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ABSTRACT Nontuberculous mycobacteria (NTM) include species that colonize hu-
man epithelia, as well as species that are ubiquitous in soil and aquatic environ-
ments. NTM that primarily inhabit soil and aquatic environments include the Myco-
bacterium avium complex (MAC) (M. avium and Mycobacterium intracellulare) and the
Mycobacterium abscessus complex (MABSC) (M. abscessus subsp. abscessus, M. absces-
sus subsp. massiliense, and M. abscessus subsp. bolletii) and can be free living, biofilm
associated, or amoeba associated. Although NTM are rarely pathogenic in immuno-
competent individuals, individuals who are immunocompromised, due to either an
inherited or acquired immunodeficiency, are highly susceptible to NTM infection
(NTMI). Several characteristics, such as biofilm formation and the ability of select
NTM species to form distinct colony morphotypes, all may play a role in pathogene-
sis that is not observed in the related, well-characterized pathogen Mycobacterium
tuberculosis. Different morphotypes of NTM have been recognized and characterized
since the 1950s, but the mechanisms that underlie colony phenotype change and
subsequent differences in pathogenicity are just beginning to be explored. Advances
in genomic analysis have led to progress in identifying genes important to the
pathogenesis and persistence of MAC disease as well as in illuminating genetic as-
pects of different colony morphotypes. Here we review recent literature regarding
NTM ecology and transmission, as well as the factors which regulate colony morpho-
type and pathogenicity.
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Nontuberculous mycobacteria (NTM) are a subset of Mycobacterium species that are
found in many environmental niches in nature. Although NTM are harmless to

most individuals, each year (at both the national and international levels) there are
increasingly more individuals diagnosed with NTM infection (NTMI). Clinical presenta-
tions of NTMI include pulmonary infection, disseminated infection, skin disease, and
lymphadenitis. Although risk factors for NTMI include immunodeficiency or underlying
barrier dysfunction, most NTMI patients do not have any known risk factors. This is
especially true of children with NTMI, in whom disease manifests primarily as a
distressful and disfiguring cervical lymphadenitis. It is important to have a basic
understanding of the host and bacterial factors that maintain human-NTM commen-
salism, as their perturbation may cause an infection to progress at the expense of the
human host (1).

NTM include species that colonize human epithelia, as well as species that are found
in soil and aquatic environments. The NTM species that colonize human epithelia are
largely nonpathogenic and can be found on skin (2–4) and along the genitourinary
(5–7), gastrointestinal (7), and respiratory (8–14) tracts. The NTM species that are found
in soil and aquatic environments include Mycobacterium vaccae, the Mycobacterium
avium complex (MAC), and the Mycobacterium abscessus complex (MABSC) (15, 16).
Although most NTM are traditionally considered to be opportunistic pathogens, M.
vaccae is unique in that it is also a transient human colonizer (17) and benefits the host
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in a manner that resembles ecological mutualism: M. vaccae inhibits pulmonary allergic
inflammation in mice (18), as well as decreases anxiety in both mice (19) and humans
(20), via an as-yet-undefined gut-brain-microbiota axis (21). MAC was first isolated from
wood pigeons (22) but is now known to be ubiquitous in the environment and found
in freshwater, salt water, soil, food, dust, and domestic and wild animals (23–26). In both
water and soil, MAC and MABSC species (MAC/MAB) can be free living, biofilm asso-
ciated, or amoeba associated (27, 28). Infection with MAC/MAB can follow exposure to
aerosols of MAC/MAB-containing water while bathing (29, 30) or to aerosols of MAC/
MAB-containing soil while gardening (31) or during a natural disaster (32). NTM
therefore occupy a unique and broad ecological niche and necessarily exhibit a
remarkable range of genetic adaptations to their varied environments.

With an ever-growing number of mycobacterial species being identified, the impor-
tance of understanding the interspecies relationships as well as the roles of individual
species in human colonization and pathogenesis cannot be overlooked. Here we review
the diversity, evolution, and genetic relationships between existing mycobacterial
species, the environments in which they are found (specifically, their niche as aquatic
organisms as well as their interactions with environmental amoebas), and the current
research on NTM colony morphotypes.

