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ABSTRACT

Rodent models have been invaluable for biomedical research. Preclinical investigations with rodents allow researchers to investigate diseases by
using study designs that are not suitable for human subjects. The primary criticism of preclinical animal models is that results are not always trans-
latable to humans. Some of this lack of translation is due to inherent differences between species. However, rodent models have been refined
over time, and translatability to humans has improved. Transgenic animals have greatly aided our understanding of interactions between genes
and disease and have narrowed the translation gap between humans and model animals. Despite the technological innovations of animal models
through advances in genetics, relatively little attention has been given to animal diets. Namely, developing diets that replicate what humans eat will
help make animal models more relevant to human populations. This review focuses on commonly used rodent diets that are used to emulate the
Western dietary pattern in preclinical studies of obesity and type 2 diabetes, nonalcoholic liver disease, maternal nutrition, and colorectal cancer.
Adv Nutr 2018;9:263–271.
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Introduction
The primary goal of preclinical research is to make discover-
ies that can be translated from model organisms to humans.
Animalmodels continue to be refined and improved through
advances in biotechnology. For instance, genes can be mod-
ified to more closely replicate human physiology through
genetic engineering, or immunocompromised mice can be
humanized with engrafted human tissue. Recently, as the im-
portance of the gut microbiome to chronic disease has be-
come realized, germ-free mice are being humanized with
human gut bacteria. Advances such as these have increased
the translatability of preclinical studies to human popula-
tions. However, one variable of preclinical studies that has
not changed appreciably in terms of increasing translatability
during this same time frame is laboratory animal diets.

Until the NIH-7 open-source diet was developed by
Knapka et al. (1), standardized nutrition in preclinical stud-
ies was not adequately considered. The NIH-7 diet, which is
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still in use today, contains a diverse array of commodity in-
gredients. The creation of open-source diets helped eliminate
variation across experiments. However, because these diets
contain commodity ingredients, variation can still be intro-
duced in terms of differing dietary mineral content (2) and
plant secondary compounds, such as phytoestrogens, that
can influence reproductive endpoints (3, 4). Recognizing the
need for a consistent, standardized rodent diet that also en-
sured animal health, the Council of the American Institute
of Nutrition (AIN) commissioned the AIN76 rodent diet (5).
The AIN76 diet was formulated with purified ingredients,
including micronutrients provided at or near recommenda-
tions set by the NRC for rodents. To ensure consistency, the
diet was formulated with purified ingredients, including su-
crose, cornstarch, casein, corn oil, cellulose, and a vitamin
and mineral supplement (Figure 1). In 1980, the AIN76 diet
was slightlymodified by increasing the vitaminK content and
by inclusion of the antioxidant tert-butylhydroquinone (6).
To address animal health concerns, in 1993, the AIN76A diet
was modified to increase the n–3 PUFA content by changing
the fat source from corn oil to soybean oil (7, 8). The result-
ing AIN93 growth and maintenance formulations (AIN93G
and AIN93M, respectively) are now the standard basal diets
for nutrition research (Figure 1).

© 2018 American Society for Nutrition. All rights reserved. Adv Nutr 2018;9:263–271; doi: https://doi.org/10.1093/advances/nmy002. 263

mailto:korry.hintze@usu.edu
https://doi.org/10.1093/advances/nmy002


AIN76A AIN93G 45% DIO
(TD.06415)

45% DIO
(TD.08811)

60% DIO
(TD.06414)

TWD
0

20

40

60

80

100

Pe
rc

en
t o

f k
ca

l

Corn starch
Maltodextrin
Sucrose
Casein
Soybean oil
Anhydrous milk fat
Olive oil
Lard
Beef tallow
Corn oil

FIGURE 1 Ingredient profile of commonly used diets in preclinical chronic disease research. Example diets include the AIN76A and
AIN93G diets; 45–60% of energy, high-fat DIO diets (Envigo); and the TWD. DIO, diet-induced obesity; TWD, Total Western Diet.

