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Abstract

Background: Tuberculosis (TB) is the major cause of death in Human Immunodeficiency Virus (HIV)-infected
individuals. However, diagnosis of TB in HIV remains challenging particularly when HIV infection is advanced.
Several gene signatures and serum protein biomarkers have been identified that distinguish active TB from
latent infection. Our study was designed to assess if gene expression signatures and cytokine levels would
distinguish active TB in advanced HIV.

Methods: We conducted a case-control study of whole blood RNA-Seq and plasma cytokine/chemokine analysis in
HIV-infected with CD4" T cell count of < 100 cells/ul, with and without active TB. Next, the overlap of the differentially
expressed genes (DEG) with the published signatures was performed and then receiver operator characteristic (ROC)
analysis was done on small gene discriminators to determine their performance in distinguishing TB in advanced HIV.
ELISA was performed on plasma to evaluate cytokine and chemokine levels.

Results: Hierarchical clustering of the transcriptional profiles showed that, in general, HIV-infected individuals with TB
(TB-HIV) clustered separately from those without TB. IPA indicated that the TB-HIV signature was characterized by an
increase in inflammatory signaling pathways. Analysis of overlaps between DEG in our data set with published TB
signatures revealed that significant overlap was seen with one TB signature and one TB-IRIS signature. ROC analysis
revealed that transcript levels of FcGRTA (AUC = 0.85) and BATF2 (AUC = 0.82), previously reported as consistent single
gene classifiers of active TB irrespective of HIV status, performed successfully even in advanced HIV. Plasma
protein levels of IFNy, a stimulator of FCGRIA and BATF2, and CXCL10, also up-regulated by IFNy, accurately
classified active TB (AUC = 0.98 and 091, respectively) in advanced HIV. Neither of these genes nor proteins
distinguished between TB and TB-IRIS.

Conclusions: Gene expression of FCGRIA and BATF2, and plasma protein levels of IFNy and CXCL10 have the potential
to independently detect TB in advanced HIV. However, since other lung diseases were not included in this study, these
final candidates need to be validated as specific to TB in the advanced HIV population with TB.
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Background

Tuberculosis (TB) is the leading cause of death in HIV-
infected persons. The majority (74%) of TB-HIV coin-
fected persons reside in Sub-Saharan Africa [1]. Overall,
HIV-infected are 20—30 times more likely to develop ac-
tive TB than those without HIV infection, with an an-
nual risk as high as 5-15% per year [2, 3]. The transition
from latent TB infection (LTBI) to active disease in HIV-
infected depends on host immunity and on the level of
immunosuppression [4, 5]. The CD4" T cell count is
only an approximate measure of the degree of
immunosuppression at the population level and thus an
inaccurate marker of the likelihood of reactivation in a
HIV-infected host [6—8].

Along the spectrum of infection, individuals with
asymptomatic active disease (subclinical TB) [9] are
clinically unrecognized and often progress to active
symptomatic TB disease [10]. In a high prevalence set-
ting, 8.5% of asymptomatic, HIV-infected persons had
positive sputum cultures for Mycobacterium tuberculosis
(Mtb) [11]. Even when sputum culture is used to exclude
active TB, asymptomatic cases may be misclassified par-
ticularly in the immunosuppressed where disseminated
disease may predominate [12]. HIV-infected with occult
TB are at risk of unmasking TB-IRIS, which has signifi-
cant morbidity and mortality [7, 13]. Therefore, new
approaches to the diagnosis of TB in this group are
imperative.

Transcriptional profiling studies have identified several
different biosignatures that can differentiate active TB
from LTBI [14-20] and from other related inflammatory
diseases [16, 17, 21]. Two of these, the 27-gene signature
identified in the study by Kaforou et al, [16], and the
251-gene signature reported by Dawany et al., [22], per-
formed well even in HIV-infected individuals. The bio-
signatures derived from these multiple cohorts do not
show significant overlap. However, publically available
databases provide a wealth of material for meta-analysis
and derivation of a biomarker signature that can poten-
tially function across cohorts. Using this approach, a tar-
geted Real Time-PCR (RT-PCR) array was designed by
Maertzdorf and colleagues [23] based on two of their
microarray datasets [24, 25] and then applied to a new
cohort from India. This strategy generated a 4-
biomarker set (GBP1, IFITM3, P2RY14 and ID3) that
performed satisfactorily even in HIV-coinfected individ-
uals. Subsequently, a 3-gene set consisting of GBPS,
CD64 and GZMA was identified that accurately sepa-
rated TB from OPD (other pulmonary diseases) [26].
Other studies have shown that CD64, FcGRIB and LTF
are differentially expressed in TB versus other lung dis-
eases [17, 27, 28]. Another meta-analysis [29], using a
total of 14 datasets identified a different set of three
genes (GBP5, DUSP3, and KLF2) that were highly
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diagnostic for active tuberculosis in HIV infected and
uninfected populations. Validation studies confirmed
that this 3-gene set separated active tuberculosis from
healthy controls, latent tuberculosis and other diseases.
The usefulness of this gene set in monitoring treatment
response is under-scored by the observation that the
expression of the 3-gene set declined during treatment
of patients with active tuberculosis [29]. In another
multi-site study [30], a targeted approach was used to
validate genes identified in single-site populations. This
study found that FcGRIA was the most reliable classifier
of active TB and its expression was not confounded by
HIV status or ethnic background. The performance of
FcGRIA was not compromised even in advanced HIV
[30]. Similarly, another recent study analyzed new and
previously published data on blood transcriptional pro-
files and found that elevated transcript levels of BATF2
can also robustly discriminate active TB from healthy
controls [31]. However, the study found elevated BATF2
levels even in the absence of TB in HIV negative individ-
uals who presented with various other infectious dis-
eases. The authors concluded that BATF2 transcript may
have better value as a test for ruling out TB. We there-
fore tested the accuracy of FcGRIA, which was not con-
founded by HIV status, and BATF2, which had better
negative predictive value for TB, in discriminating active
TB in the context of coinfection with HIV.