THE DIVERSE LIVES OF NONTUBERCULOUS MYCOBACTERIA

The nomenclature and classification of mycobacteria has remained unchanged for
most of its known history (33). Species are generally grouped into three major cate-
gories based on propensity for human infection: obligate pathogens (e.g., Mycobacte-
rium leprae, Mycobacterium tuberculosis, Mycobacterium marinum, and Mycobacterium
ulcerans), facultative or opportunistic pathogens (e.g., M. avium, Mycobacterium intra-
cellulare, M. abscessus, and Mycobacterium kansasii), and strictly commensal or sapro-
phytic bacilli (e.g., Mycobacterium smegmatis, Mycobacterium vanbaalenii, and Myco-
bacterium thermoresistibile) (34). There are more than 170 recognized species of
mycobacteria, with more being added on a regular basis (35). Until recently, the
phylogenetic relationships of mycobacterial species were based largely on 16S rRNA
sequencing; however, the increased availability and cost-effectiveness of whole-
genome sequencing (WGS) has led to more mycobacterial species being sequenced, as
well as more robust comparative genomics on which to base phylogenetic relation-
ships. Phylogenies based on WGS data are generally in concordance with those based
on 16S rRNA data. Namely, rapid-growing mycobacteria (“rapid growers”) and slow-
growing mycobacteria (“slow growers”) are clearly separated, with the rapid growers
being more ancestral relative to the slow growers and the slow growers (i.e., more
commonly pathogenic mycobacteria) being a distinct evolutionary branch. Where
differences do exist between WGS- and 16S rRNA-based phylogenies is in regard to M.
leprae (36). Some WGS-based phylogenetic trees resemble those of 16S rRNA-based
trees, placing M. leprae more closely related to the NTM species M. avium (37), whereas
others have placed it as a close sister clade to M. tuberculosis (38, 39). Many of these
differences arise depending on the type of analysis used and the stringency of the
thresholds used for software packages. Although these differences will likely continue
to be a topic of debate, the overall structure of the mycobacterial phylogenetic tree is
relatively accepted and well characterized (38).

Whole-genome sequencing of NTM has increased our understanding of the genetic
evolution of the mycobacterial family. The recently sequenced Mycobacterium terrae
complex has been placed as an intermediate group between rapid- and slow-growing
mycobacteria, representing an evolutionary link for the growth rate shift (38). High
gene turnover rates have been observed in the evolutionary timeline of NTM (39), and
the number of 1:1 orthologs between sequenced NTM genomes appears to be very low
(38). Even though NTM species may share a similar number of genes, the presence of
species-specific genes appears to be very high and diverse (40). The role of horizontal
gene transfer in mycobacteria is debated, with some studies reporting a very low
impact on mycobacterial evolution, evidenced by the low number of transposable

Meeting Review Journal of Bacteriology

June 2018 Volume 200 Issue 11 e00739-17 jb.asm.org 2

http://jb.asm.org


elements present in mycobacterial genomes (38). Other studies, however, report a
larger role for horizontal gene transfer based on sequence similarities and genomic
islands between species (41). A recent annotation of multiple NTM genomes demon-
strated that a majority of predicted genes could not be assigned a specific function (38).

Importantly, mycobacterial genome comparisons have led to a novel model regard-
ing the evolutionary divergence of NTM and obligate pathogenic mycobacteria: due to
the relatively small genome sizes of the obligate pathogens M. leprae and M. tubercu-
losis, the evolution of human pathogenicity corresponded to a large loss of ancestral
genes with a gain of several new genes more adapted to an obligate intracellular
lifestyle (40, 42). M. leprae and M. tuberculosis are remarkably distinct from one another
in terms of evolution: whereas M. leprae evolved �14 million years ago (43), the
evolution of human-adapted M. tuberculosis was more recent, �10 thousand to 70
thousand years ago (44), and it was possibly dispersed to New World populations via
migratory seals and sea lions (45). What M. leprae and M. tuberculosis have in common,
however, is that in contrast to nearly all NTM, which must survive in soil and aquatic
environments outside a living host, they do not exist as free-living organisms in nature.
Based on their biologies, M. leprae and M. tuberculosis would therefore have less need
for gene regulation and adaptive responses to the environment than NTM that are
found in the environment. In addition to having smaller genome sizes, pathogenic
mycobacteria also have genes enriched in DNA repair and recombination mechanisms,
while opportunistic pathogens have an enrichment in membrane transport genes
which aid in nutrient uptake and drug efflux (40). The genes responsible for energy
metabolism appear to be more NTM species specific, owing to the fact that each NTM
species must adapt to its own soil or aquatic environment (40).