The creation of these standardized diets eliminated a sig-
nificant source of experimental variation between different
investigators. These low-fat diets result in a lean, healthy phe-
notype in rodents and are used as control diets for preclinical
studies. Conversely, because diet is involved in the etiology
of many chronic diseases, researchers who use chronic dis-
ease rodent models typically use “Western” diets to induce
disease-specific phenotypes. Subsequently, the term “West-
ern” diet has become a catch-all for any rodent diet that
is higher in fat or manipulated in a way to induce chronic
disease associated with the Western human dietary pattern.
However, these diets typically have little resemblance to the
human Western dietary pattern in terms of macro- and
micronutrient content. According to NHANES, the typical
American diet contains∼49%, 35%, and 16% of energy from
carbohydrates, fat, and protein, respectively (9), which is sub-
stantially different from frequently used high-fat “Western”
diets used in chronic disease research. This review will ex-
amine several popular “Western” diets used tomodel chronic
disease as well as the Total Western Diet (TWD), a novel ro-
dent formulated to systematically emulate the American di-
etary pattern as defined by NHANES for both micro- and
macronutrients (Figure 2).

Current Status of Knowledge
Diets used to induce obesity and type 2 diabetes
Increasingly, obesity and related chronic diseases, such as
type 2 diabetes (T2D), have become a worldwide health con-
cern. As a result, preclinical models of obesity and T2D are
in great demand. There are several ways to induce obesity in
laboratory animals, including the use of genetic animal mod-
els. Commonly used genetic models harbor mutations asso-
ciated with satiety, such as the ob (leptin) mouse or the db
(leptin receptor) mouse and zucker rat (12–14). Although
these models are very effective at achieving an obese phe-
notype and have been invaluable to our understanding of

obesity and related diseases, these single mutation models
poorly emulate the etiology of obesity and T2D in humans.
Therefore, dietary induction of obesity [diet-induced obe-
sity (DIO)] in polygenetically susceptible animals, such as
the C5BL/6J mouse, has become a very common approach in
preclinical studies. In this review, low-, medium-, and high-
fat diets are defined as <20%, 20–35%, and >35% of total
energy, respectively.

Some of the earliest DIOmodeling involved the use of ex-
tremely high-fat diets fed long term to rats, including diets
that contained ≤82% of calories from fat and caused aber-
rations in metabolism (15–21). Over the years, these pro-
tocols were refined by Surwit et al. (22) to induce obesity-
related hyperglycemia and hyperinsulemia with the use of
inbredmice. In their initial study, male A/J or C57BL/6Jmice
were fed either low-fat rodent nonpurified diet or a high-fat,
high-sugar diet that contained∼59% of energy from lard and
26% of energy from sucrose. Both A/J and C57BL6/J mice
gained more weight than those in nonpurified diet–fed co-
horts. However, the high fat–fed C57BL6/J mice gained sig-
nificantly more weight than did their A/J counterparts. The
same group went on to show in a series of studies that the
obesogenic properties of these high-fat diets were specific for
the C57BL6/J strain (23), with specific differences between
obesity-resistant A/J mice and C57BL6/J mice in terms of
fat cell number, mesenteric fat mass, and lipoprotein lipase
activity (24). These strain-by-diet interactions of increased
adiposity were largely explained by increased feed efficiency
of C57BL6/J compared with A/J mice when fed the 60%-fat
diets. However, the strain-specific increase in feed efficiency
was not observed when mice were fed low-fat control diets.
The resulting obese phenotype in the high fat–fed C57BL6/J
mice also resulted in a T2D phenotype because the C57BL6/J
mice had significantly higher fasted glucose and insulin than
did C57BL6/J mice fed the low-fat control diet and A/J mice
fed either the high- or low-fat diets. It is interesting to note
that the investigators also tested effects of high or low dietary
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FIGURE 2 Energy density–normalized macro- and micronutrient comparisons of the TWD with the AIN93G diet in relation to intakes
reported in NHANES (10) and RDI/RDA (11) values. The relation between the TWD and the range of intakes for the typical American diet
(10th−90th percentiles) is shown for each diet component compared with AIN93G (dotted line). Also shown are the normalized RDI or
RDA values (individuals aged >2 y). carbs, carbohydrates; RDI, Reference Daily Intake; TWD, Total Western Diet.

sucrose (13% compared with 0% of energy) in this study and
found that sucrose did not significantly affect T2D endpoints
but did decrease feed efficiency (25).