Biomarkers for tuberculosis have also been identified
through serum proteomic profiles. A comparison of TB
cases to healthy controls identified fibrinogen degrad-
ation product (FDP) [32] and Orosomucoid (ORM) as
potential biomarkers [33]. Another study found that
levels of serum amyloid A, transthyretin, C-reactive
protein, and neopterin discriminated patients with TB
from other respiratory disorders (ORD) and inflamma-
tory diseases [34]. In comparison to LTBI and ORD,
serum samples from TB patients expressed a biomarker
panel of 8 proteins [35]. This study also found that in
the HIV coinfected TB patients, the composition of the
host protein biomarker panel was slightly different and
consisted of 10 host proteins [35]. Other metabolomic
profiling studies have also provided additional bio-
marker panels that discriminate TB patients from
healthy controls [36-38]. In a recent study using
Somascans, an aptamer-based proteomic platform, De
Groote and colleagues measured over 4000 host pro-
teins and identified a 6-marker signature for active TB
that included SYWC, kallistatin, C9, gelsolin, testican-
2, and aldolase C [39].

Thus, the aim of this study was to determine if gene
expression signature and plasma protein biomarkers
would distinguish active TB in severely immunosup-
pressed TB-HIV participants prior to initiation of TB
treatment or anti-retroviral therapy (ART).
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Methods

Study design and participant recruitment

Inpatients from Mulago National Tertiary Referral Hospital
and outpatients from the Infectious Diseases Institute at
Makerere University College of Health Sciences with sero-
logically confirmed HIV-1 infection, who were > 18 years
of age with a CD4" T cell count <100 cells/uL, were
recruited to a prospective cohort study between March
and December 2013. The participants were included on
the basis of a CD4" T cell count documented in the chart.
CD4" T cell counts were rechecked at baseline for 2
participants, and were found to be slightly above 100 cells/
ul. They were still included in the study. A targeted
medical history as well as socio-demographic information
was collected. Patients were systematically screened for TB
at the Infectious Diseases Institute. HIV status was gath-
ered either from the patient’s chart or was retested, if un-
known. During follow-up, the one participant who was
HIV positive, on ART and developed TB was reclassified as
such. None of the included patients had any other docu-
mented opportunistic infection. Participants were assigned
to one of 3 groups: new diagnosis of smear-positive or
microbiologically confirmed TB and ART-naive; smear or
microbiologically-confirmed TB within 180 days of initiat-
ing ART (unmasked TB); no signs or symptoms of TB and
ART-naive. Participants were excluded if they had received
more than 2 days of anti-TB medication within the previ-
ous 60 days. Blood samples were only collected at baseline.
Participants were only followed to determine 6 month out-
come and to verify that they did not have unmasking TB
or immune reconstitution inflammatory syndrome (IRIS).

Blood sample collection and processing

Whole blood was collected into PAXgene Blood RNA
tubes (supplied by Qiagen, catalog # 762125) and plasma
was frozen at — 80 °C at the time of enrollment. Whole
blood was also collected into Becton Dickinson vacutai-
ner acid citrate dextrose (ACD) tubes for collection of
peripheral blood mononuclear cells (PBMC). PAXgene
Blood RNA tubes were stored at —80 °C and PBMC
were stored in liquid nitrogen until further use.

