Skip to main content
. 2018 Mar 17;30:120–128. doi: 10.1016/j.ebiom.2018.03.009

Table 2.

Random forest model in predicting lung cancer against controls and other cancers.

CTL vs LC Benign vs LC BC vs LC
Predicted Predicted Predicted
Group CTL LC Group Benign LC Group BC LC
Actual CTL 9 1 Benign 28 12 BC 10 7
LC 1 9 LC 1 32 LC 2 31
Error 0.1 Error 0.178 Error 0.18
Sensitivity 90% Sensitivity 96.97% Sensitivity 93.94%
Specificity 90% Specificity 70% Specificity 58.82%



CCA vs LC CRC vs LC EC vs LC
Predicted Predicted Predicted
Group CCA LC Group CRC LC Group EC LC
Actual CCA 18 7 CRC 12 10 EC 12 2
LC 1 32 LC 1 32 LC 1 32
Error 0.138 Error 0.2 Error 0.064
Sensitivity 96.97% Sensitivity 96.97% Sensitivity 96.97%
Specificity 72% Specificity 54.55% Specificity 85.71%



GC vs LC
Predicted
Group GC LC
Actual GC 38 9
LC 1 32
Error 0.125
Sensitivity 96.97%
Specificity 80.85%

Sensitivity = number of true positives / (number of true positives + number of false negatives); Specificity = number of true negatives / (number of true negatives + number of false positives); CTL, healthy controls; LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer. All test sets except for the test set 1 (CTL vs LC) compares all lung cancer patients to benign diseases or other cancers.