This early work is the basis for the very commonly used
C57BL6/JDIOT2Dmodel. Typically,malemice are fed a diet
that contains 60% or 45% of energy from fat, which is sup-
plied as lard and soybean oil (usually a 9:1 ratio, respectively)
(Figure 1). A common experimental protocol is to feed 4- to
5-wk-old male C57BL6/J mice high-fat diets for 12–20 wk,
with the primary study endpoints being body composition,
fasted glucose, fasted insulin, oral glucose tolerance, insulin
resistance (using HOMA-IR), and measurement of inflam-
matory cytokines and adipokines. Commercial diet compa-
nies sell open-source formulations of these high-fat diets as
well as matched low-fat control diets. However, these diets
are not representative of theWestern dietary pattern with re-
spect to the total amount of dietary fat and the FA composi-
tion (10). Importantly, similar to the AIN diets, the micronu-
trient content of these high-fat diets is formulated to promote
animal health, which is also inconsistent with theWestern di-
etary pattern (10).

Diets used to induce fatty liver disease
Nonalcoholic fatty liver disease (NAFLD) is the result of
metabolic dysregulation and is characterized by a hepatic TG
content >5.56% (26). It is considered the hepatic manifes-
tation of metabolic syndrome (27). NAFLD includes sim-
ple steatosis, nonalcoholic steatohepatitis (NASH), hepatic
fibrosis, and cirrhosis (28). There are estimates that ≤30%
of those in Western countries have hepatic steatosis and

between 20% and 30% of these individuals will subsequently
develop NASH (29). In overweight individuals, NAFLD oc-
currence may be ≤58% and may be ≤98% in obese sub-
jects without diabetes (27). Although the initiation and de-
velopment of NAFLD are highly correlated with markers of
metabolic syndrome, the mechanism or mechanisms driving
disease progression of NAFLD to NASH are unknown (30).

Several review articles have been published that evaluate
rodent diets that cause hepatosteatosis and, to some extent,
the progression toNASH (31–35). A simple and effective way
to induce NAFLD in rodents via diet is to restrict essential
nutrients, such as choline and methionine, which are nec-
essary for proper hepatic lipid metabolism. Mechanisms of
liver damage caused by choline restriction have been eluci-
dated and include effects on phospholipid synthesis, lipopro-
tein secretion, and oxidative and endoplasmic reticulum
stress (36). In rats, diets devoid of choline induce NAFLD in
10 wk, which includes steatosis, inflammation, and fibrosis
(37). Choline-deficient diets also impair the respiratory func-
tion of mitochondria (38), including decreased respiratory
efficiency and increased amounts of protein oxidation prod-
ucts (39). Diets that are deficient in both methionine and
choline (MCD) are also used to investigate NAFLD and pro-
duce a more severe phenotype in a shorter period of time
(35). These diets typically contain >40% sucrose and 10%
fat as corn oil (33), which stresses hepatic lipid trafficking by
promoting de novo lipogenesis. MCD diets are valuable for
the study of the progression of NAFLD to NASH, because
inflammation, hepatocyte apoptosis, and fibrosis are more
likely to develop than when mice are fed a high-fat diet (35).
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Despite their value in modeling the liver injury in NASH,
MCD diets do not accurately recapitulate the metabolic dys-
regulation in humans associatedwithNAFLDbecauseMCD-
fed rodents lose weight due to lower calorie intake (33).

A secondway to induceNAFLD in rodents is to add some-
thing to the diet in excess, such as fat, cholesterol, or sucrose.
High-fat diets are routinely used that contain between 45%
and 75% of calories as fat, the majority being lard. Rodents
fed high-fat diets develop both obesity and steatosis and be-
come insulin resistant (35), and hepatic insulin resistance has
been shown to precede fat deposition in peripheral tissues
(40). In addition, high-fat feeding inmicewas associatedwith
glucose intolerance, increased leptin, and dysregulated lipid
metabolism, yet compared with mice fed MCD diets, the de-
gree of steatosis and liver injury was less severe (41). Adding
cholesterol or cholate has also been used inmodels ofNAFLD
(31, 33, 35, 41, 42). In mice, the addition of 1.25% cholesterol
and 0.5% cholate promotes steatosis, inflammation, and fi-
brosis over 24 wk. Although themice develop hepatic insulin
resistance, they also lose weight and maintain systemic in-
sulin sensitivity. Similarly, in rats, the addition of cholesterol
at >1.25% has been shown to promote steatosis, inflamma-
tion, and fibrosis (43), but the phenotype does not recapitu-
late the metabolic effects associated with NAFLD in humans.