RNA sequencing (RNA-Seq) and data analysis

RNA was isolated from whole blood using the PAXgene
Blood RNA Kit (Qiagen, catalog # 762164). Total RNA
input was amplified using MessageAmp™ II aRNA Ampli-
fication Kit (ThermoFisher Scientific). 100 ng of amplified
RNA was used to prepare the library. Following standard
instructions for fragmentation, purification, 3° and 5’
adapter ligation and reverse transcription, PCR amplicons
were purified using AMPure XP beads and the library was
quantified. This library was used for RNA Sequencing on
[lumina Hiseq2500. On average 49-50 million basepair
(bp) reads were produced per sample. Quality check of
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reads was performed with the software FastQC. Low
quality reads and adapters were trimmed with Cutadapt
[40]. Trimmed reads were mapped to the human genome
GRCh38/hgl9 with STAR [41], and the expression level
for each gene was counted with HTSeq [42] according to
gene annotations from Ensembl. The Bioconductor DESeq
package in R [43] was used to normalize the counts and
call differential expressions. Principal Component Analysis
(PCA) was used for data visualization. Hierarchical
clustering was performed with the gplots package in R.
The ROC curve was plotted with the pROC package in R.
Functional and network analyses of differentially
expressed genes were performed using Ingenuity Pathway
Analysis (IPA, Ingenuity Systems, https://www.qiagen-
bioinformatics.com/products/ingenuity-pathway-analysis/,
Redwood City, CA).

Multiplex immunoassays

Pre-coated 10-spot MULTI-SPOT® plates with capture
antibodies were purchased [catalog # K15054D-2;
Meso Scale Discovery (MSD), Rockville, MD, USA].
The assays are based on the principle of electroche-
miluminescence (ECL) sandwich ELISA. Briefly,
plasma samples were centrifuged for 20 min at
2000 g and diluted 2-fold for cytokine analytes and 4-
fold for chemokine targets prior to using. Calibrator
controls, detection antibody mix and read buffer were
prepared as per manufacturer’s instructions. The pre-
pared samples and calibrators were added to the
plates and incubated overnight at 2—-8 °C. Plates were
then washed and incubated with detection antibody
solution at room temperature with shaking for 2 h.
After washing, 2X Read Buffer was added to each
well and plates were analyzed on MESO Quickplex
SQ120. The calculations to establish calibration
curves and determine analyte concentrations were
carried out using the MSD DISCOVERY WORK-
BENCH? analysis software. Protein levels of IFN-y, IL-
6, IL-8, TNF-a, Eotaxin, MCP-1, MCP-4, MIP-1aq,
MIP-1B, CCL17, IL-12/IL-23p40, IL-15, IL-16, IL-17A,
VEGF and CXCL10 were assessed. The software gen-
erated calibration curves by fitting the signals from
the calibrators to a 4-parameter logistic model with a
1/Y2 weighting. Analyte concentrations were deter-
mined from the ECL signals by back-fitting to the
calibration curves.

Statistical analysis

Descriptive statistics were used to characterize the study
population. Patient baseline characteristics were com-
pared by Fischer's exact for categorical data and
Wilcoxon rank sum test for continuous variables. Non-
parametric analysis of plasma cytokine levels was done
using Mann Whitney U-test.
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Results

Participant demographics and baseline characteristics
Sixteen HIV-infected participants with smear (+) or
microbiologically confirmed TB (TB-HIV), 15 HIV-
infected participants (HIV) that had no clinical symp-
toms of TB and 2 TB-HIV participants undergoing treat-
ment with ART (unmasked TB) were studied. Table 1
shows the demographic characteristics and outcomes for
32 participants, except for one TB-HIV for whom data
was not available. Most of the study subjects had a
CD4" T cell count <100 cells/pl. Greater than 90% of
participants with HIV alone were reported alive after
6 months from their initial admission, but almost 60%
participants with TB-HIV diagnosis did not survive; 5 of
the 16 TB-HIV died within 16 days of enrollment. None
of the HIV-infected (no TB) had been treated with ART
prior to study. Blood samples were collected prior to
start of TB treatment in all participants, except one pa-
tient who had received 2 days of TB treatment.

Distinct blood transcriptional profile distinguishes TB and
HIV coinfected from HIV alone

Whole blood RNA-Seq analysis was performed on all 33
participants. Hierarchical clustering of the transcrip-
tional profiles based on logarithmic plotting of normal-
ized counts showed two clustering patterns that were
non-random, that is, within cluster variance looks
smaller than between cluster variance (Fig. 1a). The top
50 DEG are listed in Additional file 1: Figure S1. Differ-
ential expression of genes between TB-HIV and HIV is
reported in the volcano plot (Fig. 1b). Eleven of the 16
HIV participants with active TB (TB-HIV) clustered sep-
arately (Cluster 1) from HIV-infected participants (HIV)
that were asymptomatic, with no clinical or microbio-
logical evidence of TB (Cluster 2). The remaining 5 TB-
HIV segregated with Cluster 2 and the 3 HIV segregated
with Cluster 1. The 2 TB-HIV being treated with ART
also segregated with Cluster 1 (Fig. la). The data were

