins, 2003, 2004; Badre, Poldrack,

Par�e-Blagoev, Insler, & Wagner, 2005; Wager, Jonides, Smith, & Nich-

ols, 2005; Wagner, Maril, Bjork, & Schacter, 2001). Supporting the inte-

gration of these regions into a unified network, recent meta-analyses

have recognized the functional coupling of these regions during affec-

tive processing (Lindquist et al., 2012; Ochsner et al., 2012), suggesting

their role in extraction of emotionally salient information from per-

ceived stimuli.

MAG 4 corresponded to experiments involving theory of mind

tasks and social cognition, recruiting the medial prefrontal, posterior

cingulate cortices, and precuneus (Spreng et al., 2009; Martinelli, Sper-

duti, & Piolino, 2013), collectively resembling constituents of the

default-mode network (Raichle et al., 2001; Laird et al., 2009a). Activa-

tion of regions within this meta-analytic network has been associated

with recognition of familiar faces (Leveroni et al., 2000; Gorno Tempini

et al., 1998; Shah et al., 2001; Ramasubbu et al., 2007), internal medita-

tion (Brewer et al., 2011), and prediction of rewarding or reinforcing

outcomes (Knutson & Cooper, 2005; O’Doherty, 2004; Schultz, 2007;

Bartra, McGuire, & Kable, 2013). Furthermore, this network has been

linked to context-sensitive predictions about others’ thoughts and feel-

ings (Saxe & Kanwisher, 2003), combining perceived information with

personal experiences. The current results suggest that default-mode

network regions’ involvement in affective processing may relate to

internal stimuli involving reflection upon stored representations of pre-

vious emotional experiences to salient stimuli.

Convergence across the bilateral amygdala, bilateral fusiform gyri,

and parahippocampal gyri observed in MAG 5 represents hallmark fea-

tures of emotion generation (Ochsner et al., 2012). The regions com-

prising this meta-analytic network have been implicated across a range

of emotional domains (Neta & Whalen, 2011; Whalen et al., 2004; Vuil-

leumier & Pourtois, 2007), and demonstrate recruitment during percep-

tion of faces (Sergent, Ohta, & MacDonald, 1992; Haxby et al., 1994,

1999; Clark et al., 1996; Kanwisher, McDermott, & Chun, 1997;

McCarthy, Puce, Gore, & Allison, 1997; Halgren et al., 1999; Ishai,

Ungerleider, Martin, Schouten, & Haxby, 1999; Hoffman & Haxby,

2000), encoding of emotional stimuli (Davis & Whalen, 2001; Oschner

et al., 2002; Davachi, 2006; Phelps, 2006; Cunningham et al., 2008,

2010; Hariri & Whalen, 2011), and associated with memory of previ-

ously encoded stimuli (Cahill et al., 1996; Hamann, Ely, Grafton, & Kilts,

1999; Canli, Zhao, Brewer, Gabrieli, & Cahill, 2000). Furthermore, the

involvement of regions in this meta-analytic network in response gen-

eration is well documented, specifically as a function of stimulus evalu-

ation in a context and goal-dependent manner (Damasio, 1994; Oya

et al., 2005; Hare, Camerer, & Rangel, 2009; Roy, Shohamy, & Wager,

2012;). Overall, we suggest this meta-analytic network may represent

regions participating in the generation of contextually relevant emo-

tional responses based on the complex integration of salient features

of external sensory input with internal stimuli and/or previous affective

experiences.