THE AQUATIC LIVES OF NONTUBERCULOUS MYCOBACTERIA

Aquatic environments can be significant NTM reservoirs, and water is increasingly
recognized as an important NTM transmission medium. The aquatic environments in
which NTM reside can be as small as a showerhead or as large as a watershed (46). The
aquatic microenvironments in which NTM have been found are largely of human origin:
NTM-containing water supplies have been responsible for outbreaks of NTM disease in
hospitals (47, 48), as well as for outbreaks among footbath customers (49, 50), metal
workers (51, 52), and alternative-medicine users (53). Heating water can be insufficient
to clear NTM from water supplies, as several NTM species resist water temperatures up
to 55°C (a temperature at which Legionella pneumophila is heat susceptible), whereas
other NTM species can resist water temperatures up to 70°C, with Mycobacterium
xenopi being the most thermoresistant (54). Environmental sampling revealed that
mycobacteria comprised 1/3 of all microbes in the water of an indoor pool and 8/10 of
all microbes in the surrounding bioaerosol (55). The aquatic macroenvironments in
which NTM have been found include those of human origin (e.g., municipal water
supplies) (56–59) but also natural watersheds (46) and lakes (60, 61). Data from
experimental models suggest that the water flow in aquatic micro- and macroenviron-
ments is insufficient to prevent the formation of NTM biofilms (62), which facilitate NTM
survival in numerous hostile environments (63).

Not surprisingly, NTM are well adapted to their aquatic niche and appear to have
minimal requirements to survive as free-living organisms in water, as evidenced by the
ability of NTM to survive in sterile deionized water for over 1 year (64), as well as in lake
water under hypoxic conditions (60, 61). In their natural environment, NTM are often
presumed to exist as free-living or biofilm-associated organisms; however, this seems at
odds with the concept of mycobacteria being intramacrophagic pathogens. For this
reason, increasing attention is being paid to the roles of environmental amoebas in
sustaining NTM in the environment (28). The concept of intra-amoebae bacteria being
a source of disease is accepted in the field of Legionnaires’ disease and is increasingly
recognized in the field of mycobacteriology since the first demonstrations that NTM-
amoeba interactions promote NTM virulence (65, 66).

Acanthamoeba is a genus of free-living amoebas that have been found in a wide
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range of soil and aquatic environments, including city dust (67), bottled mineral water
(68), eyewash stations (69), the waterlines of dental water flossers (70), and Antarctic
soil and water (71). Acanthamoeba spp. are bacterivores, and their life cycle involves
transitioning between encysted and trophozoite forms (72). Whereas the encysted form
of Acanthamoeba resembles a capsule with a coarse and furrowed surface, the tropho-
zoite form is oddly reminiscent of vertebrate macrophages, in terms of both morphol-
ogy and cell biology (Fig. 1). Specifically, Acanthamoeba trophozoites chemotax toward
bacterial products (73), release antimicrobial peptides (74), and engulf bacteria in
phagosomes that subsequently undergo phagolysosomal fusion (75–77). Acantham-
oeba trophozoites also affect bacterial lysis by expressing a broad range of cytolytic
enzymes: lysozyme (78), serine and cysteine proteases that are active over a wide pH
range (79), �- and �-glucosidases, �-galactosidase, �-N-acetylglucosaminidase, amy-
lase, and peptidase (80). Also, similar to the case for vertebrate macrophages, the extent
to which Acanthamoeba phagolysosomal fusion kills mycobacteria is mycobacterial
species dependent (72, 81).

Numerous NTM species can enter Acanthamoeba during the trophozoite phase and
survive within cysts for prolonged periods (82). Specific Acanthamoeba species that are
known to be parasitized by NTM are Acanthamoeba griffini, Acanthamoeba polyphaga,
and Acanthamoeba castellanii. Acanthamoeba griffini is a halophilic species that was first
isolated from seawater (83) and is now known to inhabit marine environments (84), hot
springs (85), air conditioners (86), and contact lenses (79). In contrast, A. polyphaga is