Table 1 Demographic Characteristics and Participant Outcomes
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further analyzed using PCA. Consistent with the heat
map, plot of PC1 vs. PC2 also corroborated that the par-
ticipants segregated into two main groups (Fig. 1c). The
11 TB-HIV and 3 HIV that belonged to Cluster 1 in the
global expression analysis also segregated as one group
by PCA and included the 2 TB-HIV that had previously
received treatment with ART and then developed
unmasked TB. Additionally, both clustering and PCA re-
sulted in the same 5 TB-HIV patients separating out
from the majority grouping of TB-HIV patients (Fig. 1c).
Although some participants with TB-HIV did not sur-
vive, PCA and RNA-Seq patterns seen previously were
not indicative of a mortality-related clustering (Fig. 2).
Of note, the only subject that died in the HIV group was
in fact one of the 3 HIV that segregated with Cluster 1.

Data mining using IPA reveals enrichment of innate
inflammatory pathway genes in TB-HIV coinfected
participants

Network, function, and pathway analyses were gener-
ated using IPA (Qiagen). Differential expression gene
list comparing TB-HIV samples to HIV only, with p-
value <0.01 and a log fold change greater than 2, was
generated and uploaded to IPA. Analysis showed that
the top five canonical pathways contributing to over-
expression of genes related to the following signaling
pathways: Role of Macrophages, Fibroblasts and
Endothelial Cells in Rheumatoid Arthritis; IL-10, p38
MAPK and TLR signaling, Hepatic Fibrosis/Hepatic
Stellate Cell Activation (Table 2). Predicted upstream
regulators of this signature were IL-1, Immunoglobu-
lin, PGR, lipopolysaccharide, CSF2 (Table 2). The top
five canonical pathways contributing to down-
regulated expression of genes related to EIF2, Primary
Immunodeficiency, B cell development, Granzyme A
and Regulation of elF4 and p70S6K signaling path-
ways (Table 2). Predicted upstream regulators of these
pathways were IL-15, MYCN, Alefacept (a genetically

Total® TB-HIV HIV p-value

(n =32 (n=17) (n=15)
Female 62% (20/32) 47% (8/17) 80% (12/15) 0.081
Median Age (range) 32 [18-53] 30 [18-52] 36 [24-53] 043ANA
Initial CD4™ (cells/pL) 50 [4-105]° 23 [4-105] 67 [11-96] 0.15AA
Time to ART start (days) 14 [6-80]° 14.5 [12-80] 12 [6-51] 0.08AN
IRIS 20% (5/25) 45% (5/11) 0% (0/14) 0.13A
Alive at 6 months 75% (24/32) 59% (10/17) 93% (14/15) 0.03A

“Demographic data available for 32 study participants. Whole blood RNA-Seq analysis done for 33 participants
PThe initial CD4 count for 2 participants was 103 and 105 cells/ul; however when repeated for the study, the counts were less than 100 cells/pl

€19 observations
Ap-value calculated by Fischer’s exact
AAp-value calculated by Wilcoxon rank sum test

Age given is median age, range is entire range of ages. CD4" range is entire range of CD4" T cell counts
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Fig. 1 Global expression analysis of RNA-Seq data shows two main clusters. Heatmap of top 10,000 differentially expressed genes from RNA-Seq
data. RNA-Seq was performed on whole blood samples from 16 TB-HIV, 15 HIV and 2 TB-HIV on ART. Dendrograms represent unsupervised hierarchical
clustering of samples. Expression scale is log2 of normalized counts. TopHat and Cufflinks algorithmic tools were used for comprehensive expression
analysis of high-throughput RNA-Seq data. Red * indicates the 2 TB-HIV subjects on ART that developed IRIS and black * indicates other subjects with
TB-HIV RIS (a). Differential gene expression seen in the Volcano plot represents participants with TB-HIV (including 2 TB-HIV on ART) vs. HIV only, from
the RNA-Seq data. The x-axis is log2 of the fold change of TB-HIV vs. HIV only. The y-axis is log odds of the FDR adjusted p value (b). PCA plot of PC1
vs. PC2 of RNA-Seq data of TB-HIV including those that received ART (Blue) and HIV only (Magenta) (c)

-50

engineered anti-inflammatory drug), T Cell Receptor
and lipopolysaccharide (Table 2).

Overlap of differentially expressed genes in TB-HIV versus
HIV with existing TB signatures

A 27 [16] and a 251-gene [22] signature have been re-
ported to accurately segregate TB-HIV coinfected from
HIV only. We therefore tested whether the 749 differen-
tially expressed genes in our dataset overlapped signifi-
cantly with published gene signatures. As shown in
Table 3, there was significant overlap with the 27-gene
signature, however significant overlap was not observed
with the 251-gene signature. IPA pointed to an enrich-
ment of innate inflammatory pathway genes in TB-HIV
coinfected participants in our cohort, similar to that re-
ported by Lai et al. [44]. Here, a 43-transcript signature
characterized by innate Toll-like receptor and inflamma-
some signaling predicts the development of immune re-
constitution inflammatory syndrome (IRIS) in TB-HIV
[44]. We found that the DEG that were over-expressed

in Cluster 1 had significant overlap with this 43-
transcript signature (Table 3). We also found significant
overlap with the 16-gene blood transcriptional signature
that predicts risk of progression to TB disease [45].

