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ABSTRACT

Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and
proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally,
mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of
these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial
membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids inmodulatingmitochondrial
membrane structure-function.We focus extensively on long-chain n–3 (ω-3) polyunsaturated fatty acids and their underlyingmechanisms of action.
Finally, we discuss implications of understandingmolecular mechanisms bywhich dietary n–3 fatty acids targetmitochondrial structure-function in
metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Adv Nutr 2018;9:247–262.
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Mitochondrial Membranes
Mitochondria are unique structures with 2 membrane bilay-
ers. A general overview of mitochondrial outer and inner
membrane structure-function is first presented followed by a
brief overview of mitochondrial biophysics. We then present
a summary of dietary FAs and the underlying biochemical
and biophysical mechanisms by which they influence mito-
chondrial function.

The outer mitochondrial membrane
The outer mitochondrial membrane (OMM) encloses the
entire mitochondrion and is in contact with the cytoplasm
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of the cell. The OMM and inner mitochondrial mem-
brane (IMM) create a unique environment within the mi-
tochondria, called the intermembrane space. The OMM is
exceptionally porous and contains proteins called porins
(e.g., voltage-dependent anionic channels) embedded into its
structure that form channels and allow molecules ≤5 kDa in
size to diffuse freely across the membrane and into the in-
termembrane space (1–3). The OMM also houses proteins
that translocate larger proteins by recognizing an encoded
mitochondria-targeting N-terminal sequence (4–6). The
OMM, similar to the plasmamembrane, has high concentra-
tions of phosphatidylcholine and phosphatidylethanolamine
and a 50:50 ratio of proteins to lipids (7). Cardiolipin,
one of the hallmark phospholipids of the mitochondria, is
only found at ∼4% of a normal functioning OMM (8–10)
(Figure 1). However, during apoptosis, cardiolipin is re-
leased from the IMM and translocates to the OMM form-
ing platforms for the Bax/Bid complex to bind and begin the
apoptotic cascade (11–16). The OMM is associated with a
multitude of functions in addition to protein transport and
apoptosis, including the synthesis and elongation of FAs
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FIGURE 1 Structure of mature cardiolipin. Cardiolipin is a unique
anionic phospholipid with 4 acyl chains and a small headgroup.
Mature cardiac cardiolipin contains predominantly 4 linoleic acid
(18:2) acyl chains under healthy conditions. Modifications to the
acyl chains of cardiolipin are common in a range of diseases and
can also be modified in response to dietary intake of differing FAs.

(17, 18). The OMM can also associate with the endoplasmic
reticulum (ER) and create distinct mitochondria-associated
membranes (MAMs) (Figure 2).

The MAMs
The OMM and the ER create MAMs that are critical for
cellular physiology and homeostasis (19). MAMs have been

observed with electron micrographs and fluorescence mi-
croscopy. They comprise ≤20% of the OMM and are held
together via tethering complexes (20–24). Subcellular MAM
fractions are enriched in enzymes that are important in
lipid biosynthesis, phospholipid exchange, and calcium sig-
naling (25–30). Due to constant fission and fusion, mito-
chondria require a well-regulated supply of phospholipids to
maintainmembrane integrity. MAMs allow for phospholipid
flipping between the ER andOMM, independent ofATP (31–
33). There are also phospholipid-remodeling enzymes asso-
ciated with the MAM, including acyl-CoA:lysocardiolipin
acyltransferase 1 (ALCAT1), which remodels cardiolipin
with highly oxidizable acyl chains (34, 35) (Figure 2). MAMs
also appear to be intermediate destinations in pathways
that lead to VLDL assembly and secretion (20, 36–38).
Thus, MAMs serve as a critical metabolic and trafficking
hub in lipid metabolism. Finally, MAMs are also extremely
important in calcium regulation. They create calcium mi-
crodomains at contact points that facilitate the efficient up-
take of calcium, which sustains mitochondria and cellular
homeostasis (28). Although more research is needed on
MAMs, it is clear that these structures are critical in signaling,
metabolism, and organelle physiology.

The IMM
The IMM encapsulates the matrix of the mitochondria and
is surrounded by the intermembrane space. There are a
multitude of IMM-associated proteins, most notably those
involved in oxidative phosphorylation, ATP synthesis, and
protein translocation (39–41). The IMM has a unique phos-
pholipid composition closely resembling that of a bacterial
membrane with a ratio of 4:1 proteins to lipids (7). The IMM
is mainly composed of phosphatidylcholine (40%), phos-
phatidylethanolamine (30%), and cardiolipin (15–20%). The
remaining 10% of the IMM phospholipidome consists of
phosphatidylinositol (5%), phosphatidylserine (3–4%), and
very small quantities of other lipids including phosphatidic
acid and cholesterol (42). Cardiolipin has a unique structure
with 4 acyl chains that promote the formation of non-bilayer
phases and high curvature that can influence cristae forma-
tion and respiratory function (43).

