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We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells
expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's
Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal
microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their
effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear
morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC
proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell
morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial
effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are
exogenously expressed.
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Background & Summary

Bacteria secrete a panoply of effector proteins to manipulate potential host cells, mediating invasion or
attachment, immune evasion and nutrition. In particular, intracellular bacteria often invade non-
phagocytic cells, and then maintain an intracellular niche as they grow and replicate'. The best studied of
these effector secretion pathways are the Type III and IV secretion systems, which operate as molecular
syringes to transfer effector proteins from bacterial cells to target cells’. More recently, the type VI
secretion system has been described as performing a similar role in some pathogens, as well as mediating
inter-bacterial killing and competition®.

Despite some recent advances in the identification of secretion signals and motifs*~’, there remain very
few sequence features that enable robust computational prediction of bacterial effector proteins. This has
led to a need to screen for proteins via their effects upon model hosts. Initially such screens were
performed using libraries of bacterial mutants®’, but this often fails to find all secreted proteins due to
trans-complementation between mutants within a pool, or effector redundancy. More direct approaches
such as expression of putative effector proteins in yeast have been able to find new effectors, place their
effects within host pathways'®!!, and more recently demonstrate the synergy and interactions between
effectors'”. In some cases these observations have been extended to other infection models or mammalian
cell systems'>. However, in yeast the primary readout is growth — whilst this makes screening robust and
cheap, it gives little additional information on which cellular pathways are involved in effector action,
although recently this has been improved with subcellular localisation screening of known secreted
effectors in yeast *. Extending this approach to mammalian cells, we are able to gain more information by
using reporters in pathways of interest, as well as simultaneously imaging a number of cellular
components and cell properties. Using fluorescently-tagged bacterial proteins also shows the localisation
of specific bacterial proteins within the host cells, offering further insight into their roles and functions. A
similar approach has been recently used for assaying human gene function and has been termed cell
painting'”.

Adherent Invasive Escherichia coli is a bacterium associated with Crohn’s disease, detected much more
frequently within the mucosa of CD patients than healthy controls, and capable of initiating uncontrolled
inflammation following other insults in mouse models'®™'®. Unlike many pathogenic E. coli, it lacks an
identified type III secretion system, but possesses two type VI systems of unknown function. In this study
we aimed to find novel effector proteins from AIEC by screening 224 proteins directly in human cells, by
transient transfection. The resulting perturbations would be monitored and analysed by automated
confocal microscopy of stained cells, and computational image analysis. Since AIEC has a somewhat
unique intracellular lifestyle, distinct from other E. coli isolates'’, each bacterial coding sequence cloned
was selected based upon its absence from other known E. coli pathovars. It is worth noting that the
majority of bacterial effector screens have used proteins known or suspected to be Type III, IV or VI
secreted effectors; since AIEC lacks Type III or IV secretion, we chose to look for proteins absent from
other pathovars as the best proxy for those likely to be associated with the unusual intracellular AIEC
lifestyle.

Links between AIEC and CD, and the known role for autophagy in CD pathogenesis, led us to select
autophagy as our primary screen readout. We used a HeLa cell line expressing an autophagy reporter,
mCherry-LC3 as a model epithelial cell.

To avoid the use of multiple restriction enzyme pairs or proprietary recombination mixes and
associated costs, we cloned each bacterial sequence using a restriction-free, recombinase-based system,
Seamless Ligation in Cloning Extract®”. CDSs were cloned downstream of a monomeric, enhanced-
brightness GFP variant, mEmerald, and under the control of a CMV promoter to drive high levels of
expression. This strategy enabled visualisation of protein localisation. In yeast, GFP fusions have been
shown to enhance effector phenotypes, probably by increasing protein stability'’. In large studies
performed to date, the presence of GFP has not been shown to influence the localisation of the majority
of proteins tested in human cell lines'.

mCherry-LC3 HeLa cells were seeded in 96-well plates and transiently transfected with the fusion
protein library. After 24 h, plates were fixed and stained for DNA and actin, before being imaged by
automated confocal microscopy. Acquired images were then processed by an automated analysis pipeline
using CellProfiler” as outlined in Fig. 1. Transfection controls included empty mEmerald vector
(expressing mEmerald only), GFP-p62 (known to be an autophagy substrate, inducer of aggregates, and
recruiter of the autophagy machinery), and untransfected cells. From this analysis we were able to obtain
information about bacterial protein localisation, autophagy status of the transfected cells, nuclear and
cellular morphologies, co-localisation of GFP and actin, co-localisation of GFP and autophagosomes and
other cellular readouts (Table 1).