Cytokine levels in plasma

IPA predicted up-regulated expression of innate inflam-
matory genes in TB-HIV. We therefore quantified the
levels of 16 pro-inflammatory mediators in the plasma
of TB-HIV and HIV to determine if a cytokine/chemo-
kine signature would distinguish the two groups. Signifi-
cantly higher levels of IFNy and CXCL10 were seen in
TB-HIV compared to HIV (p < 0.0001) (Fig. 3a and d).
IL-6, IL-8 and TNF were also significantly up-regulated
in the TB-HIV (p < 0.0001) (Fig. 3a). Levels of key
leukocyte chemotactic agents MIP-1a and MIP-1 were
up-regulated as well in TB-HIV, compared to those with
HIV only (Fig. 3b). Interestingly, the 3 HIV-infected par-
ticipants whose transcriptional profile was different from
the others with HIV alone exhibited pro-inflammatory
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Fig. 2 Absence of mortality-related clustering by PCA. Plot of PC1 vs.
PC2 of RNA-Seq data shows participants with TB-HIV including those
that received ART (Blue) and HIV only (Magenta). Blue solid circles
are TB-HIV subjects that were alive after six months of enrollment,
whereas blue crossed circles show TB-HIV participants that succumbed
to infection. Magenta solid circles and crossed circles are representative
of HIV subjects alive and not alive after six months, respectively

cytokine levels equivalent to the other HIV-infected pa-
tients (Fig. 3). Also noteworthy were the 5 TB-HIV par-
ticipants that clustered away from the parent TB-HIV
Cluster 1 in RNA-Seq, yet showed cytokine levels com-
parable to their parent group (Fig. 3). Together, these
data indicate that: i) soluble markers of immune activa-
tion are elevated in TB-HIV compared to HIV and ii)
the TB-HIV and HIV who did not segregate with their
fellow members in their transcriptional profile, nonethe-
less had cytokine profiles similar to their fellow mem-
bers. Although there were no biases due to gender, age
or other evaluated parameters, it was not clear why
some samples were misclassified in RNA-Seq.

FcGR1A and BATF2 transcript levels, and IFNy and CXCL10
plasma protein levels singly classify active TB

A successful diagnostic test requires minimal number
of markers, and consequently several studies have
pursued this goal to come up with 3—-10 genes as suf-
ficient for successfully classifying active TB from
controls [20, 23, 29]. As shown in Table 4, we ob-
tained AUC scores for these signatures to determine
how well they would perform in discriminating TB in
advanced HIV. The AUC score for the 3-gene
transcriptional signature from the study by Sweeney
et al. [29] was 0.89. The 4-gene signature from the
Maertzdorf study [23] and the 10-gene signature from
the Sambarey study [20] performed well, with AUC
scores of 0.91 and 0.92, respectively (Table 4).
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FcGRIA is part of the discriminatory gene set in a
number of biomarker studies [14, 15, 46] and as a single
marker it fairly discriminates active TB from latent infec-
tion regardless of HIV status or genetic background [30].
Given that FcGRIA is differentially expressed in our
study between TB-HIV and HIV (Fig. 4a), we performed
ROC analysis to determine if FcGRIA was also a good
classifier of active TB in advanced HIV. We found
that FcGRIA correctly classified 85% of the patients
[AUC = 0.85; 95% CI: 0.7095-0.9905] (Fig. 4b). A recent
report found BATF2 transcript was also an accurate classi-
fier of active TB in both HIV-uninfected and infected indi-
viduals [31]. In our advanced HIV cohort, BATF2
transcript levels discriminated active TB with an AUC
score of 0.82 [95% CI: 0.6642—0.9692] (Fig. 4a and c).

[FNy is a potent stimulator of FcGRIA and BATF?2 ex-
pression and its protein levels are significantly upregu-
lated in TB-HIV (Fig. 3). We therefore obtained ROC
AUC of 0.98 for the diagnostic potential of IFNy protein
expression in our dataset [95% CI: 0.9402-1] (Fig. 5a).
Next, we also performed similar ROC analysis to deter-
mine the performance of CXCL10 since its plasma levels
were upregulated in TB-HIV (Fig. 3) and its expression is
also induced by IFNy. CXCL10 accurately classified
TB with an AUC score of 091 [95% CI: 0.8078-1]
(Fig. 5b).