Since the IMM’s predominant role is energy production,
it is only freely permeable to small metabolites, including
oxygen and water (44–46). This lack of permeability sepa-
rates the matrix from the cytosolic environment of the in-
termembrane space. This extreme compartmentalization is
necessary for energy production because ATP synthesis re-
lies on a proton gradient created across the IMM (47, 48). In
fact, ATP is produced via multiple redox reactions that occur
in 5 transmembrane enzyme complexes within the IMM—
complex I [NADH: ubiquinone oxidoreductase], complex II
(succinate dehydrogenase), complex III (cytochrome c re-
ductase), complex IV (cytochrome c oxidase), and complex
V (ATP synthase)—and 2 mobile electron carriers (the lipid-
soluble coenzyme Q and the water-soluble cytochrome c).
Initially, reducing equivalents such as NADH and FADH2
are oxidized by complex I and complex II, respectively. From
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FIGURE 2 Biosynthesis of mature CL. Mature CL is largely synthesized in the IMM. Nascent CL is synthesized from PG by using CDP-DAG.
The acyl chains of nascent CL are then modified to mature CL containing 4 linoleic acid acyl chains (18:2) with the enzyme TAZ. Nascent
CL can also undergo acyl chain cleavage with PLA2 to produce MLCL, which can serve as a substrate for MLCLAT1 to produce mature CL.
A small fraction of mature CL is produced in the endoplasmic reticulummembrane through the use of ALCAT1. For simplicity, biosynthesis
of other key phospholipids is not depicted. These phospholipids (PC, PE, PS, PI, PG, and PA) are found in differing concentrations across the
ER, OMM, and IMM. ALCAT1, acyl-CoA:lysocardiolipin acyltransferase 1; CDP-DAG, cytidinediphosphate-diacylglycerol; CL, cardiolipin;
CRLS1, cardiolipin synthase; ER, endoplasmic reticulum; IMM, inner mitochondrial membrane; MAM, mitochondria-associated membrane;
MLCL, monolyso-cardiolipin; MLCLAT1, monolyso-cardiolipin acyltransferase 1; OMM, outer mitochondrial membrane; PA, phosphatidic
acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PLA2, phospholipase A2;
PS, phosphatidylserine; TAZ, taffazin; (18:2)4CL, tetralinoleoyl cardiolipin.

there, electrons are passed through coenzyme Q to complex
III and then from cytochrome c to complex IV. The final elec-
tron acceptor is oxygen, located in the matrix, which is re-
duced to water. Electron transport through the complexes is
associated with proton pumping. Complexes I, III, and IV
couple electron flow and proton pumping from the matrix
to the intermembrane space to create and maintain an elec-
trochemical gradient across the IMM. Complex V uses the
electrochemical gradient to produce ATP by allowing pro-
tons to re-enter the matrix and providing the work needed
for phosphorylation of ADP.

Overall, the aforementioned mitochondrial membranes
play an important role in the organelle’s functions and in
maintaining cellular homeostasis. The composition of these
membranes is very dynamic, especially the specialized IMM,
and is tightly regulated but can be altered through the intake
of dietary FAs. Alterations in the composition of membrane
phospholipids will influence the biophysical properties of the
membrane and thereby protein function (49).

Mitochondrial Membrane Biophysics
Mitochondria are cellular organelles containing 2 struc-
turally and functionally distinct membranes (50–52). The
biophysical organization of the outer and inner membranes

of the mitochondria is of great importance because both
membranes regulate the trafficking of ions, metabolites, and
many small molecules between the cellular cytosol and mi-
tochondrial matrix. Any impairment in the biophysical or-
ganization of these membranes could severely affect mito-
chondrial bioenergetics and cellular homeostasis. Given that
the IMM is the major site of oxidative phosphorylation and
ATP synthesis, we focus on the biophysical organization of
the IMM.

Biophysical organization of the IMM
The structure of the IMM is extensively folded and compart-
mentalized by invaginations of the inner membrane termed
“cristae,” which provide a large amount of surface for bio-
chemical reactions such as cellular respiration and ATP gen-
eration (53–55). Within the IMM, 2 distinct regions have
been observed: the inner boundarymembrane and the cristae
membrane. The inner boundary membrane is adjacent to
the OMM, whereas the cristae membrane represents invagi-
nations that protrude into the mitochondrial matrix (54).
These convoluted structures of the IMM were established
by pioneering studies onmitochondrial ultrastructure. These
studies led to the proposal of several hypothetical models de-
scribing the biophysical organization of the IMM. To date,
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3models of the IMMhave been proposed, including the “baf-
flemodel,” the “septamodel,” and the “crista junction”model
(54). The baffle model was initially proposed in the early
1950s by Palade (56), who confirmed the existence of the
outer and inner membranes of the mitochondria and orig-
inally described cristae as being invaginations with rather
broad openings (50). An alternate interpretation of the IMM
structure was proposed around the same time by Sjöstrand
(51, 57), who termed the “septa model.” Sjöstrand suggested
that sheets of the innermembrane are divided by septa, which
separate the matrix into several distinct compartments.

More recent EM tomography studies have shown that
cristae are attached to the inner boundary membrane by nar-
row tubular openings, which have been termed “crista junc-
tions” (58–62). It is thought that crista junctions play a crit-
ical role in compartmentalizing the IMM, because they may
limit the diffusion of metabolites, such as protons and ADP,
between the intermembrane space and the intracristal space
(59). Indeed, crista junctions could contribute to the regula-
tion of oxidative phosphorylation (OXPHOS), and ultimately
ATP production, because 1 of the key limiting metabolites is
ADP. Although more structural details with regard to crista
junctions have become available, the functional significance
of these structures remains unknown. Therefore, investigat-
ing the mechanistic and functional relation between these
various IMM structures and dietary fatty acids is critical for
better understanding mitochondrial function in health and
disease.

Cardiolipin structure
The biophysical organization of the IMM is highly regulated
by cardiolipin, a unique anionic, polyunsaturated phospho-
lipid consisting of 2 phosphatidic acid moieties linked by a
central glycerol backbone (Figure 1). Under normal phys-
iologic conditions, cardiolipin may only carry 1 negative
charge at a time because the phosphates of cardiolipin are
diastereotopically inequivalent, and thus ionize at 2 differ-
ent pH levels (pK1 = ∼2.8, pK2 = ∼7.5–9.5) (63–66). This
allows cardiolipin to trap protons within its headgroup and
thereby localize the proton pool near the surface of the IMM.
The bioenergetic importance of cardiolipin to function as
a proton trap may be to supply a greater buffering capacity
at the membrane-water interface (66). In theory, cardiolipin
could bridge the gap between the proton donor and the pro-
ton acceptor, because highly mobile cardiolipin would later-
ally shuttle protons from OXPHOS protein complexes to the
ATP synthase machinery (66).

