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Dear Editor,

Neuroendocrine tumors (NETs) comprise a heterogeneous
spectrum of neoplasms originating from neuroendocrine cells in
various organs — most commonly in the endocrine glands and
the gastrointestinal tract.” The molecular and etiological features
of NETs arising from different organs are still far from clarified.
Therefore, systematic analysis of genomic alternations and their
contribution to core pathways in NETSs is urgently needed for the
development of novel diagnostic, therapeutic strategies and
personalized management of patients. Here, we investigated
somatic mutations across 21 NET types through pan-cancer
analysis and identified 86 candidate driver genes. Further analysis
of druggability and panel sequencing of these genes provide
potential diagnostic and therapeutic targets for NETs.

To investigate the landscape of common and specific somatic
mutations in NETs, we collected mutation data of 1,103 tumors
(1,034 published and 69 new whole-exome sequencing data) from
38 research projects (Supplementary information, Table S1). We
performed whole-exome sequencing on tumor-normal pairs of 38
insulinoma (INS), 20 Cushing’s disease (CD) induced by cortico-
troph pituitary adenoma and 11 pheochromocytoma (PCC)
(Supplementary information, Tables S2-5, Figure S1). Using these
data, we compiled somatic mutation data across 21 NET types. The
data set consisted of five types of adrenocortical tumors:
aldosterone-producing adenomas (APA), cortisol-producing adre-
nocortical adenomas (ACA), ACTH-independent macronodular
adrenocortical hyperplasia (AIMAH), adrenocortical carcinomas
(ACC) and adrenocortical oncocytoma; seven types of pituitary
tumors: growth hormone-secreting pituitary adenomas, gonado-
tropins including follicle-stimulating hormone and luteinizing
hormone pituitary adenomas, prolactin pituitary adenomas,
thyrotropin-stimulating hormone pituitary adenomas, CD induced
by corticotroph pituitary adenoma, plurihormonal pituitary
adenoma and nonfunctioning pituitary adenomas; two types of
pancreatic tumors: non-functional NETs (PNETs) and INS; medul-
lary thyroid cancer (MTC), parathyroid adenomas and parathyroid
carcinomas (PTC); pulmonary carcinoids (PC); PCC and paragan-
glioma (PCC/PGL); small intestine NETs (SINET) and neuroblastoma
(NB) (Supplementary information, Table S6).

The data from 21 NET types were re-analyzed and annotated to
obtain a uniform set of somatic mutations (Supplementary
information, Tables S7 and 8). Malignant NETs have a larger
number of non-silent mutations and a higher mutation frequency
than benign NETs (P=7.33x 1075 Supplementary information,
Figures S2 and 3). Mutation spectrum across 21 NET types reveals
that the C—>T transversion is the predominant substitution,
consistent with findings in other cancer types® (Supplementary
information, Figure S4 and Table S9). To comprehensively identify
the significantly mutated genes (SMGs) with a statistically higher
mutation rate in NETs, we performed systematic and stepwise

analysis using the MuSiC suite.? The results of SMG analysis are
associated with the background mutation rates (BMRs) of tumor
types and BMRs between benign and malignant tumors are
significantly different (Supplementary information, Figure S5).
Therefore, MuSiC analyses of 21 NETs were separately conducted
in the combined benign set, combined malignant set, combined
organ set (adrenal, gastrointestinal, pituitary and thyroid) and
individual tumor types. The resulting SMGs were further filtered by
gene mutation frequency, deleterious mutation rate and gene
expression (Supplementary information, Figure S6). We reliably
identified a total of 86 candidate driver genes in NETSs, including
80 SMGs and 6 known cancer genes®® (Supplementary informa-
tion, Figure S7 and Table S10).

Of the 86 candidate driver genes, 34 are novel SMGs in NETs
and 52 have been reported in previous studies of specific NET
types. The mutations of 86 genes showed common and specific
distribution in NETs. Novel type-specific SMGs were identified in
less frequently mutated genes, such as DNMT3A in benign NETs
and AHNAK, COL1A1, SF3B1 and ZNF292 in malignant NETs
(Fig. 1Ta and Supplementary information, Figure S8). Our data
reveal that MENT is the most common SMGs in NETSs (8 out of 21
types). Notably, mutations of three novel SMGs and six known
candidate driver genes are identified in as least five NET types,
indicating that more common driver genes emerge across
both benign and malignant NETs (Supplementary information,
Figure S9).

To comprehensively understand the mechanistic classification
and further illustrate the cellular processes involved in NETs, we
performed gene ontology and hierarchical clustering analysis. The
86 genes were classified into 20 categories of cellular processes?
(Supplementary information, Figure S10). Clustering analysis
showed that in addition to MEN1, RET and GNAS, mutations in
transcription factor genes (YY1, CTNNBI1, NF1) and mutations in
genome integrity genes (ATM, ATRX, TP53) are critical for clustering
of multiple NET types, suggesting the importance of these SMGs
in molecular classification of NETs (Supplementary information,
Figure S11). Clustering of the 21 types of NET and 13 other cancers
with the 86 candidate driver genes and previously described
cancer genes showed that the majority of NETs, except ACC, are
distinctive from common malignant tumors (Supplementary
information, Figure S12).