This data represents the first examination of eukaryotic localisation and function of the putative
pathovar-unique proteins of AIEC LF82. We identify proteins that locate to specific cell areas, both
cytoplasmic and nuclear. In particular the nuclear-localising proteins may be of great interest, since they
may represent novel factors to manipulate host gene expression, or may themselves be unannotated
bacterial transcription factors. These nuclear-localising proteins also present a number of distinct
morphologies, possibly related to their functions or sub-nuclear tropisms and association with intra-
organelle structures.
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Figure 1. An overview of the image analysis pipeline and the major cellular features measured. A schematic
showing the segmentation of cellular features is shown on the left, corresponding to the steps in the analysis
pipeline shown in the right workflow panel. First nuclei are identified, then cell outlines. Non-transfected cells
(white) are masked (dotted lines), then the subcellular distribution of GFP quantified in radial zones from
nuclear centre to cell edges, as indicated by the mock heatmaps. Finally, autophagosomes (red dots) are
identified and measured.

We would like to encourage re-use and re-analysis of this dataset by others in the field, either to
examine the effects of proteins of interest, or to select potential protein candidates for further studies.
Similarly, we believe there are likely to be other phenotypes of interest that we have not analysed, that
may be revealed by re-analysis of the images. We also show that screening bacterial proteins in human
cell lines is a suitable method to discover both protein localisation (and gain insight into function) and
the effects on host cellular morphology and function. Our supplied workflow and image analysis pipeline
provide a guide and starting point for other investigators wishing to adopt this approach.

Methods

Production of AIEC CDS library

The genome of Adherent Invasive E. coli strain LF82 was compared with six other E. coli strains
(see Table 1) using InParanoid 4.1 (ref. 23). Coding sequences (CDSs) identified as inparalogs between E.
coli strains were removed from a list of LF82 CDSs. This, alongside data from the LF82 genome
annotation and analysis**, was used to create a list of LF§2 CDSs of interest due to their absence from the
comparison strains (Data Citation 1). The genes finally selected had an apparent non-uniform
distribution, with many clustering within likely horizontally-transferred DNA regions, zones of genomic
plasticity or putative phage integrations. In many cases these were also marked by abrupt alterations in
GC content, indicative of recent acquisition. All of these factors confirmed their status as non-core to the
E. coli genome, and thus likely to be of interest in AIEC specialisation and lifestyle. The resulting gene list
had a substantial overlap with that generated by Miquel et al.**. In some places Miquel et al had identified
a region of plasticity or pathogenicity island, and we had selected only some of the genes from such a
region — we chose to include neighbouring ORFs to complete coverage of the island (with island extent
guided by GC content or other markers such as phage genes or tRNAs). As a result of this strategy it is
worth noting that the majority of type VI secretion system genes, the chaperone htrA, fimbrial subunits,
ibeA and ompA/C are not present in the library, due to the presence of closely related genes in the strains
used for comparison. Many of these have been proposed as having virulence roles®>, mostly in bacterial
attachment. Since our screen was for intracellular roles for bacterial proteins, those involved in
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Strain name NCBI accession number
EHEC O111:H NC_013364.1
EPEC O127:H6 NC_011601.1
UPEC 536 NC_008253.1
K12 DH10B NC_010473.1
K12 MG1655 NC_000913.3
K12 W3110 NC_007779.1

Table 1. Strains used for genome comparison with AIEC LF82. Genomes from these strains were used to
filter the LF82 genome to remove genes common to other pathovars or lab strains of E. coli. In this way an
LF82-restricted gene library was created and cloned.

attachment or not thought to be secreted were not added to the library where the initial orthologue
strategy had resulted in their omission. We also cloned 48 genes from LF82 that were present in other
E. coli to serve as a background set. Our rationale was that should a large proportion of the LF82-
restricted library have strong phenotypes when expressed in cells, we would need a control set to compare
to. However, in the final analysis we observed no differences in these gene sets. The 48 non-LF82-
restricted genes are found in Set 3 part 1 and 2, and sequences are given as a separate FASTA file in Data
Citation 1.