Cardiolipin is predominantly found in membranes capa-
ble of generating an electrical potential, such as bacterial
and mitochondrial membranes (67). In mitochondria, cardi-
olipin is almost exclusively localized to the inner membrane
where it is synthesized and required for membrane struc-
ture, membrane fusion and fission, protein function, and
apoptosis (43, 68–72). The functional importance of cardi-
olipin within the IMM arises from its ability to directly in-
fluence lipid molecular organization and thereby cluster pro-
teins that require specific lipidmicroenvironments, including

key enzymes involved in OXPHOS (43, 70, 71, 73–75). Previ-
ous studies have clearly shown the importance of cardiolipin
within the IMM by showing that cardiolipin clusters respi-
ratory enzymes in order to augment efficient electron chan-
neling for optimal OXPHOS activity (66, 70, 71, 73, 75–77).
However, due to cardiolipin’s polyunsaturated nature, and its
close associationwithOXPHOS, it is extremely susceptible to
oxidative damage often arising from reactive oxygen species
(ROS).

Many studies have suggested cardiolipin’s acyl chain speci-
ficity to be critical for optimal mitochondrial function. In
themammalian heart, linoleic acid (LA; 18:2) constitutes 80–
90% of total cardiolipin acyl chains, where tetralinoleoyl car-
diolipin [(18:2)4CL] is the most abundant species (Figure 1)
(78). The abundance of (18:2)4CL within the IMM suggests
an important role in structure-function. Indeed, cardiolipin
enriched in tetralinoleic acid (18:2)4 binds with high affin-
ity to a multitude of proteins and enzymes within the IMM,
including key respiratory chain enzymes (79–86).

The (18:2)4-rich composition of cardiolipin is achieved
by an acyl chain remodeling process that occurs within the
IMM. Details of the synthesis of mature cardiolipin are
presented in Figure 2. Briefly, de novo cardiolipin biosyn-
thesis occurs in a series of steps on the inner face of
the inner membrane from phosphatidylglycerol (PG) and
cytidinediphosphate-diacylglycerol (CDP-DAG) via cardi-
olipin synthase (87). Nascent cardiolipin must be remodeled
into a composition enriched in LA by enzyme-dependent
remodeling processes within the IMM. A small fraction of
mature cardiolipin can also be synthesized in the ER mem-
brane (Figure 2). Environmental and genetic factors, such as
diet and mutations in essential remodeling enzymes, influ-
ence the bioavailability and abundance of (18:2)4CL within
the IMM (78, 88, 89).

Cardiolipin microdomains
Membrane microdomains often form as a function of fa-
vorable physiochemical properties of lipids (90–94). This
phenomenon is observed in the plasma membrane of cells
where lipid rafts, which are enriched in cholesterol and sph-
ingolipids, exist as highly ordered regions that serve to com-
partmentalize cellular processes (92, 94). However, the idea
of “raft-like” mitochondrial microdomains remains debated
because the concentration of lipids required for lipid rafts
(i.e., cholesterol and sphingolipids) is very low (95). This does
not rule out the notion that specific lipids (i.e., cardiolipin)
may localize to concentrate proteins into confined signaling
centers.

Due to cardiolipin’s unique physicochemical proper-
ties, it can induce negative membrane curvature and form
nonbilayer phases, such as the inverted-hexagonal phase
(96–99). The ability of cardiolipin to organize into the
inverted-hexagonal phase suggests that cardiolipin may pro-
mote specific localized structures within the IMM and
implicate its potential role in the formation of mitochon-
drial microdomains. Indeed, some laboratories have sug-
gested that cardiolipin-enriched microdomains exist within
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mitochondria as essential activating platforms for mitochon-
drial fusion and fission and apoptosis (15, 97, 100). Exper-
iments that used lipid monolayers and bilayers have shown
that specific mitochondrial proteins, such as mitochondrial
creatine kinase and cytochrome c, tightly interact with car-
diolipin and induce segregation into microdomains (101–
104). These proteins are found at mitochondrial contact sites
as well as the surface of the IMM, where the assembly of
enriched domains of cardiolipin plays an important role in
mitochondria-mediated apoptosis and OXPHOS. However,
the notion that mitochondria contain localized subdomains
enriched in cardiolipin is still in its infancy. Future studies
need to address how these microdomains may cluster pro-
teins, such as respiratory protein complexes, for optimal ATP
production and enhanced mitochondrial signaling (70, 71,
73, 74, 105, 106).

Dietary FAs
SFAs
Dietary FAs will influence the composition of mitochondrial
membranes and thereby function. The 2 most abundant SFA
acyl chainswithin cellularmembranes are palmitic (16:0) and
stearic (18:0) acids (107, 108). Although the body can synthe-
size SFAs, they are consumed from a variety of substances, in-
cluding butter,milk, palm oil, coconut oil, and ground beef or
beef tallow. These foods also contain shorter SFAs, including
lauric acid (12:0) acid and myristic acid (14:0).

SFAs play important roles in the membranes of a mul-
titude of organelles. Due to their structure, SFAs can pack
tightly together and increase the viscosity of membranes.
They can also interact with cholesterol and create lipid raft
domains within the plasma membrane, which are important
in cellular signaling (109–112). In mitochondrial mem-
branes, the abundance of SFAs is significantly lower than
the amount of unsaturated FAs. However, an increase in
dietary intake of SFAs can increase the amount of FAs such
as palmitic and stearic acids within the mitochondrial mem-
branes, leading to potential impairments (113). In one study,
SFAs were increased in rat liver mitochondria, particularly in
cardiolipin, which led to the impaired release of cytochrome
c (114). Although significantly less studied than unsaturated
FAs in relation to mitochondria, SFAs likely play an impor-
tant role in regulating mitochondrial membrane structure
and function. Elucidating how SFAs influence mitochondrial
biophysical organization is an area for future investigation.
One possibility is that SFAs may counter-regulate the effects
of unsaturated FAs by perturbing the diffusion of protein
complexes and thereby their ability to execute optimal res-
piratory function (Figure 3). This would be driven by the
ability of SFAs to increase membrane microviscosity and
potentially increase the thickness of the membrane bilayer.