Rodent diets with a sucrose content>25% causes steatosis
(44). Interestingly, the average American diet contains∼20%
of energy from sugar (45), approximately one-half of which
is fructose. Diets with>60% fructose have been shown to in-
duce macrovesicular steatosis and inflammation, but the pat-
tern of fat deposition does not match that in human NAFLD
(32). Increasingly, fructose is used in combination with other
stressors such as high fat and cholesterol. A common strategy
has been to add fructose, or high-fructose corn syrup, to the
drinking water of rodents. In general, this strategy appears to
promote steatosis and the progression to NASH (32, 33, 35).

It is generally accepted that there is no perfect dietary
model for NAFLD, which is likely due to different goals of
investigators working in this area. An intractable aspect of
modeling NAFLD, and ways to understand its progression,
is the low percentage of cases that progress to NASH. To in-
duce NASH consistently, and thus to characterize molecular
mechanisms, diets are used that lack essential nutrients and
thus are not physiologically relevant to humans. On the other
hand, diets that more closely model those consumed by hu-
mans may either not induce NAFLD or do so in a time frame
that is economically (in time and money) unrealistic. Diets
that combine nutrientmanipulations from various rodent di-
etary NAFLDmodels reviewed here, such as diets with mod-
erately elevated fat andmoderately high fructose, low choline
amounts, and somedietary cholesterol, suggest that dietsmay
be developed that can both accurately model human diets
and also cause NAFLD.

Prenatal rodent diets and phenotypic outcomes in the
offspring
Preclinical studies investigating the impact of maternal diet
on offspring health have used diets that varied greatly in fat

content, from 20% to 60% of energy, and often had reduced
carbohydrate and protein content to accommodate the in-
crease in FAs (46). Two recent meta-analyses (47, 48) showed
that maternal high-fat intake is associated with greater off-
spring body weight at weaning and adulthood, along with el-
evated adiposity, systolic blood pressure, and concentrations
of insulin, leptin, TGs, and cholesterol in males and females.
The largest effect sizes were observed for obese phenotypes
and immune activation in male offspring and hyperglycemia
in female offspring (47, 49). This sex-specific response toma-
ternal diet may arise due to different epigenetic regulation in
the placenta (50) and adaptation to environmental vulnera-
bilities (51). Moreover, thematernal diet composition under-
lies different programming effects, whereby the cafeteria diet
paradigm that allows free access to a wide range of energy-
dense foods resulted in rapid weight gain, whereas diets that
exchanged carbohydrate for fat disrupted lipid and insulin
metabolism in the offspring (47).

In contrast to the carbohydrate content being predictive of
weaning weight in males, the ratio of fat content did not cor-
relate with metabolic disturbances in the offspring (47). This
lack of relationmay be due to the current limitations in study
design that do not directly measure or standardize FA com-
position of the diet. Animal models of maternal diet com-
monly use different sources of fat consisting of either animal
fat (lard) or hydrogenated vegetable oil (shortening). Lard has
high amounts of linoleic acid and vitaminD,which have been
suggested to influence metabolic outcomes (52–54). An ac-
centuated increase in weight gain and insulin resistance with
a lard-based diet compared with a hydrogenated vegetable-
shortening diet indicates that standardizing FA composition
and type of fat used in determining outcomes of consuming
high-fat diets is critical (55). Potential mechanisms underly-
ing the programming effects of FA composition involve hy-
pothalamic inflammation and epigenetic programming, in-
cluding DNA methylation (56) and microRNA expression
(57), that lead to alterations in the neuroendocrine functions
(58).

Metabolic perturbations in the offspring appear to also
depend on the timing of diet exposure. Studies that used
cross-fostering indicate that high-fat diet exposure during
lactation wasmore influential for programming greater body
weight and adiposity and altered appetite regulatory sys-
tems toward obesity compared with exposure during preg-
nancy (47, 48, 59). The postweaning period can addition-
ally affect the offspring phenotype because matching the
fat content between the maternal and pup diet prevented
metabolic disturbances and impairment of acetylcholine-
induced endothelium-dependent relaxation (60).

Although species or strain and maternal weight gain did
not account for interstudy heterogeneity (47), these differ-
ences may modulate the relation between maternal diet and
offspring outcomes. Mouse strains showed greater metabolic
changes aftermaternal high-fat exposure comparedwith rats,
with overall more metabolic changes and of greater magni-
tude (47). In addition, the effects of maternal high-fat diet
on glucose and TG concentrations are suggested to depend
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on maternal obesity (47, 48). Variations in the maternal diet
composition appear to produce differences in the metabolic
response of the dams, which may be contributing to differ-
ences in the phenotypic outcomes in the offspring. Thus,
future investigations should focus on standardization of the
diets that consistently definematernal background character-
istics, which will clarify directionality between the prenatal
diet and offspring phenotype.