Development of IRIS

The cohort was followed for 6 months. Five of the TB-
HIV coinfected (including the two that were undergoing
treatment with ART at enrollment) developed IRIS
(Table 1). The participants who developed IRIS segre-
gated with Cluster 1 and had comparable levels of IFNy
and CXCL10 with respect to the TB-HIV cases that did
not develop IRIS (Additional file 2: Figure S2). These
findings indicate that in our cohort, participants with TB
showed a high innate inflammatory signature irrespect-
ive of whether they developed IRIS or not.

Discussion

The significant outcome of this study is the finding that
differential transcript levels of FcGRIA and BATF2 and
protein expression levels of IFNy and CXCL10 robustly
classified active TB in advanced HIV, including the 3
HIV-infected and 5 TB-HIV individuals whose gene ex-
pression pattern was not consistent with their fellow
members. FcGRIA is expressed on most myeloid cells
[47] and it activates a number of effector functions, in-
cluding phagocytosis, antigen-presentation, the produc-
tion of cytokines and reactive oxygen species and
antibody-mediated cellular cytotoxicity (reviewed in
[48]). The study by Sutherland and colleagues [30] found
that FcGRIA could correctly segregate 75% of the HIV
participants into active TB disease or not. In our study,
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Table 2 IPA analysis enlisting top five canonical pathways and upstream regulators in TB-HIV and HIV gene sets

Top pathways (upregulated)

p-value

Overlap

Overlapping Genes

Role of Macrophages, Fibroblasts

and Endothelial Cells in Rheumatoid Arthritis

IL-10 Signaling

p38 MAPK Signaling

Toll-like Receptor Signaling

Hepatic Fibrosis / Hepatic Stellate Cell Activation

Upstream Regulators (upregulated)
Immunoglobulin

PGR

Lipopolysaccharide

CSF2

IL-1

EIF2 Signaling

Primary Immunodeficiency Signaling

B Cell Development

Granzyme A Signaling

Regulation of elF4 and p70S6K Signaling

Upstream Regulators (downregulated)
MYCN

Alefacept

TCR

Lipopolysaccharide

IL-15

6.01E-06

3.24E-05

5.71E-05

3.68E-04

5.09E-04

p-value of overlap

1.51E-13
3.23E-08
4.31E-08
4.81E-07
4.98E-07
3.40E-08

6.06E-06

1.67E-04

6.82E-04

7.64E-04

p-value of overlap

2.72E-09
5.84E-08
2.59E-06
2.89E-06
9.25E-06

6.3% (18/287)

11.8% (8/68)

8.5% (10/117)

9.6% (7/73)

6.1% (11/181)

7.5% (13/173)

13.6% (6/44)

14.8% (4/27)

17.6% (3/17)

4.9% (7/143)

SOCS3,ICAM1,TLR8,CEBPD,
IRAK3,ILTRT,

CREBS,

PDGFC,

FCGR1A,

ILT8R1,

ILT8RAP,

ILTR2,FOS,
NFKBIAMAPK14,TLR5,TLR1,TCF7L2

ILTR2,FOS,
SOCS3,
IL4RNFKBIA,
MAPK14,IL1R,
IL18RAP

ILTR2, MAPK14,TIFA,DUSP1, MKNKT,
IRAK3,ILTRT,

CREBS,

ILT8RAP,

HSPB1

FOS,NFKBIAMAPKT,TLR5,
TLR1,TLRS,
IRAK3

ILTR2,IL4R,

ICAM1,HGF, FGFR1,IGF1R,
COL4A2|ILTR, IFNAR2,
PDGFC,

ILT8RAP

RPS7,RPS6,

RPL4,

RPLP1,

RPL23A,

RPL22L1,
RPL37EIF4A2,
RPL23,RPS17,
RPS4,RPL13ARPST1

RFX5,LCK,
ZAP70,
CDB8AUNG,
IGHD

SPN,CD798,
HLA-DMB,IGHD

PRF1,HTEX,
APEX1

RPS7,RPS6,
EIF4A2,
RPS17,RPS4X,
RPS11,ITGA4
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Table 3 Overlap of DEGs with existing gene signatures
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Gene list source Genes in Signature Overlap with DE genes (Current study) Common Overlap p-value
Kaforou et al. 27 CD79B, DUSP3, FAM20A, FLVCR2, FCGR1A, ANKRD22 6 0.004707
(PMID: 24167453)

Dawany et al. 251 ZNF516, SMAD7, ITGA4, FLVCR2, MSRB2, C90rf91, IFNAR2, [ 06178

(PMID: 24587128) PPBP, ARLAC, GK HLA-DMB

Lai et al. 43 MAPK14, SIPATL2, CDK5RAP2, ANXA3, BCL2AT1, DOK3, 12 5.39E-08

(PMID: 26399326) ACSL1, TPST1, PFKFB3, BASP1, GPR97, TLR5

Zak et al. 16 FCGR1A, ANKRD22, BATF2 3 0.0001189

(PMID: 27017310)

FcGRIA performed better by correctly classifying 85% of
the advanced HIV participants. Treatment of TB results
in a significant reduction of FcGRIA expression [49]
suggesting that monitoring FcGRIA may provide a use-
ful tool to monitor treatment response in advanced HIV.