n–6 PUFAs
n–6 PUFAs play an essential role in membrane structure and
function. Generally, due to their multiple double bonds, n–6
PUFAs decrease the viscosity of the membrane (115). They

do not pack as tightly as SFAs and will not form liquid or-
dered microdomains (116). LA (18:2) is the predominant
n–6 PUFA in the Western diet. LA is obtained through the
diet fromvegetable oils, such as sunflower, soybean, corn, and
canola oils, as well as walnuts and seeds. Dietary n–6 PUFAs
will incorporate into mitochondrial phospholipids. Without
LA incorporation into cardiolipin’s acyl chains, the func-
tion of respiratory and other membrane-associated proteins
may be diminished (117–119). In many diseases, including
cardiovascular diseases, diabetes, and Barth syndrome, the
loss of LA in cardiolipin is detrimental to the overall func-
tion of the mitochondria (120, 121). However, one research
group, by using a yeast model concluded that unremod-
eled cardiolipin (i.e., containing a significant amount of sat-
urated acyl chains) is functionally equivalent to fully remod-
eled cardiolipin (containing predominately PUFA acyl chains
that are 18:2) (122). In addition, another study that used a
yeastmodel determined that a decrease in the cardiolipin-to–
monolyso-cardiolipin ratio caused deficiencies in respiration
(123). Although innumerable studies have been conducted
on the role of cardiolipin remodeling, its role in mitochon-
drial bioenergetics still requires further investigation.

Dietary arachidonic acid (AA; 20:4) is mainly obtained
through the consumption of chicken, eggs, and beef. AA will
also incorporate into mitochondrial membranes, although it
is controversial if it is beneficial to the function of the mi-
tochondria (124, 125). For example, rats were supplemented
with an AA-enriched diet for 10 wk, which led to the in-
corporation of AA at the expense of LA acyl chains, partic-
ularly in cardiolipin. This replacement delayed the opening
of the mitochondrial permeability transition pore (MPTP)
and reduced the risk of apoptosis but did not alter mitochon-
drial respiration (125). Conversely, a study showed that AA
induced the opening of the MPTP but did not cause depo-
larization or respiratory inhibition. When AA was added to
MH1C1 rat hepatoma cells, it rapidly opened the MPTP and
induced cytochrome c release and apoptosis (126). In addi-
tion, in studies in which the FFA form of AA is incorporated
into the mitochondria, there are uncoupling effects during
state 4 respiration and an overall inhibition in uncoupled res-
piration. There is also a decrease in complex I and complex III
activity as well as an increase in ROS production and mem-
brane permeability (124). Overall, n–6 PUFAs have differing
effects on mitochondrial membranes. LA is the most abun-
dant acyl chain in mitochondrial membranes and is required
for optimal function and AA is also found in mitochondrial
membrane phospholipids but to a lesser extent. The role of
AA inmitochondrial membranes is still unclear and requires
further scientific exploration, particularly in the context of
n–3 PUFAs, which lower n–6 PUFAs (127, 128).

n–3 PUFAs
The most notable n–3 PUFAs are α-linolenic acid (ALA;
18:3), EPA (20:5), and DHA (22:6). ALA is a short-chain n–
3 PUFA and an essential FA that is obtained through the
consumption of flaxseed, canola, and walnut oils. ALA can
undergo elongation and desaturation to produce long-chain
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FIGURE 3 Model depicting how dietary SFA, n–6 PUFA, and n–3 PUFA acyl chains target IMM structure-function. An increase in n–3 PUFA
acyl chains within the IMM will replace the n–6 PUFA acyl chains and thereby influence microviscosity. This may cause the membrane to
become “leaky”and allow for more proton leak back into the matrix. In addition, an increase in SFAs will decrease polyunsaturation and
increase viscosity. n–3 PUFA incorporation into the membrane may also alter protein clustering and enzyme activity, which may alter the
amount of ATP produced. Respiratory enzymes are influenced by the increase in n–3 PUFAs and may allow more electrons to escape
during oxidative phosphorylation, which will lead to an increase in ROS production and peroxidation. However, n–3 PUFAs can also be
cleaved from the membrane via PLA2 and increase the antioxidant capacity of the mitochondria. In addition, an increase in n–3 PUFAs
may release cytochrome c, starting the apoptotic cascade as seen in some cancer models. Overall, FAs through the diet likely have a wide
range of different roles within the IMM that require further investigation in both healthy and diseased states. CAT, catalase; CoQ, coenzyme
Q; Cyto C, cytochrome c; FUM, fumarate; GPX, glutathione peroxidase; IMM, inner mitochondrial membrane; Pi, inorganic phosphate;
PLA2, phospholipase A2; SOD, superoxide dismutase; SUCC, succinate.

n–3 PUFAs such as EPA and DHA (129). Elongation and
desaturation from ALA are highly inefficient, so most long-
chain n–3 PUFAs come from dietary sources such as marine
oils or as dietary supplements.

Long-chain n–3 PUFAs play an important role in the
structure and function of cellular membranes (130). Due to
their extreme chain length and multiple double bonds, they
dramatically decrease membrane viscosity (130). EPA and
DHA can incorporate into the plasma membrane of a mul-
titude of cell types, particularly immune cells, and disrupt
plasma membrane raft domains and cellular signaling (131–
136). Presumably, similar mechanisms exist by which EPA
and DHA target the organization of mitochondrial mem-
branes. Indeed, there is evidence that n–3 PUFAs incorporate
into the cardiac mitochondrial phospholipidome (137).