Dietary models of colorectal cancer
On the basis of the strong epidemiologic evidence support-
ing a link between obesity and increased risk of colorectal
cancer (CRC) in humans, researchers have long investigated
a potential link between obesogenic diets and CRC in ani-
mal models of the disease. The link between the consump-
tion of a high-fat diet and cancer has been widely studied,
particularly with respect to development of CRC in rodent
models, with >400 reports on the topic in PubMed as of this
review. Early studies from the 1980s pointed to a role of di-
etary fat in promoting colon tumorigenesis, although at the
time there was substantial debate on the role of specific di-
etary fats, with some reports suggesting that the type of fat
was inconsequential (61, 62) and others suggesting that spe-
cific fats had differential effects on tumor development in the
colon (63, 64). Yet, other groups had contrary findings, with
no observed effects of dietary fat on colon tumorigenesis (65,
66). Toward the end of the decade, the research community
had concluded that dietary fat was a critical factor in the eti-
ology of CRC, yet acknowledged that specific fat types were
likely responsible for the cancer-promoting effect of high-fat
diets, including corn oil, beef fat, safflower oil, and lard (67,
68).

In the following 30 y, the general thinking about high-fat
diets and CRC has remained fairly consistent. Researchers
continue to use various commercial high-fat diets, including
the DIO diets, to probe mechanisms of colorectal carcino-
genesis and to investigate the contribution of systemic in-
flammation resulting fromDIO on tumor development. One
should note, however, that the vast majority of such stud-
ies used diet formulations consisting of 40–60% of energy as
fat, typically as soybean oil and lard (Figure 1). These com-
mercial diet formulas contrast with the fat content of a typ-
ical American diet, with a median fat intake of only ∼34%
and a wide diversity of fat sources consumed (10). Thus,
although these reports do show a link between fat consump-
tion and cancer development and provide insights onmecha-
nisms by which dietary fat promotes cancer, their usefulness
as dietary models of human nutrition in preclinical studies
intended to evaluate disease risk is not as clear. In recog-
nition of these limitations, some researchers are using diet
formulas that attempt to more closely emulate the diversity
of fat sources consumed by Americans. For example, it was
reported that the consumption of a high-fat diet that was
similar to an American diet with respect to the percent-
age of dietary fat altered inflammatory signaling in adipose
tissue and the tumor microenvironment in a manner con-
sistent with the promotion of intestinal tumors (69). Also

recently, it was reported that human CRC xenografts grew
at an accelerated rate when transplanted subcutaneously and
orthotopically into immunodeficient mice that had acquired
an obese phenotype via consumption of a high-fat diet (40%
of energy consisting of equal parts vegetable shortening, milk
fat, and lard) compared with their lean counterparts fed a
low-fat (12.4%) diet. However, this study design did not al-
low the authors to conclusively dissect the potential impact
of an obesity phenotype on tumor development independent
of dietary intakes, or vice versa (70).

With respect to CRC, a significant flaw in the aforemen-
tioned strategies to investigate the impact of a Western-type
diet on CRC risk was the lack of appropriate consideration
of the contribution of micronutrients to tumor development.
Indeed, the vast majority of studies that used DIO-type di-
ets or custom high-fat diets used a standard micronutrient
formulation modeled after the AIN76 or AIN93 diets. In a
series of studies over the past 3 decades, Newmark et al. (71–
73) used a selective approach in modeling a Western diet,
wherein specific components of the diet were modified to
emulate typical US intakes. Their first study used a “stress”
diet, which was quite low in calcium and vitamin D, and
modestly reduced in phosphate compared with the reference
diet, AIN76A. In addition, the stress diet contained 20% fat as
corn oil (40% of energy) compared with only 5% (12% of en-
ergy) in the reference diet (71). A subsequent study extended
this stress diet to incorporate dietary components necessary
for the generation of methyl donors (folic acid, methionine,
choline, and vitamin B-12) and determined that this new
diet also enhanced spontaneous tumor development in aged
C57BL/6Jmice, an effect that was reversed when calcium and
vitamin D were added back to the stress diet (72, 73). Al-
though this series of studies convincingly showed a role for
dietary calcium and vitamin D in modulating spontaneous
colon carcinogenesis in mice, the scope of the diet remained
limited in that it did not consider the possible contribution
of the dietary fat source, carbohydrates, or proteins and did
not reflect typical human nutrition patterns for other keymi-
cronutrients, such as sodium, selenium, or vitamins A or E.