Oligonucleotides were designed to amplify and extend each of the CDSs identified, keeping the
endogenous stop codon intact, and replacing variant start codons with ATG. Forward and reverse
primers also each incorporated 18 bp extensions for subsequent second-round PCR using a pair of
common primers. Amplification of CDSs was confirmed via gel electrophoresis. Amplified PCR products
were purified using the QIAquick 96 PCR purification kit (QIAGEN), before being used in a second
round of PCR. The second PCR added 40 bp extensions matching the sequence flanking the EcoRV cut
site of the destination vector. The resulting 50 bp matches to the recombination site allow efficient
directional recombination cloning, and the second PCR significantly reduced the costs of oligo synthesis
by keeping unique oligo pairs below 60 bp. All oligo sequences are available at Harvard Dataverse
Depository (Data Citation 2).

Second-round PCR product was utilised in a Seamless Ligation in Cell Extract (SLiCE) reaction® for
each CDS; reactions consisted of 100 ng EcoRV-HF (NEB) digested pCMV-mEm-4GS vector, 1 pL PPY
extract, 1.2 pL 10x SLiCE buffer and 2 pL purified PCR product, made up to 10 pL with water. After
incubating at 37 °C for 1 h, SLiCE product was used to transform XL1-Blue E. coli, before selecting for
successful transformants on LB-agar containing ampicillin. Successfully transformed XLI1-Blue were
confirmed by colony PCR, grown overnight in deep-well blocks, and subjected to the NucleoBond 96 Xtra
HF midiprep kit (Macherey-Nagel). DNA was quantified spectrophotometrically and normalised for
concentration prior to Sanger sequencing and transfection. All plasmid constructs used in this screen
have been deposited at Addgene and are available for reuse.

Transfection and screening

HeLa-mCherry-LC3 cells were generated by lentiviral transduction of HeLa cells (line CCL2, ATCC) and
cloned by dilution to generate a homogenous population of stable reporter cells. The expanded clone was
frozen as stocks in liquid nitrogen and vials thawed one week prior to screening. HeLa-mcherry-LC3 cells
were grown at 37 °C, 5% CO, in 10 cm tissue culture dishes using DMEM (high glucose, GlutaMAX, and
pyruvate (Gibco)) with 10% iron-supplemented calf serum (Thermo) and 20 pg mL ™" gentamicin, and
were subdivided upon reaching confluence. Immediately prior to transfection cell media was removed
before washing with PBS (without MgCl, and CaCl,) (Sigma-Aldrich) and treating with 500 pL trypsin-
EDTA (PAA). Cells were collected in complete DMEM without gentamycin, enumerated and diluted to
2.5x10° cells mL™".

Reverse transfection was performed by dispensing 125 ng of each plasmid into wells of a 96-well,
black, clear-bottom CELLSTAR Bio-One tissue culture plate (Greiner). 25 uL of Opti-MEM (Gibco) and
0.8 pL of Lipofectamine P3000 reagent (Invitrogen) were mixed, added to each well and incubated for 3
min at 37 °C, 5% CO,. 30 pL of Opti-MEM and 0.3 pL of Lipofectamine 3000 reagent (Invitrogen) were
then added to each well, and returned to the incubator for 10 min. Finally 100 pL of HeLa-mCherry-LC3
cell suspension was dispensed into each well, and plates incubated for 4 h at 37 °C, 5% CO2, after which
medium was replaced with gentamicin-free complete DMEM for overnight incubation. Each plate also
contained control wells transfected with GFP-p62 (as a positive control for cytoplasmic localisation and
formation of LC3 punta), empty pPCMV-mEm-4GS vector, and no-DNA controls. Some untransfected
wells were also treated for 3 h with 200 nM rapamycin (Sigma), 50 mM ammonium chloride (Sigma), or
both. Cells treated with Torin were exposed to 250 or 500 nM Torin for 3 hours, control cells were
exposed to 200 nM rapamycin or DMSO vehicle alone.