Basic leucine zipper transcription factor ATEF-like
(BATF) 2, is a transcription factor that belongs to the ac-
tivator protein 1 family of transcription factors and con-
tains the basic leucine zipper domain. BATF2 mediates
pro-inflammatory responses by associating with Inter-
feron regulatory factor 1 (IRF1). Of note, BATF2 gene
expression is induced by type I IFNs [50] and by LPS,
IFNy and Mtb in macrophages [51]. Based on data from

multiple study cohorts, Roe and colleagues proposed the
application of BATF2 as a robust discriminator of active
TB from healthy individuals [31]. Their study also dem-
onstrated that the classification accuracy was not com-
promised by HIV infection. Performance of BATF2 in
our cohort (AUC 0.82) was equivalent to that reported
by Roe et al. (AUC 0.84).

Expression of FcGRIA is induced by IFNy [52] and
consistent with this we found IFNy levels to accurately
segregate TB-HIV patients from HIV. In the seminal
study of O’Garra and colleagues [14], an IFN signature
was associated with TB. However, it was surprising to
see a strong IFNy response in patients with CD4"
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Fig. 3 Increased levels of inflammatory mediators in plasma of TB-HIV. Plasma samples from 31 participants were analyzed for cytokines and
chemokines using a multi-analyte detection system (Meso Scale Discovery, Rockville, MD, USA). Plasma samples from 1 individual from each of
the TB-HIV and HIV were not available. Data is represented as absolute value for each participant for a given cytokine or chemokine (a-d).
Significance was determined by Mann Whitney U test. ****p < 0.0001
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Table 4 Receiver Operator Characteristic AUC scores of different signatures to discriminate active TB from controls

Gene list source HIV Genes in signature AUC 95% Cl
Sweeney et al. (PMID: 26907218) yes DUSP3, GBPS5, KLF2 0.89 0.771-1
Laux de Costa et al. (PMID: 26025597) no GBP5, FcGR1A, GZMA 0.87 0.7575-1
Maertzdorf et al. (PMID: 26682570) yes GBP1, IFITM3, P2RY14, ID3 091 0.8001-1
Sambarey et al. (PMID: 28065665) no FCGR1TA, HK3, RAB13, RBBPS, IFI44L, 092 0.8453-1

TIMM10, BCL6, SMARCD3, CYP4F3, SLPI

counts <100. Other innate cell types, including y6 T
cells and NK cells secrete IFNy during TB infection
(reviewed in [53]). It would be interesting to investigate
the cell type(s) producing IFNy in advanced HIV since it
may provide opportunities for developing flow
cytometry-based diagnostic tools. Even if the specificity
of such an assay is low, it would serve as a potential
point-of-care triage test. CXCL10 is selectively up-
regulated in TB pleural effusions compared with ma-
lignant effusions [54—56] and in lateral flow based
test it showed promise as a diagnostic tool for pleural
TB [57]. CXCL10 is also one of the seven-marker
serum protein biosignature for the diagnosis of active
TB disease in African primary healthcare clinic
attendees with signs and symptoms suggestive of TB

[58]. In our study plasma levels of CXCL10 accurately
classified TB in 91% of the TB-HIV patients, indicat-
ing the potential of this analyte as a diagnostic
biomarker.

A study from Lai and colleagues found a consistent
over-abundance of 43 genes encompassing innate im-
mune mediators of the TLR and inflammasome signaling
pathways in TB-IRIS participants, 2 weeks before they
developed IRIS when compared to non-IRIS controls
[44]. It is not clear why the TB-HIV participants in our
cohort who did not progress to IRIS also had a high
innate inflammatory signature. One possibility is the
timing of the blood sample collection for transcripto-
mics. The blood samples in our study were obtained
from participants prior to anti-TB treatment, whereas in
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Fig. 4 Classification of active TB in advanced HIV using FcGRTA and BATF2. Normalized counts obtained from RNA-Seq analysis for all 33 participants
are plotted for FCGRTA and BATF2 (a). Green open circle is representative of sample from one TB-HIV participant, who segregated with Cluster 2 and
also developed IRIS (a). ROC AUC score for each target was obtained using the pROC package in RFunctional (b and ¢)
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the Lai study [44] they were collected following approxi-
mately 1 month of anti-TB therapy. Given that even 2
weeks of anti-TB treatment is sufficient to significantly
down-modulate the TB gene signature [59], the baseline
samples collected prior to ART, but post anti-TB treat-
ment, from TB-HIV coinfected participants may have a
lower expression of inflammatory genes. Therefore in
the Lai study, using these baseline samples as compara-
tor, the increase in inflammatory genes associated with
TLR and inflammasome signaling could be detected as
early as 0.5 week following ART in only those progres-
sing to IRIS. The mechanisms leading to enhanced in-
flammation in untreated TB versus in those developing
IRIS may be different, but since the mediators of inflam-
mation are non-specific, the gene signature for TB in
the HIV-infected and that for IRIS may overlap. Thus,
our findings would suggest that use of gene transcript
sets as biomarkers for predicting IRIS should take into
account the TB treatment status of the TB-HIV subjects.