Notably, chromatin modification and remodeling genes (22
genes in the categories of histone modifiers, genome integrity and
DNA methylation) are the most significant set in NETs. In silico
prediction analysis showed that all the 22 genes have pathogenic
or truncating mutations (131/171, 76.6% in total), supporting the
functional roles of the chromatin modification and remodeling
genes in NETs (Supplementary information, Figures S13 and 14,
Tables S11 and 12). MENT is the representative mutated driver
gene in diverse inherited and sporadic NET types. The variant
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allele frequency (VAF) of MENT mutations is significantly higher
than the average VAF among candidate driver genes (P=1.2 X
10~%), suggesting that loss of heterozygosity is commonly coupled
with MENT mutations (Supplementary information, Figure S15).
The hormone secretion-associated calcium signaling (Z score =

3.74 in APA) and cAMP/PKA signaling (Z score = 3.31 in ACA) are
distinctively enriched pathways in adrenal NETs (Supplementary
information, Tables S13 and 14). Mutations of candidate driver
genes encoding transcription factors or involved in Wnt/B-catenin
signaling are frequently observed in many NETs (Supplementary
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Fig. 1
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The 86 candidate driver genes identified in 21 NETs. a Distribution of candidate driver genes identified in benign and malignant

tumors. Height of each colored bar represents the number of mutated cases to types. The bottom bar plot shows the most significant g-value
among combined and individual sets calculated by MuSiC. b Druggable cancer gene distributions in NETs. Percentages of samples mutated in
individual tumor types are shown. The types of therapeutic agents are as follows: yellow, FDA-approved drug; orange, drug in clinical trials;
blue, pre-clinical ligand. The higher the frequency of each gene in 21 NETs, the deeper the color. NETs with 19 specific mutations in ALK, RET,
PTCH1, DNMT3A and TSC2 might have potential to benefit from treatment of FDA-approved drugs. Mutations in 12 additional genes, such as
HRAS, USP8 and CTNNBT, may present target opportunities in current clinical trials. Another 11 genes might be targeted by the agents under
investigations at pre-clinical stages. ¢ Landscape of candidate driver genes in APAs. The number of non-silent mutations in 163 APA tumors on
target regions is shown on the top. The colored bars in the bottom panel indicate the mutations and mutation types of candidate driver genes
in APAs; each row represents a candidate driver gene (listed on the right). The significant level of candidate driver genes is shown on the right
of gene list. The number of mutated samples for each gene is listed on the left. The annotation of colored bars is shown on the right side.
4CoIIectiver, 137 out of 159 APAs (86.1%) have at least one non-synonymous mutation in the 86 candidate driver genes

information, Figure $10). Moreover, many novel SMGs have been
associated with cancer development and progression in recent
studies. AHNAK suppresses cell growth through modulation of
tumor growth factor-p/Smad pathway.” ARRDC3 and ZNF292 could
function as tumor suppressors in breast cancer and colorectal
cancer, respectively.® °

Identification of druggable targets and precise medical treat-
ment by existing or novel agents is the ultimate mission for pan-
cancer analysis of NETs. We analyzed the therapeutically
targetable driver genes in NETs and showed that 28 candidate
driver genes with 201 mutation sites are potential druggable
targets in NETs (Fig. Tb and Supplementary information, Tables S15
and 16). Furthermore, defined levels of potential targets in tumors
revealed that NET patients with poor prognosis or high recurrence,
such as MTC, ACC and PNET, may have great potential for new
clinical investigations with personalized drug therapies (Supple-
mentary information, Figure S16).

Gene sequencing panels for ultra-deep and high-coverage
targeted sequencing can effectively evaluate cancer gene altera-
tions. To detect somatic mutations in NETs, we designed a
sequencing panel consisting of 61 candidate driver genes (lacking
25 SMGs due to data update) and 118 additional genes potentially
related to NETs, and applied targeted high-coverage sequencing
(depth = 300x) to 140 pairs of APAs (Supplementary information,
Figure S17, Tables S17 and 18). We identified five known and two
novel recurrently mutated genes in APAs (Fig. 1c and Supple-
mentary information, Table S19). KCNJ5 was mutated in 80.7%
(113/140) of the panel-sequenced APA cohorts. KCNJ5 contains
four known hotspot mutations and a novel E145del mutation. One
novel in-frame deletion (p.425-429del) was detected in the Ca®"
ATPase gene ATP2B3. Activating mutations of CTNNB1 were
identified in tumors from two female patients. We identified 10
novel SMGs in APAs, including recurrently mutated gene YY1 and
DNMT3A (Fig. 1¢; Supplementary information, Figure S18 and
Table $20). Activating hotspot YY17>72R mutations, which enhance
cell proliferation and hormone production in INS,'® were found in
6.3% (10/159) of APAs. Recurrent DNMT3A mutations are identified
in APAs and ACAs. Moreover, single SMG mutations in APAs
include activating GNAS®?°™ mutation, inactivating PRKAR1A
mutation and stop-gain MENT mutation. These results showed
that NET panel sequencing could be an efficient and powerful
approach.

Highly frequent and dominant activating hotspot mutations in
oncogenes, which are particularly valuable for developing
targeted drug therapies, are salient features of multiple NET
types. We identified 36 hotspot mutations in 19 SMGs in 21 NETs
(Supplementary information, Figure S19, Tables S21 and 22). These
activating hotspot mutations could be the most promising choice
for the development of druggable targets and personalized
medicine for NETSs.

In summary, we systematically analyzed somatic mutations
across 21 types of NETs and identified 86 candidate driver genes.
Mutation features and mutated genes are distinct in benign and
malignant NETs; some candidate driver genes are highly specific in
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one tumor type, while others are common across NETs. Further
sequencing of APAs using a customized NET-specific panel
efficiently identified somatic mutations in candidate driver genes.
Taken together, our findings may advance genomics-based
diagnosis and personalized targeting therapies of NETSs.

Materials and Methods are available in Supplementary informa-
tion, Data S1.
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