Transfected HeLa cells were fixed after 24 hours by removing media and adding 100 pL of 4%
formaldehyde in PBS per well. After 15 minutes, wells were washed with PBS, and PBS containing 0.1%
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File Name Description

MyExpt_Per_AlINuclei.txt Measurements of identified nuclei

MyExpt_Per_autophagosomes.txt Measurements of identified autophagosomes

MyExpt_Per_Image.txt Measurements from each field of view

MyExpt_Per_Transfected_cells.txt Measurements of all cells identified to contain GFP (successfully
transfected cells)

MyExpt_Per_Transfected_cytoplassm.txt Measurements of cytoplasm associated with transfected cells (cytoplasm
defined as the area within the cell outline, excluding the nucleus)

MyExpt_Per_Transfected_Nuclei.txt Measurements of all nuclei associated with transfected cells

Per_Image_data_with_pooled_mEm_controls.txt Same as MyExpt_Per_Image but only for wells G02 and G03 (mEmerald-

only control wells)

Per_Image_mEm_data_added_control_GFP_data_removed.txt Same as above, but with data from wells G10 and G11 removed. Data was
removed due to the transfected vector not encoding GFP (well G10) or as
there was no GFP to detect, as cells were not transfected (well G11).

PerCellData_Cell_Cytoplasm_Nuclei_combined_with_well_and_plate_data_added.txt | Dataset containing individual measurements for all transfected cells,
cytoplasm and nuclei. This dataset was used for most data analysis and
production of graphs. It is a merged dataset, combining
MyExpt_Per_Transfected_cells, MyExpt_Per_Transfected_Cytoplasm, and
MyExpt_Per_Transfected_Nuclei.

Table 2. Image analysis files produced by CellProfiler and subsequently modified for use in data

analysis and figure production. Note that in some files control data has been removed and analysed
separately, before being merged in final combined files. This allowed control wells lacking GFP fluorescence to
be correctly analysed in CellProfiler, and also enabled controls to be pooled across plates to demonstrate the
consistency of the entire screen.

Triton X-100 (BDH) applied to each for 5 min to permeabilise cells. Cells were washed twice with PBS,
and 100 pL PBS containing 1.5nM Hoechst 33342 (Molecular Probes) and 13.2nM phalloidin 647
(Molecular Probes) applied. Plates were incubated for 15 min, the staining solution was removed and cells
washed in PBS. Finally, cells were left to rest in 100 pL PBS at 4 °C until imaged.

High-content image acquisition

Images were acquired with a true point scanning confocal ImageXpress Ultra microscope (Molecular
Devices) with a Nikon 40 x (NA =0.95) air lens using four fluorescence channels at 405 nm, 488 nm, 561
nm and 635 nm excitation wavelengths. Camera binning was set to 2 x 2, giving a nominal pixel size of
0.4 pm. All laser power and other imaging settings were retained throughout the screen to minimise
differences between imaging batches. The one exception were the Torin validation plates which were
captured after laser replacement had taken place. Therefore the absolute intensity values of these,
although captured with the same settings, are not as closely aligned as the rest of the data set.

Six non-overlapping fields of view (arranged in a 2x3 grid) were acquired per well, with sites
containing 100-150 cells each. To avoid inconsistencies in image acquisition in the outer wells of the 96-
well plates, only the centre 60 wells of each plate were used in this screen. Images were acquired in.tiff
format, and were used directly for analysis in CellProfiler.

The screen was performed in two replicates, with replicate transfections, staining and imaging
performed on separate days.

High-content analysis

The CellProfiler pipeline initially identifies successfully transfected cells using the Hoechst, actin, and
GFP channels. The Hoechst channel is analysed for objects between the ranges of 30-150 pixels, using a
Global thresholding strategy and an Otsu thresholding method. The method for distinguishing between
objects was shape, and intensity was used to draw dividing lines between clumped objects. Once
identified, nuclei were used as seeds from which to propagate for the detection of cell outlines in the actin
channel, using an adaptive thresholding strategy and an Otsu thresholding method. Once cells were
identified the intensity of GFP within each cell was then determined, and cells with a mean intensity
below 0.0245, or a median absolute deviation intensity (MADIntensity) below 0.0013, were considered
‘untransfected’. These untransfected cells are removed from subsequent analysis by generating a mask
based upon their actin-derived outlines. The mCherry-LC3 images were processed to enhance local
contrast and allow robust thresholding of autophagosomes. Firstly, these images were processed through
a Tophat filter (disk, element size = 10), to enhance contrast between small speckles (autophagosomes)
and cytoplasmic background. The mCherry images were then masked to hide nuclei, which can contain
large mCherry-LC3 features®?’. Autophagosomes were identified by a per-object thresholding,
background method. Intensity was used to distinguish clumped objects. Transfected cells were then
further analysed and parameters including location of GFP signal intensity, nuclear size and shape, cell
size and shape were calculated (see Table 2 for measurements collected). The image analysis pipeline
described is available online, along with supporting documentation (Data Citation 3).
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Object measurement field

Field description

AreaShape_Center_X or _Y

Coordinates of the object centroid (point farthest from object edge).