4.2 | A meta-analytic model for emotional processes

Our meta-analytic outcomes demonstrate correspondence with the

contemporary model of affective processing (Ochsner et al., 2012) and

provide support for intermediary functional participation of multiple

networks during emotion regulation tasks. Specifically, we observed

that MAGs 1 and 2 exhibited consistent activation across primary and

associative visual and auditory cortices, respectively, implicating their

roles in stimulus detection and/or perception (Figure 5, “Visual” and

“Auditory”). MAG 1 was linked to identifying either internally- (e.g.,

imagined objects/scenes) or externally- (e.g., affective pictures) driven vis-

ual stimuli, whereas MAG 2 demonstrated involvement in audition and

passive listening. In contrast, MAG 3 resembled the salience network

and was associated with detection of relevant features of the stimuli

(Figure 5, “Attention”) for assessment in subsequent stages of the

model. MAG 3 included tasks requiring “discrimination”, requiring

extraction of meaningful details of faces, shapes, and emotional pic-

tures to elicit an emotional response. Following extraction of salient

features, MAG 4 included canonical nodes of the default-mode net-

work and its functional decoding results were consistent with an

appraisal process relating previous experiences and emotional conse-

quences (Figure 5, “Appraisal”). Critical structures involved in such

appraisal processes include the dorsomedial PFC, dorsolateral PFC,

inferior parietal lobules, and ventrolateral PFC (Kohn et al., 2015).

Accordingly, MAG 4 may operate during tasks (e.g., social cognition,

theory of mind, and episodic recall) to coordinate the integration of sub-

jective prior experience, empathetic gestures, or predictions of others’

feelings in a social setting with the significant context of presented

stimuli (Lamm, Decety, & Singer, 2011). MAG 5 was consistent with a

final stage of the model involving the cumulative integration of contex-

tual stimuli and previous knowledge into the generation of an appropri-

ate emotional state (Figure 5, “Response”). Here, a core network of

limbic regions, highlighted by the amygdala, execute the emotional

response as a function of the sequential processing of stimuli, salient

features, and individual appraisals. In the context of neurobiology, the

extent of the emotional response in the amygdala and parahippocampal

gyri may be dependent on memory encoding of previous responses.

An additional feature of the model presented by Ochsner et al.,

(2012) is related to the regulation of emotions and more specifically,

cognitive reappraisal. Here, cognitive reappraisal is understood as the

reinterpretation of the meaning of a perceived stimulus by way of

one’s personal connection to it, thereby altering one’s emotional

response, whether consciously (Beauregard, Levesque, & Bourgouin,
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2001; Beer, Heerey, & Keltner, 2003) or unconsciously (Williams,

Bargh, Nocera, & Gray, 2009). Hypotheses of neural involvement in

emotion regulation suggest dorsolateral and posterior prefrontal corti-

ces and inferior parietal regions direct attention to reappraisal-relevant

stimulus features as well as the content of one’s reappraisal (Miller,

2000; Wager & Smith, 2003; Wager, Jonides, & Reading, 2004). Addi-

tionally, dorsal anterior cingulate may monitor the extent to which

one’s current reappraisals are changing emotional responses in the

intended way (Botvinick, Cohen, & Carter, 2004) and ventrolateral pre-

frontal cortex selects goal-appropriate reappraisals of the re-evaluated

stimulus (Thompson-Schill, Bedny, & Goldberg, 2005; Badre & Wagner,

2007). Indeed, previous meta-analyses highlight these systems as con-

tributing to emotion regulation processes (Frank et al., 2014; Kohn

et al., 2015). Incidentally, the meta-analytic network associated with

MAG 3 is representative of some of those aforementioned regions,

such as the ventrolateral and dorsomedial prefrontal cortices, while

experiments within MAG 3 also focus on attention to secondary or

forthcoming stimuli, requiring a cognitive component to recognize and

assess the current situation while retaining information about a previ-

ously elected goal. Furthermore, Ochsner’s model proposes that the

ventromedial prefrontal cortex mediates relations between prefrontal

regions and the amygdala (Urry, 2006; Johnstone, van Reekum, Urry,

Kalin, & Davidson, 2007) while temporal gyri represent semantic and

perceptual features. In this instance, it may be hypothesized that

default-mode regions provide valuation to the relevant stimuli during

the process of reappraisal. As such, examining the associated functional

interpretations of brain regions associated with MAG 4 also suggest its

potential role as a potential intermediary system during the emotion

regulation process. Despite the similarities between meta-analytic net-

works in MAGs 3 and 4 with proposed regions involved in the cogni-

tive reappraisal process (Ochsner et al., 2012), other studies specifically

assessing the neural basis for cognitive reappraisal (Ochsner et al.,

2012; Buhle et al., 2014; Kohn et al., 2015) also suggested or identified

the involvement of the dorsolateral prefrontal cortex and superior pari-

etal lobule. While the current study was not specifically intended to

identify regions associated with the cognitive reappraisal process, the

distribution of brain regions involved in such a system across multiple

MAGs indicates a potential multiple-network dynamic. This idea is cur-

rently being explored and will be presented in future work.