Effects of Dietary FAs onMitochondrial
Function Independent of Changes in
Mitochondrial Membrane Organization
This review focused on how dietary FAs regulate mitochon-
drial membrane structure-function. However, it is essential
to recognize that dietary FAs can influence mitochondrial
function independent of changes in the composition of the
OMM and IMM. Here we briefly describe how dietary FAs
directly influencemitochondrial function throughmetabolic
gene regulation. Long-chain SFAs and unsaturated FAs act
as ligands for PPARs, a superfamily of nuclear transcrip-
tion factors responsible for upregulating genes that influence
mitochondria and peroxisome function. These nuclear tran-
scription factors (PPARα, PPARβ/δ, and PPARγ ) het-
erodimerize with retinoid X-receptor (RXR), promoting
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target gene transcription through DNA binding of the per-
oxisome proliferator response element (PPRE) in the nucleus
(138, 139).

Endogenous ligands for PPARs, such as PUFAs,
eicosanoids, and other lipid metabolites, can also activate
nuclear transcription factors. Furthermore, PPAR-induced
gene transcription differs by subtype and tissue distribu-
tion, with PPARα and PPARβ/δ primarily responsible for
regulating β-oxidation genes in hepatocytes, cardiomy-
ocytes, myocytes, and enterocytes (140, 141), and PPARγ

is responsible for adipocyte differentiation and immune
cell metabolism, differentiation, and function, respectively
(142, 143). Within the mitochondria, activation of PPARs by
long-chain FAs induces gene expression of several key mito-
chondrial enzymes, including carnitine palmitoyltransferase
(CPT) enzyme I and II, located on the OMM and IMM,
respectively; acetyl-CoA synthetase (ACS); and numerous
other β-oxidation enzymes (144). Thus, long-chain FA
activation of PPARs induces their own metabolism through
this transcriptionally regulated pathway, directly influencing
mitochondrial function by increasing FA oxidation.

The consumption of high-fat diets and resultant elevated
endogenous FFAs have previously been shown to increase
mitochondrial biogenesis through a PPARδ-mediated mech-
anism involving increased PPARγ co-activator 1 (PGC-1) in
rat muscle. However, the increase in mitochondrial biogen-
esis did not result in improved insulin resistance caused by
consuming a high-fat diet (145). Compared with low-fat di-
ets, the prolonged consumption of a high-fat diet in Wistar
rats resulted in obesity, dyslipidemia, insulin resistance, and
skeletal muscle mitochondrial dysfunction, with notable sig-
nificant differences in phosphorylation efficiency and mito-
chondrial respiration (146). These findings support numer-
ous investigations in rodent models that show that high-fat
diet consumption results in greater β-oxidation, likely me-
diated by PPAR activation, concomitant with greater free
radical and oxidant production (147). These direct mito-
chondrial effects of high-fat diets likely contribute to mi-
tochondrial, cellular, and systemic metabolic dysfunction
(147). Taken together, it is essential to recognize that di-
etary FAs can target mitochondrial function independent of
changes in structural membrane organization.

Effects of Long-Chain n–3 PUFAs on
Mitochondrial Membrane Structure-Function
The mitochondrial phospholipidome is remodeled with
the consumption of n–3 PUFAs
As mentioned previously, the composition of the IMM is
highly regulated due to its unique structure and function
in maintaining the electrochemical gradient required for
OXPHOS. However, the composition of the IMM is subject
to change in response to dietary FA consumption (88). Many
studies have addressed how n–3 PUFAs target mitochondrial
membrane properties in health and disease (125, 137, 148–
156). In Table 1, we present an overview of key studies show-
ing the effects of n–3 PUFAs on mitochondrial membrane

organization and function (i.e., membrane potential, respira-
tion, individual complex activities, and ROS production). Al-
though most of the studies differ in methodology, the results
onmembrane structure are similar. An increase in n–3 PUFA
concentrations leads to an increase in EPA and/or DHA in-
corporation into mitochondrial membranes at the expense
of n–6 PUFAs (Figure 3). Incorporation of n–3 PUFAs into
mitochondrial membranes also alters the biophysical orga-
nization by decreasing membrane viscosity and potentially
changing lipid-lipid and lipid-protein interactions (Figure 3).

Although some studies show that n–3 PUFAs influence
membrane viscosity, the field has notmoved beyond to estab-
lish how EPA and DHA acyl chains are targeting the forma-
tion of mitochondrial microdomains, protein-phospholipid
binding, and protein-protein clustering. Our laboratory has
very recently shown that DHA, upon incorporation into
cardiolipin, can prevent formation of mitochondrial mi-
crodomains and binding of cardiolipin to complex IV (150).
However, more work is needed in this area.

ROS production and antioxidant capacity are
mechanistic targets of n–3 PUFAs
The mitochondria are an important source of ROS within
the cell. ROS occur when electrons “escape” or leak from
the enzyme complexes associated with OXPHOS. The main
contributors to electron leakage are complexes I and III
(157). Once these electrons escape, they interact with oxygen
to produce a superoxide. In normal-functioning mitochon-
dria, these superoxides interact with redox enzymes within
the matrix of the mitochondria, reducing the superoxide to
water. However, superoxides can still damage the mitochon-
dria, by peroxidizing phospholipid acyl chains, mitochon-
drial DNA, and proteins (158). The peroxidation of phospho-
lipids within the IMM can lead to a disorganization of the
membrane, an accumulation of toxic products, and increased
levels of free radicals, enhancing mitochondrial damage.

Acyl chains such as EPA and DHA are highly suscep-
tible to peroxidation via ROS due to their tremendous
level of unsaturation (Figure 3). Dietary supplementation of
EPA or DHA increases the levels of n–3 PUFA acyl chains
within mitochondrial membranes, which leads to membrane
disorganization and potentially increased electron leakage.
Several studies show that an increase in the polyunsatura-
tion of phospholipids, particularly cardiolipin, increases the
production of ROS (153, 159). When ROS production
overwhelms the antioxidant capacity of the mitochondria,
phospholipase A2 is activated and enhances the release of
peroxidized fatty acyl chains frommembrane phospholipids,
resulting in membrane disorganization and mitochondrial
damage (160). This mechanism of increased oxidative stress,
resulting in mitochondrial dysfunction and thereby apopto-
sis, is implicated in the anticancer properties of n–3 PUFAs,
as discussed below.