Modeling animal diets based on human intakes: the
TWD
Our understanding of chronic disease has been greatly ad-
vanced through preclinical studies that model such dis-
eases. As reviewed earlier, commonly used proxies for the
Western diets are effective for generating disease pheno-
types. In nutrition studies that use these models, nonessen-
tial nutrients or botanical extracts are often added to the
disease-generating basal diets to investigate protective effects
or, conversely, amounts of individual macronutrients or mi-
cronutrients are altered to determine their role in health. Al-
though this strategy has led to significant findings, a basal ro-
dent diet that is more representative of the diet consumed by
at-risk populations may be necessary to appropriately eval-
uate effects of dietary components. Some investigators have
sought to address this issue by using “cafeteria”-style diets
(animals are free to select from a variety of tasty, processed
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foods) in an attempt to emulate typical Western dietary pat-
terns for rodent models. However, the cafeteria diet has lim-
ited value as an experimental model because it is poorly de-
finedwith respect tomicronutrient composition and unlikely
to provide robust experimental replication (74, 75).

To more closely model human intakes, we developed the
TWD for rodents with energy and nutrient profiles that emu-
late a typicalWestern diet with the use of NHANES data. The
TWD was formulated by using a nutrient density approach,
described in detail elsewhere (45). Briefly, the amount of
each macro- and micronutrient in the AIN93G basal diet, a
diet routinely used in cancer studies today, was adjusted to
match 50th-percentile intakes for Americans, as reported in
NHANESdata. Thesemass amountswere thennormalized to
caloric intake (mass of nutrient per kilocalories). The TWD
has fewer calories from protein and carbohydrate sources
and twice that from fat than does the AIN93G diet. The
TWD contains more saturated and monounsaturated fats,
less polyunsaturated fat, more complex carbohydrates, and
twice the amount of simple sugars. The TWD also contains
a much more diverse dietary fat portfolio, with the excep-
tion of long-chain n–6 and n–3 PUFAs, than conventional
high-fat diets and the AIN93 diet (Figure 1). Compared with
the AIN93 diet, the TWD contains less calcium, copper, fo-
late, thiamine, and vitamins B-6, B-12, D, and E but much
more sodium. Overall, the TWD is not necessarily extreme
in the amount of any given nutrient, but rather reflects the
overall US dietary pattern (Figure 2). Our research team and
others have shown that this diet affects feeding behavior,
metabolism, and response to CRC (76–78).

The TWD as a dietary model for obesity, metabolism,
and NAFLD
To determine if feeding the TWD produced similar
metabolic perturbations as a traditional 45%-fat DIO
diet and to disseminate the role that micro- and macronutri-
ents play in producing the obese phenotype and on various
health variables, including weight gain, insulin resistance,
and systemic inflammation, male C57BL/6J mice were fed
the following diets: 1) an AIN-93G low-fat control diet, 2)
a TWD, 3) a 45%-fat DIO diet, 4) an AIN93G diet modi-
fied with TWD macronutrients [macronutrient-modified
diet (MM)], or 5) an AIN93G diet modified with TWD
micronutrients (vitamin- and mineral-modified diet) (76).
Compared with the DIO treatment, mice fed the TWD
gained less weight and generally had a metabolic phenotype
closer to the AIN93G-fed mice despite being fed a moder-
ately high-fat diet. However, when mice were fed the MM
diet, which was identical to the TWD in terms of macronu-
trients but contained the same amounts of micronutrients as
the AIN93G diet, mice had a similar phenotype to the DIO-
fed mice. Compared with the TWD treatment, the MM-
and DIO-fed mice consumed more energy, had increased
feed efficiency, had increased body weight gain and fat mass
percentage, had increased subcutaneous and visceral fat,
and were more insulin resistant. These data suggest that, in
the context of the TWD, suboptimal vitamin and mineral

intakes in mice specifically inhibit the hyperphagia and the
resulting increased weight gain associated with the higher
fat content of the TWD. In addition, it is important to note
that the micronutrient profile of the TWD did not limit lean
mass accretion, suggesting that the mice were not stunted.
Although results of this study were counter to our original
hypothesis, these findings are important in that they show
a role of dietary micronutrients in moderating the hyper-
phagic behavior shown by C57BL/6J mice fed a moderately
high-fat diet.