While our meta-analytic findings are discussed in the context of an

“evolving” model of the cognitive control of emotion outlined by Ochs-

ner et al., (2012), the proposed model is itself an assembly of appraisal

and emotion generation theories. Thus, to the extent that our findings

demonstrate correspondence with the Ochsner et al. (2012) model, the

outcomes are also broadly consistent with elements of related models.

For instance, regarding emotion generation, current neuroscience liter-

ature suggests that there may not be specific neural systems for differ-

ent discrete emotions (Kober et al., 2008; Wager et al., 2008), and our

functional decoding results indicate that emotional domains are agnos-

tic of meta-analytic network involvement. Additionally, Ochsner’s

model may be extended to emotion regulation strategies beyond reap-

praisal, such as attentional deployment (Dolcos, Iordan, & Dolcos,

2011; Villemure & Bushnell, 2002), situation selection and modification

in which prefrontal cortices and amygdala are recruited (Everitt et al.,

1999; LeDoux & Gorman, 2001; Delgado, Jou, Ledoux, & Phelps,

2009), and response modulation, which relies on goal maintenance,

FIGURE 5 Meta-analytic model of affective processing. Meta-analytic networks recruited during emotional experiments demonstrated cor-
respondence with a contemporary psychological model of affective processing (Ochsner et al., 2012). MAGs 1 and 2 correspond to “Visual”
and “Auditory” perception, respectively, associated with sensory input. MAG 3 corresponds to the salience network associated with “Atten-
tion” and the detection/selection of stimulus features contextually most relevant for further processing. MAG 4 corresponds to the default-
mode network associated with subjective recall, evaluation, and integration of goals, wants, or needs during “Appraisal”. MAG 5 corresponds
to the limbic network associated with the generation of an emotional “Response” based on context-relevant interpretations [Color figure can
be viewed at wileyonlinelibrary.com]
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response selection, and inhibition/suppression (Aron et al., 2004;

Thompson-Schill et al., 2005; Badre & Wagner, 2007; Goldin, McRae,

Ramel, & Gross, 2008; Hayes et al., 2010). Finally, Ochsner et al. (2012)

suggests this model may potentially explain other cognitive-affective

dynamics that rely on similar recruitment of neurological systems, such

as affective/emotional learning, decision making, and expectancies.

In summary, our results highlight multiple meta-analytic brain net-

works associated with emotional processing, and functional decoding

of these observed MAGs provide objective delineation of their func-

tions. These meta-analytic networks may be recruited during emotion

perception, detecting indicators of affect, appraisal of emotion relative

to one’s own memories and experiences, and the generation of an

emotional response. Additionally, MAGs 3 and 4 may differentially par-

ticipate in emotion regulation strategies whereby regions associated

with cognitive control (MAG 3) maintain goal-relevant information and

monitor subsequent responses while emotionally-relevant stimuli are

reappraised according to one’s own valuation (MAG 4) of internally or

externally (social) motivated situations. We have demonstrated that

large-scale data mining of the BrainMap database provides a means to

evaluate existing cognitive models of brain function, similar to our pre-

vious work (Laird et al., 2015) in confirming and extending a well-

known model of face perception (Gobbini & Haxby, 2007). Overall, a

strength of this meta-analytic approach is that it supports the idea that

most complex, real-world psychological constructs cannot be measured

by a single task, but rather must be probed across a wide range of

experimental designs.