FIG 1 Macrophages and Acanthamoeba species are similar in their morphology and responses to
bacteria. Depicted are the cell morphologies and relative sizes of three cell types (macrophages,
Acanthamoeba, and Mycobacterium), based on the electron microscopy images and measurements of Lei
et al. (macrophages) (129), Gonzalez-Robles et al. (Acanthamoeba) (72), and Schoonmaker et al. (Myco-
bacterium) (130). Macrophages and Acanthamoeba spp. resemble one another in size and cell morphol-
ogy: both are eukaryotes with cytoplasm (orange), intracellular vesicles (brown), a nucleus (light blue),
and a nucleolus (dark blue). Smooth-morphotype (SM) mycobacteria (light green) can exist as singular
bacilli due to the presence of surface glycopeptidolipids (GPLs) (dark blue outline); rough-morphotype
(RM) mycobacteria (light green) can exist as multicellular aggregates due to loss of GPL transport and
synthesis (represented by the absence of a dark blue outline). In M. abscessus, these GPL transport and
synthesis genes include mps1, mbtH, and mmpL4b (120); however, there are also GPL-independent
mechanisms underlying the smooth morphotype, as this phenotype and SM¡RM transitions occur in
NTM species that do not produce GPL (114). Upon encountering bacteria in their respective environ-
ments, macrophages and Acanthamoeba have shared responses: phagocytosis, phagolysosome fusion,
production of cytolytic enzymes and antimicrobial peptides, and chemotaxis toward bacterial products.
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freshwater associated and was first isolated from a pond (83). NTM residing within A.
polyphaga cysts can survive for over 2 weeks and are more resistant to the germicidal
effects of chlorine (82). Acanthamoeba castellanii resides in soil, marine, and freshwater
environments (83, 87). For any aquatic environment, the relative proportion of free
versus amoeba-associated NTM is unknown; however, there are numerous reports
demonstrating the ability of NTM to persist within Acanthamoeba in experimental
systems (65, 81, 82, 88–91). These experimental data support the possibility that
amoebal encystation allows NTM to persist in aquatic environments for extended
periods. This is important, because growing M. avium in amoebas enhances their
infectivity and virulence in a mouse infection model (compared to M. avium grown in
the absence of amoebas) (65, 91).

Researchers are leveraging the possibility of an Acanthamoeba host to better
understand how differences in bacterial genomes influence NTM survival. Acantham-
oeba coculture systems have been used to collect virulent NTM isolates, identify
conserved pathogenesis mechanisms, and make predictions regarding NTM transmis-
sion (81, 92–94). Just as the genetic tractability of another amoeba (Dictyostelium
discoideum) has been used to discover how tubercular mycobacteria exit a cell (95), so
too can novel methods of NTM transposon mutagenesis (96–99) be used to identify
genes that augment or inhibit intra-Acanthamoeba survival. Once such genes have
been identified, their presence in the genomes of virulent NTM isolates can be assayed
and used to support a model wherein intra-amoeba survival is a prerequisite for
intramacrophage survival. Collectively, existing data from Acanthamoeba coculture
models support an intriguing concept that has already been applied to Legionella (100):
that the resemblance of Acanthamoeba trophozoites to macrophages may naturally
select for NTM bacilli that are adapted to survive within macrophages, thus increasing
their fitness for intramacrophage survival in human hosts.

THE SMOOTH AND ROUGH LIVES OF NONTUBERCULOUS MYCOBACTERIA

Research on mycobacterial virulence factors has understandably focused on M.
tuberculosis for many years; however, the emergence of NTM as globally significant
pathogens (101–106) and their increasing prevalence in immunocompetent hosts
(107, 108) have given rise to the need to further understand pathogenesis in a
broader range of mycobacterial species. An excellent review of M. tuberculosis
virulence factors and their corresponding roles in NTM was recently published (109).
While the small genome size, large number of pseudogenes, and unculturable
nature of M. leprae make it particularly hard to study, research elucidating the
virulence factors of the culturable NTM species M. marinum and M. ulcerans is
advancing at a high rate. Studying the virulence mechanisms of the more patho-
genic species is a good starting point for deciphering pathogenesis in opportunis-
tically pathogenic NTM, but previously mentioned genomic studies have found that
a large number of species-specific genes are present in individual mycobacterial
genomes, which may leave important gaps in our knowledge of novel virulence
mechanisms. These genes are prime targets for functional studies so that we may
better understand their place in the survival and possibly the pathogenic potential
of mycobacteria. In order to further enhance our understanding of NTM in human
infection, it is imperative that the species that are increasingly implicated in human
disease, such as M. avium and M. abscessus, are studied further to define the
functions of genes that are currently unclear.