AreaShape_Area

Area of an object in pixels.

AreaShape_Compactness

Mean squared distance of object pixels from centroid, divided by object area.

AreaShape_Eccentricity

Eccentricity of an imaginary best-fitting ellipse encompassing the object.

AreaShape_EulerNumber

Number of objects minus number of holes within objects.

AreaShape_FormFactor

4*n* Area/Perimeter”. Equals 1 for a perfectly circular object.

AreaShape_MajorAxisLength
AreaShape_MinorAxisLength

Lengths of long or short axes of the ellipse fitted to object.

AreaShape_MaxFeretDiameter
AreaShape_MinFeretDiameter

Maximum/minimum distances between two parallel tangents drawn touching the object and rotated around
it.

AreaShape_MaximumRadius

The maximum distance of any object pixel to the closest pixel outside of the object.

AreaShape_MeanRadius

Mean distance of an object pixel to the closest pixel outside the object.

AreaShape_Orientation

Angle in degrees between x-axis and major axis of an ellipse that best fits the object.

AreaShape_Perimeter

Total number of pixels forming object perimeter

AreaShape_Solidity

Portion of pixels that are part of the object within the convex hull (minimum shape encompassing entire

object). 1 =no holes or concave boundary, < 1=holes or convex boundary.

Table 3. Parameters used by the MeasureObjectSizeShape module in CellProfiler. These measurements
are produced for every object if so designated in the pipeline. They allow individual objects to be used in
subsequent analysis, or grouped at a per-cell, per-image, or per-treatment level.

Data analysis

Data from CellProfiler was output into an SQL database and subsequently imported into the statistical
programming environment “R”. Graphs and statistical analyses were generated using automated scripts
to obtain, normalise and plot plate data from the entire dataset. In addition as a quality control measure
CellProfiler Analyst was used to obtain plate- and image-level views of selected readouts to control for
data processing errors and check for systematic bias in the data (edge or plate position effects). In R, data
was plotted as boxplots (after Tukey) using ggplot2, and statistical differences determined using the
Wilcoxon-Mann-Whitney test (comparing each test well against control mEmerald-only wells from the
same plate), followed by a Benjamini & Hochberg P-value adjustment to control for multiple
comparisons (functions used were wilcox.test and p.adjust, respectively).

Code availability
The CellProfiler pipeline is publicly available at Harvard Dataverse (Data Citation 3).

Data Records
CDS list
A FASTA file of the LF82 CDSs cloned for the library “CDS_LF82_gene_list.fasta” (Data Citation 1).

Cloning primers

Primer sequences for generation of AIEC CDS clones are given in the file “Library_primers_and_com-
mon_primersv2” (Data Citation 2). This also includes the common primers used to add recombination-
capable extensions.

Screening plate layout

The plate layout for all plates used in the screen is given in the document “Layout of library transfections
in 60 well format.csv” (Data Citation 4). This is provided in a human and machine-readable CSV format
to allow automated annotation of screen data during re-analysis.

Screening images

The complete set of 27,000 images across four fluorescent channels has been deposited in Harvard
Dataverse (Data Citation 5). These are in TIFF format and split by plate as acquired. The data is arranged
by plate in zip files named e.g. “Setl_Partl_Repl”, where Set and Part refers to the clone set (each set is
split across two plates (parts)), and Rep the replicate. Original images are similarly named with the
addition of e.g. “_B03_s1_w2” where the first part refers to the well address, then site within the well, and
finally the imaging channel (wl=DAPI, w2=GFP, w3 =mCherry-LC3, w4 =actin). Set5 contains a
replicate of Set4 with additional controls included (DMSO and Torin).