4.3 | Divergence from other meta-analytic approaches

Throughout the analysis and interpretation stages of this work, we

examined several existing meta-analyses in the affective domain to not

only verify our results were in-line with previous findings, but also to

ensure that our results offered a unique contribution to the field’s

understanding of emotional processing. One distinguishing characteris-

tic of the current study from existing contributions is that our results

serve as a qualifying demonstration that large-scale meta-analyses can

provide support or even advance psychological models, whereas other

investigations directly address the conversation of neurobiological sub-

strates of affect. An initial observation when examining previous affec-

tive meta-analyses was the clear delineation between studies

attempting to localize discrete emotions to isolated brain regions

(Haman et al., 2012; Kirby & Robinson, 2015) versus studies attempting

to characterize large-scale brain network contributions to emotions

(Kober et al., 2008; Lindquist et al., 2012; Wager et al., 2015;

Touroutoglou et al., 2015). These latter meta-analyses specifically

focused on emotion induction or experience paradigms (Kober et al.,

2008; Lindquist et al., 2012) or the most commonly studied discrete

emotional categories (Wager et al., 2015), and are better suited to

address the neurobiological substrates associated with emotion genera-

tion. The current approach considers the diverse set of affective para-

digms across the literature and thus emphasizes a more holistic

interpretation of the coordinated involvement of multiple psychological

constructs in emotional processing. In addition, a differentiating factor

between the current study and the previously discussed meta-analyses

is that the behavioral inferences through metadata and term frequency

analyses, in conjunction with the theoretical hypotheses proposed in

Ochsner et al. (2012), serve to potentially inform the network dynamics

involved in emotion regulation strategies. Buhle et al. (2014) and Kohn

et al. (2015) presented meta-analyses of emotion regulation studies,

resulting in a large number of identified brain regions involved in cogni-

tive reappraisal. Some of those regions were identified across multiple

MAGs in the current study, and the suggested mental operations par-

ticipating in emotion regulation, such as selection (discrimination) of

appraisals and self-reflective processes relevant to affective meaning

(Buhle et al., 2014), are associated with MAGs 3, 4, and 5. Thus, a novel

finding of the current study leverages metadata in a way not previously

used to inform a theory on emotion regulation strategies.

In addition, the present results highlight the existing debate regard-

ing the locationist and constructionist perspectives, where the former

suggests emotional states contain independent neurobiological basis

and the latter suggests that emotions are the eventual consequence of

network interactions. While the objectives of the current study were

not to address this debate, it may be worth noting that several emo-

tional subdomains were found to be significantly associated with each

MAG. This result may speak to the diverse accumulation of experimen-

tal contrasts that interrogate affective processes included in the analy-

sis, and thus warrants further investigating and careful interpretation in

the conversation of emotion generation.

4.4 | Methodological issues and limitations

We observed convergence between our meta-analytic findings, a con-

temporary psychological model, and emerging views of large-scale

brain network integration in affective neuroscience. Nevertheless,

there are several caveats to consider when interpreting meta-analytic

outcomes. One limitation is that the use of the relative difference in

cophenetic distances and experiment separation density as criteria for

determining the parcellation solution is relatively simplistic, though

they are not entirely different in interpretation from more advanced

methods for separating variables into discrete MAGs using hierarchical

clustering (Eickhoff, Thirion, Varoquaux, & Bzdok, 2015). Of the metrics

suggested for thresholding a hierarchical assortment of variables, the

inconsistency coefficient has received the most attention. Liu et al.,

(2012) demonstrated the most suitable clustering solution could be

derived using a distribution of inconsistency coefficients, which neces-

sitates the implementation of multiple dendrograms or sets of variables.

Further complicating matters, the choice of the appropriate number of

variables to include in a single inconsistency coefficient calculation is

flexible as well, which itself requires further investigation.

A potential limitation of the current study is the strict assignment

of each experiment to only one MAG. That is, some experiments

assigned to a particular MAG may demonstrate spatial similarities to

MA maps corresponding to experiments assigned to other MAGs. This

occurs because of the hierarchical nature of the current approach,

whereby one experiment is paired with another experiment or MAG

based on the smallest dissimilarity of modeled activation patterns. If
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one were to consider the next smallest dissimilarity for a particular

experiment’s MA map, it is conceivable that in some instance, that may

occur with an experiment assigned to a different MAG. These types of

occurrences would typically be associated with complex experimental

paradigms resulting in the activation of regions commonly identified in

separate MAGs. Though beyond the scope of the current work, the

possibility that such experiments could yield valuable information about

interactions between large-scale networks is certainly worth future

exploration.