In addition to potential differences in virulence factors, another important difference
between M. tuberculosis and NTM species is the presence of dynamic colony morpho-
types among NTM isolates. When plated on agar media, several NTM isolates form
colonies with more than one morphology; the two most common morphologies are
referred to as the smooth morphotype (SM) and the rough morphotype (RM). The SM
is characterized by a uniform and glossy appearance, while the RM is characterized by
an irregular, dry, and corded appearance (110). The manifestation of NTM species as SM
or RM distinguishes NTM from their tuberculous counterparts, the colonies of which are
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predominantly rough. NTM species that exhibit both SM and RM colonies include
Mycobacterium bolletii (111), M. kansasii (112), M. abscessus (113), M. vaccae (114), and
M. avium (115). Mycobacterium avium colony description requires the use of additional
qualifiers, as this species exhibits smooth opaque (SM-opaque), smooth transparent
(SM-transparent), and RM colonies (116). Although SM and RM colony characteristics
are stable over serial passages, spontaneous shifts of SM to RM and RM to SM have
been reported (114, 117–119); even so, the SM is often treated in the literature as being
“wild type.” A genetic basis for the SM¡RM transition is the lost expression of genes
that promote glycopeptidolipid (GPL) synthesis and transport (111, 120). GPLs are
amphiphilic molecules that localize to the outermost layer of the mycobacterial cell wall
(1). GPL localization to the mycobacterial cell wall is facilitated by several genes,
including mps1, mbtH, and mmpL4b (120). In the presence of surface GPL, a dividing
mycobacterium results in daughter cells that physically dissociate. In the absence of
surface GPL, a dividing mycobacterium results in daughter cells that are attached end
to end. After successive divisions, these attached cells form structures that resemble
cords at microscopic and macroscopic levels (114, 118). However, different species
without GPL can also form SM and RM, implicating other mechanisms and membrane-
associated molecules in the morphotype (114). In addition to causing RM to form
corded colonies on solid media, the lack of GPL on RM causes multibacillary aggregates
in liquid media (121–123). Aggregate formation can impact NTM virulence by altering
the phagolysosome composition and integrity (124–126), and the RMs of M. abscessus,
M. avium, and M. kansasii are more virulent in experimental models (112, 127, 128).
Collectively, the literature cited above demonstrates that SM and RM are two physical
manifestations of a single NTM species and reflect the presence (SM) or absence (RM)
of surface-associated GPL in the original CFU, as a result of mps1, mbtH, and mmpL4b
gene activity.

CONCLUSION

Nontuberculous mycobacteria are a large group of organisms that include
species able to colonize human epithelia and cause disease, as well as saprophytic
species that are omnipresent in soil and aquatic environments. The taxonomic and
evolutionary patterns elucidated by WGS and subsequent phylogenomic analysis
reviewed here have allowed us a more complete picture of the genetic similarities
between different mycobacterial species. These analyses have also shed light on
some interesting evolutionary characteristics of the Mycobacterium family, such as
gene gain and loss dynamics and the immense diversity and prevalence of species-
specific genes with currently unknown functions. Further study of these genes
presents us with an opportunity to advance our understanding of how these
bacteria colonize and may cause disease. The already well-established ability of
NTM to exist in many different environments is a testament to their remarkable
adaptability, and their interesting association with environmental amoebas is giving
rise to very exciting ideas about the evolution of mycobacterial pathogenesis and
their ability to escape macrophage killing in NTM disease. This provides a thought-
provoking model of how these bacteria, and perhaps even other intracellular
pathogens, may have adapted to interact with the advanced immune systems of
humans and potentially cause disease. We have also summarized the current
research on the unique ability of NTM to form distinct colony morphotypes that
seem to differ in their virulence and pathogenicity traits, as well as their ability to
form biofilms and exhibit sliding motility, which may play important roles not only
in the environmental survival of NTM but also in their ability to infect human hosts.
The importance of continuing research on NTM and understanding the vast number
of species belonging to this group is highlighted by the increasing emergence of
facultative pathogenic mycobacteria and the increasing prevalence of NTMI in
immunocompetent as well as immunocompromised humans.
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