Although the sample size in this study is small, none-
theless, pathway analysis (through IPA) of the transcrip-
tional data provides a few clues to the underlying
mechanisms leading to the enhanced inflammatory
response in the TB-HIV group. For example, TLR signal-
ing, p38 MAPK signaling and role of macrophages,
fibroblasts and endothelial cells in Rheumatoid Arthritis
were some of the top upregulated pathways. Interleukin-
1B, one of the upregulated upstream regulators is clearly
essential for anti-mycobacterial immunity but excessive
amounts of the cytokine is pro-inflammatory and can
cause tissue damage (reviewed in [60]). Granulocyte-
macrophage colony-stimulating factor (GM-CSE), also
referred to as colony-stimulating factor 2 (CSF2),
another upregulated upstream regulator, also contributes
to anti-mycobacterial immunity [61]. However, in the

context of autoimmune disease, GM-CSF is a strong
inducer of tissue inflammation and plays a critical role
in disease progression (reviewed in [62]). EIF2 signaling
and primary immunodeficiency signaling were the top
downregulated pathways. Phosphorylation of Eukaryotic
initiation factor 2 (elF2) is activated by diverse stress re-
sponses and results in repression of global translation,
except for the translation of select genes, including
ATF# (activating transcription factor 4). ATF4 is a mas-
ter regulator of the integrated stress response [63, 64].
Interestingly, treating macrophages with the drug Gua-
nabenz increased the phosphorylation level of elF2a and
resulted in elevated mRNA levels of IL-6 and GM-CSF
[65]. This leads to the conjecture that the decreased
EIF2 signaling may be related to the enhanced inflam-
matory response seen in TB-HIV. Granzyme A signaling
was another downregulated pathway. Since Granzyme-A
is expressed by NK cells and CD8" cytotoxic T cells and
is a tryptase that induces a caspase-independent cell
death [68], its downregulation is suggestive of functional
defects in the two immune cell types. Alefacept, is a dimeric
fusion protein made up of the extracellular CD2-binding
portion of the human leukocyte function—associated anti-
gen 3 (LFA-3) linked to the Fc portion of human IgG1 [66].
Alefacept preferentially targets CD4" and CD8" effector
memory T cells [66] and therefore in the context of HIV
fits as one of the upstream regulators that was found to
be downregulated. IL-15, a cytokine critical for NK cell
proliferation and memory CD8" T cell development, was
another upstream regulator that was downregulated [67].
Overall, the IPA data point to upregulated and
downregulated pathways as well as regulators that could
together result in increased inflammation in TB-HIV. This
is further reflected in the increased levels of inflammatory
biomarkers in plasma.
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Conclusion

Overall, we found that plasma protein levels of IFNy and
CXCL10 and gene expression of FcGRIA and BATF2 have
the potential of independently detecting TB in advanced
HIV. However, a limitation of this study is the small sample
size and lack of inclusion of other relevant “conditions” in
HIV-infected. Future endeavors should include other in-
flammatory and infectious diseases. Additional focus should
be given to longitudinal cohort studies to determine
whether measure of FcGR1A, BATF2, IFNy and CXCL10
could be developed into an accurate and rapid diagnostic
test for subclinical TB disease in advanced HIV, particularly
in countries where both infections are endemic.
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Additional file 1: Figure S1. A heatmap of top 50 genes differentially
expressed between TB-HIV and HIV. Heat map showing differential gene
expression of top 50 genes using largest value of adjusted fold change
and p = 0.01 in TB-HIV as compared to HIV-only group. The x-axis is log2
of the fold change between the two groups. The y-axis is log odds of the
FDR adjusted p value. (PPTX 297 kb)

Additional file 2: Figure S2. Progression to IRIS does not alter plasma
cytokine/chemokine levels in TB-HIV participants. Plasma samples obtained
from TB-HIV and TB-HIV with IRIS were analyzed for cytokines and
chemokines using the Meso Scale Discovery 30-plex multi-analyte detection
system. Data is represented as absolute value for each participant for a given
cytokine or chemokine. Significance was determined by Mann Whitney U
test. (PPTX 121 kb)
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