Although, the presence of n–3 PUFA acyl chains within
the IMM can increase ROS production, this does not
always translate to increased mitochondrial dysfunction.
Figure 3 shows how n–3 PUFAsmechanistically can increase
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TABLE 1 Summary of key studies on n–3 PUFAs and mitochondrial membrane structure-function1

Supplementation Organism/tissue Membrane alterations Functional endpoints Reference

Diet containing DHA at 2.5% total
caloric intake for 10 wk

Male Wistar rats/cardiac
mitochondria

↑ Amount of DHA and
displaced AA and LA

↓ In (18:2)4CL, no effect on
respiration

(125)

100 μM n–3 PUFA treatment for 72 h H9c2 cardiac myoblasts ↑ Highly unsaturated CL
containing n–3 PUFAs

↑ High-molecular-weight CL and
↓ low-molecular-weight CL

(137)

Fusion of mitochondria with
18:0/22:6 PC vesicles

4-wk-old male mice/liver
mitochondria

↓ In DHA and viscosity ↓ RCI and membrane potential
and ↑ proton movement

(148)

10% Menhaden oil for 3 wk 2-mo or 21-mo CBA/ca female
mice/liver mitochondria

↑ In EPA and DHA and ↓ in
AA; DHA was primarily
associated with PE and PC

↑ Age-related mitochondrial
dysfunction

(148)

DHA ethyl esters (2% of energy) C57BL/6 obese mice ↓ Formation of membrane
domains

↓ In enzyme activity (150)

n–3 Complete: 2 g EPA and 1 g
DHA/d for 12 wk

Recreationally active men aged
22.7± 0.8 y/subsarcolemmal and
intermyofibrillar mitochondria

↑ In EPA/DHA in PC and PE
but not in CL

↑ Sensitivity to ADP and ROS but
not in oxidant products

(151)

Diet containing DHA or EPA at 2.5%
total caloric intake for 8 wk

Male Wistar rats/cardiac
mitochondria

↑ EPA/DHA and ↓ AA ↓ Ca2+-induced opening of the
MPTP and swelling

(152)

11.5 g Menhaden fish oil/100 g for
2 wk

Male Sprague-Dawley rats/colonic
crypt mitochondria

↑ In unsaturation index of CL,
PE, and PC

↑ ROS- initiated apoptotic
cascade

(153)

20% wt:vol Menhaden fish oil for 4 wk Male Sprague-Dawley rats/renal
cortical mitochondria

↓ In OA, LA, and AA and ↑ in
EPA and DHA

↑ In PLA2 activity and
mitochondrial damage via ROS;
↓ in state 3 respiration and
complex I

(154)

15% (wt:wt) fish-oil or EPA and DHA
pure ethyl ester diet for 2 wk

Male Sprague-Dawley rats/colonic
crypt mitochondria

↑ In EPA and DHA at the
expense of AA and LA

↓ In membrane potential and ↑
in caspase 3 activity

(155)

20% Fish-oil diet–12% tuna oil and
8% sardine oil for 12 wk

Wistar male rats/liver mitochondria ↓ In viscosity ↑ Membrane potential,
respiration, and complex V
activity; ↓ complex III and IV
activity

(156)

1AA, arachidonic acid (20:4); CL, cardiolipin; LA, linoleic acid (18:2); MPTP, mitochondrial permeability transition pore; OA, oleic acid (18:1); PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PLA2, phospholipase A2; RCI, Respiratory Control Index; ROS, reactive oxygen species; (18:2)4CL, tetralinoleoyl cardiolipin; ↑, increase/increased; ↓,
decrease/decreased.

antioxidant potential and increase ROS production within
themitochondrialmatrix. Several literature reports show that
supplementation with n–3 PUFAs increases the antioxidant
capacity of the cell through a variety of mechanisms (161–
165). For instance, n–3 PUFA supplementation increased
the concentrations of oxidative stress products, including
lipid hydroperoxides and malondialdehyde. However, super-
oxide dismutase activity was upregulated, which increased
mitochondrial antioxidant capacity and thereby maintain-
ing protein function (161). In addition, in HepG2 cells sup-
plemented with DHA, there was no increase in lipid per-
oxidation but an increase in glutathione-related antioxidant
enzyme activities and superoxide dismutase activity (162).
DHA has also been implicated in several studies for inhibit-
ing free radical generators, includingNADPHoxidases (165).
The role of n–3 PUFAs and their antioxidant capacity is rel-
evant in a multitude of disease states and warrants more ex-
tensive research (164).

Consumption of n–3 PUFAs influences mitochondrial
protein activity
The IMM houses a multitude of proteins that perform
a variety of functions, most notably of those involved in
OXPHOS. The IMM is a sea of proteins with imbedded
phospholipids with a protein to phospholipid ratio of 4:1 (7).
Despite a high concentration of proteins within the IMM,

phospholipids play a crucial role in maintaining protein or-
ganization and function.

Cardiolipin binds to a multitude of IMM proteins and
aides in their biophysical organization and function. This in-
cludes binding to individual electron transport chain (ETC)
enzymes as well as promoting the formation of supercom-
plexes. For example, there are 9 binding sites for cardiolipin
in bovine complex I (166). Complex III has 6 cardiolipin
binding sites that have functional and structural importance.
Structural studies suggest that cardiolipin binds to sites on
complex III and aids in proton uptake (81, 167). Cardiolipin
is also functionally required for complex IV activity. There
are 4 cardiolipin binding sites in complex IV: 2 are “high
affinity” and 2 are “low affinity.” The high-affinity cardiolipin
binding sites are associated with the regulation of electron
activity and the low affinity sites are important in structural
integrity of the complex in its dimer form (80, 168–171). In
addition, complex V dimers require cardiolipin for assem-
bly into larger oligomeric structures (79, 172, 173). As well
as binding to individual complexes, cardiolipin is also con-
sidered to function as a “glue” by holding respiratory super-
complexes together (174).