Image analysis files
For each set of images there are several data files generated by the CellProfiler pipeline. These are
arranged to contain data from different subsets of the analysis (Data Citation 6). Files named _Per_Image
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Figure 2. Autophagy induced by overexpression of GFP-p62 or Torin can be robustly detected. (a)
Quantification of the size of individual autophagosomes per field of view shows larger mCherry-LC3 puncta
upon expression of GFP-p62 compared to mEmerald alone. Samples were compared using the Wilcoxon rank
sum test, n =72 fields of view, representing ~90 transfected cells per view. (b) Induction of autophagy by Torin
is also robustly detected. In a separate experiment mCherry-LC3 cells were transfected with either mEmerald
vector or GFP-p62, or treated with DMSO or Torin. Torin gave a robust level of autophagy induction, with
total area of LC3 puncta per cell increasing above those of mEmerald-transfected cells or those treated with
DMSO alone. Median (red) and quartiles of the entire dataset are shown with the dotted lines. Samples were
compared to mEmerald controls using the Wilcoxon rank sum test, n =24 fields of view per condition,
representing ~90 cells per view. (¢) mEmerald vector-transfected cells show low levels of autophagy as indicated
by mCherry-LC3 puncta. In contrast, expression of GFP-p62 results in intense GFP-p62 aggregation and co-
localisation of GFP-p62 and mCherry-LC3. Treatment of cells with Torin also results in increased numbers of
autophagosomes, but of a smaller size to those seen with GFP-p62 (note that the Torin image is from a separate
experiment, shown in B above). (d) Boxplot representing a single plate (Set2 Partl) showing normalised total
autophagosome area per cell. Boxes represent data for each well between 1st and 3rd quartiles, whiskers span
points 1.5x the inter-quartile range, and dots represent datapoints outside of this range. The autophagy
induction induced by p62 (G09) is marked compared to other proteins. G02 and GO03 represent mEmerald
controls and are pooled from across the entire plate set (thus representing the total variation within the screen).
G11 are untransfected cells. Single-plate-derived median and quartiles are shown with coloured dotted lines.

contain parameters relating to the entire image field e.g. number of cells, total autophagosome area.
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Top 20 correlations between GFP and LC3 in transfected cells
Plate ‘Well name Gene Median correlation Standard deviation
Setl_Partl Co09 LF82_153 293 1.15
Setl_Partl Co8 LF82_152 2.75 1.51
Set3_Part2 F08 LF82_266 2.63 1.03
Set3_Part2 G09 p62 2.61 0.80
Setl_Partl E05 LF82_326 2.57 1.44
Set3_Part2 Co5 LF82_758 2.53 1.26
Set3_Part2 E08 LF82_121 2.50 1.12
Setl_Partl E06 LF82_327 2.46 1.83
Setl_Partl D09 LF82_250 2.44 1.61
Setl_Partl E04 LF82_325 2.40 1.49
Setl_Partl F11 LF82_603 227 1.47
Setl_Partl B08 LF82_091 2.19 1.54
Setl_Partl D08 LF82_248 2.13 1.47
Setl_Partl E09 LF82_355 2.07 1.54
Setl_Partl Fo7 LF82_537 2.05 1.50
Set3_Part2 Co6 LF82_109 2.04 1.39
Setl_Partl E07 LF82_350 2.01 1.34
Set3_Part2 D05 LF82_336 1.99 0.89
Set3_Part2 D04 LF82_0556 1.94 1.44
Setl_Partl F02 LF82_434 1.94 1.53
Setl_Partl E08 LF82_353 1.94 1.29

Table 4. Top 20 correlations between GFP and LC3. As an alternative readout for finding autophagy
substrates/triggers we examined GFP/LC3 correlation. Note that p62 appears close to the top of the list,
validating the approach (since autophagy adapters are known to be preferred substrates for autophagy, and to
recruit LC3 to auto-aggregates). To control for variation in transfection efficiency between DNA constructs we
designed our analysis pipeline to only measure properties of transfected cells exhibiting GFP fluorescence. In
this manner we were able to observe genuine signals induced by bacterial protein expression without being
swamped by background noise from untransfected cells. The threshold for selecting cells as transfected was
determined from samples taken from across untransfected wells, and was designed to use both a median
intensity and mean absolute deviation intensity, to avoid under-selection of cells with either diffuse, or highly
punctate signals. By this measure transfection efficiency ranged between 40-60% for LF82 genes, and 60% for
empty pCMV-mEm-4GS vector. An average of 183 cells were present per site, with 90 successfully transfected
cells for LF82 genes and 112 successfully transfected cells for control well sites.