In this study, we predicted that mice fed a TWDmight de-
velop an NAFLD phenotype. This premise was based on the
low choline content of the TWD. The Adequate Intake for
choline is between 450 and 550 mg/d (11), which translates
to 180–220 µg/kcal on a nutrient-density basis. The TWD
contains 113 µg/kcal, which is only 62% of the Adequate In-
take. As a reference, choline nutrient density is 228 µg/kcal
for the AIN93 diet. For the common DIO diets, the values
are 136 µg/kcal for the 60%-kcal-from-fat and 151 µg/kcal
for the 45%-kcal-from-fat diet. In addition, the TWD con-
tains ∼20% sucrose by mass and derives ∼20% of the calo-
ries from sucrose, amounts that have been shown to promote
steatosis in rodents (44). However, mice fed the TWDdid not
have higher liver TGs relative to the AIN93G control diet.

The TWD as a dietary model for CRC
As outlined above, many researchers use standard AIN76 or
AIN93 diets in preclinical cancer studies, including cancer
prevention studies that use dietary bioactives. One of the key
questions our group wished to address with the use of the
TWD was whether the consumption of this more represen-
tative Western diet would influence the efficacy of a well-
known anticancer bioactive, specifically green tea polyphe-
nols. To determine if there was an interaction between the
TWD basal and green tea extract (GTE) on azoxymethane-
induced CRC, lipid metabolism, and SCFA metabolism, A/J
mice were fed either the TWD or the AIN93G diet with or
without GTE added to the water in a 2 × 2 factorial design
(78). There were significant interactions between the basal
diet and GTE on several experimental endpoints. For in-
stance, GTE reduced body weight but only in mice fed the
TWD. Fasting glucosewas reduced byGTE treatment inmice
fed the TWD but not the AIN93G diet. Cecal SCFAs were re-
duced by GTE, but only in mice fed the TWD. Conversely,
GTE decreased liver TGs but only in mice fed the AIN93G
diet. Importantly, mice fed the TWD had increased aberrant
crypt focimultiplicity comparedwithAIN93G-fedmice, sug-
gesting that the TWD as a basal diet promotes CRC. Notably,
GTE reduced aberrant crypt foci only in mice fed the TWD
but not the AIN93G diet. In an additional CRC study from
another laboratory, Nakanishi et al. (77) found that the in-
clusion of walnuts suppressed tumor development in mice
fed the TWD but not the AIN76A diet. These results sug-
gest that standardized basal diets, such as the AIN93G, may
underestimate or fail to show the efficacy of bioactives such
as GTE in CRC preclinical models.
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Conclusions
Basal diet is an important consideration in preclinical stud-
ies tomodel human disease. Dietmodels, such as the high-fat
DIO diet or theMCDprotocol, have greatly aided our under-
standing of nutrition-related chronic diseases, and these pro-
tocols will continue to be useful tools to generate appropriate
phenotypes. However, investigators must be cautious not to
confuse these diets with theWestern dietary pattern, because
they do not recapitulate many features of this dietary pattern
(e.g., diverse fat sources, amounts of micronutrients). Thus,
these diets should be considered as tools to generate disease,
not models of “Western” nutrition.

Making animal diets more relevant to at-risk human pop-
ulations, such as the TWD, is a step forward in improving
the translational fidelity of preclinical mouse models. For in-
stance, our data suggest that, compared with AIN93G, the
TWDmay be a more suitable basal diet to model CRC. This
matches well with epidemiologic data that show a link be-
tween the Western dietary pattern and CRC. For example,
Americans of African descent have a CRC rate 65:100,000
compared with <5:100,000 in rural Africans, and this dif-
ference is thought to be caused primarily by the American
dietary pattern (79).

Future work to increase the translatability of animal diets
to human diets should extend beyond macro- and micronu-
trients. Although they may complicate study design and in-
terpretation, other variables that contribute to human diets
should also be considered in translational preclinical mod-
els when possible, such as the complex food matrix, cooking
oxidation products, plant secondary compounds, food addi-
tives, and diverse sources of fiber. Although rodent nonpu-
rified diets provide some of these variables, they lack con-
formity in their preparation and introduce variation between
experiments. Standardizing a rodent diet that addresses these
many variables may be a daunting task, but such an endeavor
would undoubtedly improve the translatability between ani-
mal and human studies.
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