Cardiolipin undergoes remodeling in the mitochondria
from its nascent form to a highly regulated species that is in
the cardiac tissue ∼90% tetra-linoleic or (18:2)4 (Figure 2).
It is well documented that reductions in the concentration of
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(18:2)4CL in the IMMwill lead to supercomplex dissociation,
loss of ATP production, and structural abnormalities, most
notably seen in Barth syndrome (120, 121, 175). Along with a
loss of content, alterations in acyl chain species of cardiolipin
may also result in a disorganization of the membrane and
thereby decreased respiratory enzyme activity and super-
complex formation. For example, in Barth syndrome, res-
piratory supercomplexes are destabilized due to cardiolipin
acyl chain remodeling and decreased cardiolipin concen-
trations (176). However, the importance of cardiolipin con-
centration compared with cardiolipin acyl chain remodeling
in supercomplex destabilization has yet to be definitively
determined.

The consumption of n–3PUFAs also targets enzymatic ac-
tivity, which could be through a direct effect on respiratory
enzymes, formation of supercomplexes, or both. In 1 study,
rats were fed a 30% fish-oil diet for 12 wk, which resulted in a
decrease in complex II+III and complex IV activities (156).
Several other studies showed that an increase in n–3 PUFA
consumption reduced ATP production and various states of
respiration (148, 152). Other laboratories reported no loss of
respiratory function with n–3 PUFA supplementation (125,
151). A recent study from our group showed that DHA ethyl
esters lowered respiratory enzyme activities of complexes I,
IV, V, and I+III. The underlying mechanism was driven by
replacement of LA by DHA in the mitochondrial phospho-
lipidome (150). Although an increase in n–3 PUFAs disorga-
nizes the mitochondrial membrane and can potentially alter
protein function, studies are overall inconsistent. More stan-
dardized experiments need to be conducted on the role of
n–3 PUFA acyl chains and their effects on mitochondrial en-
zyme functions.

Effects of Long-Chain n–3 PUFAs on Diseased
Mitochondrial Membranes and Function
Ischemia reperfusion injury
Cardiac ischemia reperfusion (IR) injury is characterized by
an acute loss of blood flow followed by the reintroduction
of blood and oxygen. The pathogenesis of IR injury is com-
plex and involves multiple pathways, including ROS and in-
flammation (177, 178). In the mitochondria, IR is character-
ized by a distinct loss in cardiolipin, energy dysregulation,
and overabundance of ROS. Several studies suggest that treat-
ment with n–3 PUFAs improves myocardial resistance to IR
injury and reduces infarct size, although the mechanisms re-
main elusive (179–182).

n–3 PUFAs could improve IR injury through differing
mechanisms, either before ischemia or during the reper-
fusion phase. Several laboratories report that chronic n–3
PUFA supplementation reduces the severity of IR injury and
decreases myocardial infarct size. These studies also showed
that n–3 PUFA treatment upregulates mitochondrial antiox-
idant activity, including superoxide dismutase, catalase, and
glutathione peroxidase, which combat lipid peroxidation
during IR injury (161, 180, 183, 184). Chronic n–3 PUFA
treatment may be associated with a reinforced antioxidant

defense system that protects the mitochondria from ROS
produced during the reperfusion phase of IR injury. Acute
treatment with n–3 PUFAs during the reperfusion phase
of IR injury has also been explored. One study gave a
bolus of n–3 PUFA TGs to rats after ischemia but before
reperfusion. The results indicated that acute treatment with
an EPA-to-DHA ratio of 6:1 improved the outcome of IR
injury by reducing vascular inflammation and oxidative
stress (185). Another laboratory found that infusion with
DHA diminished cardiac damage and increased antioxidant
protection (186).

Although a multitude of studies have measured the effects
of n–3 PUFAs before and during IR treatment, little is known
about their mechanisms of action in relation to the IMM.
Several reports suggest that n–3 PUFAs, particularly DHA,
incorporate into the membrane and regulate Ca2+ channels
and delay the Ca2+-dependent MPTP opening. The MPTP
opening is associated with cardiovascular diseases, including
IR injury, and interventions to target its opening are of sig-
nificant clinical relevance (152, 187). However, some labora-
tories suggest that supplementation with EPA or DHAhas no
effect on MPTP opening in diseased hearts, only in healthy
heart tissue (188). Likewise, asmentioned above, supplemen-
tation with EPA or DHA can potentially alter enzymatic ac-
tivities, which could increase the adverse effects of IR injury.
More research is needed on n–3 PUFAs and IR injury in ad-
dition to other cardiovascular diseases, such as heart failure
(78). This is highly relevant given the debate about n–3 PUFA
efficacy for cardiovascular diseases (78, 189).

Obesity and type 2 diabetes
Several literature reports suggest that the consumption of
n–3 PUFAs can have beneficial effects for obesity and type
2 diabetes (190). The mechanisms for improvements con-
sist of improving insulin signaling, preventing alterations in
glucose metabolism, and reversing dyslipidemia via target-
ing of transcription factors and gene expression (191, 192).
n–3 PUFAs also modulate inflammation by decreasing the
n–6-to-n–3 PUFA ratio, which reduces the burden of these
diseases through n–6-derived lipid mediators (127, 128). Al-
though much is known about the role of n–3 PUFAs in regu-
lating gene expression in these diseases, less is known about
how n–3 PUFAsmodulatemitochondrialmembranes during
obesity and type 2 diabetes. One set of experiments showed
that an increase inDHA intake partially preventedmitochon-
drial dysfunction induced by insulin resistance in cardiacmi-
tochondria (193).