_Per_Cell_, _Per_Transfected Nuclei and _Per_autophagosomes treat each cell outline, nucleus or
autophagosome as an object, and present the data related to each object. These are described in Table 2.
Object parameters are described in Table 3.

Cell profiler pipeline
The CellProfiler pipeline is also available (Data Citation 3), along with a flow diagram illustrating the
major features and intentions of each step — “CellProfiler_Pipeline_documented.pdf”.

Technical Validation

Library validation and plate identification

The identity and sequence of the clones in the library were verified by Sanger sequencing of clones
following DNA purification. Incorrectly located or incorrectly-sequenced clones were removed and
replaced in the final library plates.

Prior to transfection and imaging, transfection plates were prepared with an internal coding method.
Since the top row of wells are not used in the screen, these were filled with cells according to the following
formula: plate 1, well Al filled; plate 2, wells Al and 2 filled; plate 3, wells Al, 2 and 3 filled. In this
fashion data can be matched unambiguously to a plate even if plates are loaded and imaged out-of-order.
This links the plate images directly to a plate even in the absence of an external plate barcode reader and
barcoded plates.
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Figure 3. Automated localisation of mEmerald fusions. (a) Box and whisker plot showing the fluorescence
intensity of mEmerald-protein fusions within radial zone 1 (nucleus) of transfected cells pooled from 2
replicates of a representative plate. Blue and red stars indicate significant differences from control mEmerald
cells of P < 0.01 and P < 0.05 respectively (Wilcoxon test, Benjamini & Hochberg corrected P values). The final
2 bars represent pooled control wells from the two individual replicate plates as a control for inter-plate
variation. Note that B11 and FO8 represent reduced or increased nuclear localisation, respectively. (b) Box and
whisker plot showing mEmerald fluorescence intensity of radial zone 4 (cytoplasm) of transfected cells. Images
analysed and representation are the same as in A. Note the reciprocal relationship between scores in zones 1
and 4. (c) Representative images of well F08, showing nuclear localisation of the mEmerald-LF82_452 fusion
protein. (d) Representative images of well B11, showing nuclear exclusion and cytoplasmic localisation of
mEmerald-LF82_762.

Quality control of data collection and image analysis

Each plate contained several negative control wells: untransfected cells, and mEmerald-only transfected
cells. In addition, to control for autophagy induction cells transfected with GFP-p62 (known to form
ubiquitinated aggregates, be targeted by autophagy and recruit LC3) were included®®. Cells treated with
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Top 20 fractions of total GFP signal within radial zone 4
Plate Well name Gene Median fraction Standard deviation
Set3_Partl B11 LF82_468 1.69 0.16
Set4 F03 LF82_314 1.67 0.26
Set3_Partl G09 p62 1.66 0.27
Set3_Partl F02 LF82_1175 1.63 0.20
Set2_Partl D11 LF82_259 1.61 0.18
Set3_Part2 Fo8 LF82_266 1.61 0.04
Set3_Part2 E08 LF82_121 1.60 0.05
Set3_Partl E09 LF82_004 1.60 0.20
Set3_Partl C10 LF82_441 1.59 0.04
Set3_Part2 Do6 LF82_347 1.59 0.18
Set3_Partl Fo3 LF82_539 1.59 0.09
Set3_Partl F09 LF82_772 1.59 0.21
Set3_Partl E10 LF82_772 1.58 0.16
Set3_Partl F10 LF82_793 1.58 0.15
Set4 C02 LF82_788 1.58 0.12
Set3_Part2 Cos LF82_758 1.58 0.17
Set3_Partl Co09 LF82_394 1.57 0.04
Set3_Partl Co8 LF82_356 1.57 0.06
Set4 E02 LF82_759 1.57 0.07
Set2_Partl F10 LF82_0557 1.57 0.12
Setl_Part2 E04 LF82_314 1.56 0.17

Table 5. Top 20 proteins with majority of GFP signal within radial zone 4. Radial zone 4 represents the
outermost portion of the cell, thus these proteins localise to the cytoplasm, plasma membrane or other
compartments associated with cell edges. Note that LF82_314 appears twice, due to being replicated between
two sets of plates (Set 1 and Set 4). LF82_772 also appears twice as it is replicated in neighbouring wells of the
same plates. p62 scores very highly — unsurprisingly given its known cytoplasmic localisation.

rapamycin were also included. Plates were assayed in duplicate, with replicates performed on separate
days to avoid batch effects.