Another study limitation is the subjectivity associated with gener-

alized interpretations of the prose descriptions of experiments based

on term occurrence. While those interpretations enhanced our meta-

analytic results, we acknowledge that more statistically rigorous meth-

ods could provide a more principled approach for guiding those conclu-

sions. To that end, we are currently developing meta-analytic tools

utilizing text-mining algorithms for the Automated Text Harvesting and

Exploration of Neuroimaging Annotations (ATHENA) project. These

tools emphasize term frequencies appearing within and across neuroi-

maging articles, and will in the future provide a more informative ontol-

ogy for describing and classifying the published literature.

With regards to the terminology used to describe the images

resulting from ALE analyses of each cluster, it is worth noting the dif-

ference between “neural systems” obtained from analyses performed

on raw functional imaging data and meta-analytic networks. Neural sys-

tems, or functional brain networks, are brain regions demonstrating

coherent temporal fluctuations in the BOLD signal, while the meta-

analytic networks described above consist of coordinates of activation

that are consistently represented within a set of experiments. In the

current usage, it would be inaccurate to state that two regions in a

meta-analysis are functionally connected or co-activate with one

another. However, meta-analytic connectivity modeling (MACM; Laird

et al., 2009a; Robinson et al., 2010; Eickhoff et al., 2010) and independ-

ent component analysis (ICA; Smith et al., 2009; Laird et al., 2011) per-

formed on experiments archived in the BrainMap database provide

supporting evidence that meta-analytic networks indeed reflect func-

tionally connected networks. Therefore, it is sufficient to state that the

result of an ALE analysis constitutes a network of regions typifying the

most commonly recruited brain areas across experiments.

With respect to meta-analytic methodology, there are several limi-

tations worth mentioning. First, bias is present in the BrainMap data-

base toward experimental contrasts coded with specific metadata

labels, such as the behavioral domain Cognition. The ALE algorithm

does not take metadata labels into account and randomly selected gray

matter coordinates are used for permutations in hypothesis testing, so

this bias is not accounted for in the ALE calculation. Although a

recently proposed method (Langner et al., 2014) for generating the null

distribution attempts to control for the base rate of activation across

the BrainMap database (which could inherently be associated with label

representation), we highlight that (1) it is intended for task-based co-

activation modeling, (2) cannot be subjected to cluster-level multiple

comparisons correction, and (3) in our experience results in more false-

positives than the previous null-distribution approach. Conversely,

other meta-analytic algorithms, such as that used by Neurosynth

(Yarkoni et al., 2011), provides both forward- and reverse-inference

results, accounting for biases present in the Neurosynth database. Sec-

ond, Bayesian spatial point processing (Kang, Nichols, Wager, & John-

son, 2014) is another meta-analytic algorithm that could potentially

yield information regarding the inherent dissimilarity of a given con-

struct. That is, the current study was motivated by differentiating the

MA maps across MAGs; Bayesian spatial point processing could assess

the degree of heterogeneity in the MA map dataset and may even be

useful in assigning new studies to different categories based on

coordinate-based results.

4.5 | Data sharing

In the spirit of transparency and reproducibility, we have created a

GitHub repository where the scripts used to perform the above analy-

ses as well as the thresholded and un-thresholded meta-analytic maps

for each MAG are openly available (github.com/NBCLab/cmhc).

5 | CONCLUSIONS

We assessed the neural activation patterns of emotional experiments

archived in the BrainMap database utilizing a large-scale data mining

approach to investigate the neurobiological systems linked to affective

processing. Meta-analytic groupings of five co-activation networks

were identified demonstrating differential brain recruitment and func-

tional properties in the context of affective experiments: (1) visual per-

ception, (2) auditory perception, (3) attending to emotionally salient

information, (4) appraisal and prediction of emotional events, and (5)

induction of emotional responses. Our meta-analytic results demon-

strate correspondence with a well-known model of affective process-

ing, whereby emotions are instantiated as a mental state in response to

personal experiences associated with the emotionally salient context of

a perceived stimulus (Ochsner et al., 2012). As the field of neuroimag-

ing continues to probe complex questions, we believe this work high-

lights the utility of large-scale meta-analytic techniques to develop,

test, and refine psychological theories, providing a means to examine

and emphasize neuroimaging reproducibility from a meta-analytic

perspective.
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