Some studies suggest that an increase in n–3 PUFAs
within mitochondrial membranes will modulate proton con-
ductance and enhance proton uncoupling, leading to limited
weight gain or increased weight loss (194, 195). However,
evidence that n–3 PUFAs affect weight loss is lacking and at
times contradictory (196, 197). Paradoxically, some studies
showed that pathological remodeling of cardiolipin will
increase oxidative damage that contributes to mitochondrial
dysfunction in obesity and type 2 diabetes. For instance, Li
et al. (35) showed that DHA concentrations in C2C12 cells
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were elevated upon upregulation of ALCAT1 and increased
oxidative stress. ALCAT1 is relevant because a murine
ALCAT1 knockout model was shown to protect against
diet-induced obesity and insulin resistance (35). In addition,
shotgun lipidomic studies showed a significant decrease in
cardiolipin abundance and a profound remodeling of the
remaining cardiolipin species to include DHA acyl chains in
rat diabetic myocardium (198, 199). These studies suggest
that an increase in n–3 PUFA acyl chains within mitochon-
drial membranes could be detrimental for mitochondrial
function.

Themechanisms bywhich n–3PUFAs regulatemitochon-
drial membranes and protein function are still vastly un-
known in obesity and type 2 diabetes.However, an increase in
acyl chain unsaturationmay result inmembrane disorganiza-
tion, which would lead to altered lipid-lipid interactions and
protein-lipid interactions and potentially mitochondrial dys-
function (Figure 3). It is likely that there is a fine balance be-
tween detrimental and beneficial effects of n–3 PUFAs, which
will require extensive experimentation as a function of dose
of EPA and DHA.

Nonalcoholic fatty liver disease
Nonalcoholic fatty liver disease (NAFLD) is characterized by
an increase in the accumulation of lipids in the liver and can
lead to fibrosis and cirrhosis. NAFLD is also associated with
insulin resistance, oxidative stress, inflammation, and altered
lipid metabolism (200). NAFLD impairs mitochondrial dys-
function, which can occur in a number of ways, including
lipid and mitochondrial DNA peroxidation, ultrastructure
abnormalities, reduced ATP stores, and alterations in respi-
ratory chain enzyme activities (201–207). Several studies and
meta-analyses suggest that an increase in n–3 PUFA intake
can reduce the effects of NAFLD by regulating gene tran-
scription, reducing inflammationmarkers, and increasing β-
oxidation (208–217). In fact, recent clinical data suggest that
supplementation with n–3 PUFAs positively affects plasma
lipid profiles, improves liver histology, and decreases inflam-
matory markers in patients with NAFLD (218, 219).

Although much is known on the role of n–3 PUFAs in
abating the effects of NAFLD, little is known on their role
in mitochondrial membranes during the development of this
disease. For example, incubating HepG2 cells (a steatotic
hepatocyte model) with 50μmol EPA or DHA/L rescued the
reduction in mitofusin 2, a multifunctional protein that par-
ticipates in proliferation and metabolism, which caused an
increase in the length of mitochondrial tubules (220). This
study also showed that n–3 PUFAs increased ATP produc-
tion and decreased ROS production (220). The role of n–3
PUFA incorporation into mitochondrial membranes during
NAFLD warrants more scientific exploration.

Cancers
There are data to suggest that the consumption of n–3 PUFAs
decreases the risk of various cancers, including breast can-
cer, colon cancer, prostate cancer, and leukemias (221–224).
The mechanisms by which n–3 PUFAs destroy cancer cells
are multifaceted. These mechanisms include suppression of

AA-derived eicosanoids by decreasing the n–6-to-n–3 PUFA
ratio, influencing transcription factors and gene expression,
increasing oxidative stress, and altering cellular membrane
organization (132, 225, 226).

Supplementation with n–3 PUFAs increases the polyun-
saturation index and decreases the membrane potential of
the IMM, thereby priming the cell to undergo apoptosis (153,
227–229). In HL-60 (promyelocytic leukemia) cells, supple-
mentation with n–3 PUFAs led to induction of the apoptosis
cascade by activating various caspase enzymes and releasing
cytochrome c from the IMM (223). In addition, n–3 PUFA
supplementation also decreased the membrane potential ef-
fectively depolarizing themitochondria (223). As another ex-
ample,DHA,with the addition of butyrate, induced apoptosis
in colonocytes, which protected against tumorigenesis (221).
Apoptosis ismediated throughCa2+-mediated pathways, en-
hancing phospholipid oxidation, and increasing proton leak
across the IMM(221, 222). n–3 PUFAsmay also have a role in
improving outcomes in cancer linked to obesity through anti-
inflammatory and pro-resolving mechanisms (230, 231).

Conversely, it has been suggested that n–3 PUFAs increase
the antioxidant capacity of the cell by upregulating antioxi-
dant enzyme production, thereby suppressing inflammation,
ROS production, and carcinogenesis (224). These pathways
are potentially contradictory and further research needs to
be done to determine the primary role of n–3 PUFAs in can-
cer suppression. One likely mechanism is DHA influencing
mitochondrialmembrane dynamics and thereby interactions
with cytochrome c.

Conclusions and Future Directions
Mitochondria have a central role in cellular function across a
range of tissues in health and disease. The underlying mech-
anisms by which SFAs and unsaturated FAs influence mi-
tochondrial membrane structure are in their infancy. How-
ever, there are clear indications that dietary FAs remodel
themitochondrial phospholipidome, particularly in dysfunc-
tional mitochondria, which influences a range of mitochon-
drial responses. More research is needed in FA structure and
membrane biophysics to elucidate how FAs go beyond dis-
rupting membrane microviscosity to regulate a range of
mechanisms, including MAM formation, microdomain dis-
tribution, phospholipid-protein binding, protein activity, an-
tioxidant capacity, apoptosis, and respiration.
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