To control for total variation in cell-level autophagy across the whole screen, mEmerald-transfected
negative control wells were pooled together across all plates and are presented as “pooled control data”.
This gives an indication of the variability of baseline autophagy in transfected cells across all plates and
replicates.

We found that drug treatment by rapamycin, rapamycin plus ammonium chloride, or ammonium
chloride alone, did not induce measurable levels of autophagy. This is similar to what has been previously
observed with rapamycin being a weak inducer of autophagy under some conditions*”, and in many cases
other drugs such as Torin are now preferred”’. However, expression of GFP-p62 induced robust increases
in the size of individual LC3 puncta (Fig. 2a), and also showed strong co-localisation with mCherry-
LC3-likely representing recruitment of LC3 to p62 aggregates. This positive control was amongst the
highest inducer of autophagic puncta observed in the screen (see Fig. 2d), as well as showing the most co-
localisation between GFP and mCherry-LC3 signals (Table 4). It is worth noting that co-localisation of
GFP and mCherry-LC3 is performed without reference to autophagosome detection by the analysis
pipeline, and thus represents an autophagosome-detection independent measure of autophagosome
localisation to GFP-fusion proteins.

This indicated that the detection of autophagy induction by our imaging pipeline worked, but other
treatments failed to induce sufficient autophagy to be detected by autophagosome number or area
methods. To ensure this was not due to sensitivity problems with the screening approach, we performed
an additional test using cells treated with Torin, DMSO or transfected GFP-p62. In this test we were able
to robustly measure increased total autophagosome area in cells treated with two concentrations of Torin,
confirming that the autophagosome detection pipeline functions as intended (Fig. 2b). This image data is
recorded in Set5.

Validation of localisation and morphology measurements

For other readouts such as localisation information and cellular morphology changes, we selected wells of
interest based upon examination of boxplots generated from the CellProfiler data output. Wells of
interest were notably altered in value distribution to controls, or scored as significantly different by our

SCIENTIFIC DATA | 5:180081 | DOI: 10.1038/sdata.2018.81



www.nature.com/sdata/

statistical testing. We then examined sample images manually to ensure that the pipeline had correctly
scored these features. Examples of two localisation phenotypes are given in Figs 3c-f.

In one case two clones of the same DNA construct were transfected in the same plates - these score
very closely in localisation measurements, e.g. clone LF82_722, set 3, part 1, F9 and E10; median radial
zone 4 scores of 1.59 (s.d. 0.21) or 1.58 (s.d. 0.16). In other cases where DNAs were re-transfected as part
of set 4 to confirm phenotypes they also scored extremely similarly e.g. LF82_314 with median radial
zone 4 scores of 1.67 (s.d. 0.26) (set 1, part 2, E04) or 1.56 (s.d. 0.17) (set 4). A fuller list of radial zone 4
GFP measurements is given in Table 5.

Usage Notes

Raw images in TIFF format are freely available for re-analysis by any capable image processing software,
or for manual inspection. Although acquired with identical imaging settings, some inter-plate
normalisation may be required—-we would recommend using negative control wells (untransfected and
mEmerald-only) to perform data normalisation between plates. Note that Set5 was captured at a different
time, following microscope laser replacements, and so absolute intensity values differ from those of the
other plates as a result.

Data in CellProfiler-generated analysis files is given as CSV text and can be imported into any
appropriate software for re-analysis. These tables can also be correlated with the gene / clone layout
records given above to allow retrieval of specific images or image data.

The original CellProfiler pipeline is also available and we would recommend using this with a small
test set of images to become familiar with the resulting data files and their relationship to the images
before embarking upon large-scale re-analysis, since some of the parameter naming and object vs image
details can be confusing at first glance. Alongside the pipeline is a document including a flow-chart
outlining the steps in the pipeline and their purpose. Similarly, the CellProfiler pipeline contains notes as
to the purpose of each module and step in the workflow that will aid understanding of the resulting data.
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