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ABSTRACT

TheMediterranean diet pattern is increasingly associated with improvedmetabolic health. Twomechanisms by which consuming aMediterranean
diet pattern may contribute to improved metabolic health are modulation of the gastrointestinal (GI) microbiota and reduction of metabolic en-
dotoxemia. Metabolic endotoxemia, defined as a 2- to 3-fold increase in circulating levels of bacterial endotoxin, has been proposed as a cause of
inflammation during metabolic dysfunction. As the largest source of endotoxins in the human body, the GI microbiota represents a crucial area
for research on strategies for reducing endotoxemia. Diets high in saturated fat and low in fiber contribute to metabolic endotoxemia through
several mechanisms, including changes in the GI microbiome and bacterial fermentation end products, intestinal physiology and barrier function,
and enterohepatic circulation of bile acids. Thus, the Mediterranean diet pattern, rich in unsaturated fats and fiber, may be one dietary strategy
to reduce metabolic endotoxemia. Preclinical studies have demonstrated the differential effects of dietary saturated and unsaturated fats on the
microbiota and metabolic health, but human studies are lacking. The role of dietary fiber and the GI microbiome in metabolic endotoxemia is un-
derinvestigated. Clinical research on the effects of different types of dietary fat and fiber on the GI microbiota and GI and systemic inflammation is
necessary to determine efficacious dietary strategies for reducing metabolic endotoxemia, inflammation, and subsequent metabolic disease. Adv
Nutr 2018;9:193–206.
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Introduction
Obesity rates continue to rise, with 35.0% of adult men and
40.4% of adult women affected in the United States (1).
Obesity-related morbidity represents a deepening crisis with
diseases such as type 2 diabetes mellitus and cardiovascu-
lar disease afflicting 9.4% (2) and 28.5% (3) of the US pop-
ulation, respectively, and contributing $209.7 billion in ex-
cess annual healthcare-associated costs (4). Dietary strategies
for the prevention and treatment of obesity and its comor-
bidities are an important research area. The Mediterranean
diet pattern, characterized by high intake of fruits, vegeta-
bles, legumes, whole grains, and nuts; moderate consump-
tion of seafood and red wine; and the use of olive oil as the
main source of fat (5) (Table 1) is one dietary strategy
recommended in the USDA’s 2015–2020 Dietary Guide-
lines for Americans as a way to promote health and prevent
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chronic disease (6). This is in comparison to theWestern diet
pattern, widely consumed in the United States, which is char-
acterized by high consumption of red and processed meats;
high consumption of refined grains and sugar-sweetened
beverages; and low consumption of fresh fruits, vegetables,
and legumes (7–9) (Table 1). Epidemiologic studies have re-
vealed that consumption of a Mediterranean diet pattern is
associated with lower all-cause mortality (HR, 0.77; 95% CI:
0.68, 0.88) (10), coronary heart disease (HR, 0.61; 95% CI:
0.43, 0.88) (10), cardiovascular disease (HR, 0.71, 95% CI:
0.58, 0.88) (10), type 2 diabetes (HR, 0.84; 95%CI: 0.62, 1.14)
(11), and cancer (HR 0.81; 95%CI: 0.51, 1.28) (11). However,
clinical trials are limited (Table 2) and intervention trials of-
ten lack an explanation of the underlying mechanisms.

Metabolic diseases, such as obesity (12, 13), type 2 dia-
betes (14, 15), cardiovascular disease (16), and nonalcoholic
fatty liver disease (17), are characterized by chronic subclin-
ical inflammation with increased serum concentrations of
pro-inflammatory cytokines like C-reactive protein (CRP),
IL-6, and others. In an analysis of the 1988 to 1994NHANES,
20.2% of obese women had clinically elevated CRP concen-
trations (>1.0 mg/dL) compared to 4.0% of healthy weight
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TABLE 1 Comparison of Mediterranean and Western diet patterns

Level of consumption

Foods Mediterranean (5) Western (7–9)

Fresh fruits and vegetables High Low
Whole grains High Low
Refined grains Low High
Legumes High Low
Nuts High No specification
Seafood Moderate No specification
Red and processed meats Low High
Sugar-sweetened beverages Low High
Red wine Moderate No specification

women (18). In a case-cohort study, those in the highest quar-
tile of serum IL-6 concentrations (>2.96 pg/mL) had a 65%
higher chance of developing diabetes comparedwith the low-
est quartile (15). In addition, 1 prospective study reported
that men in the highest tertile of serum CRP concentrations
(>2.4 mg/L) had an OR for coronary heart disease of 2.13
compared with those in the lowest tertile (<0.9 mg/L) after
adjusting for known vascular risk factors (19). The cause of
this inflammation is a web of complex associations amongst
diet, the gastrointestinal (GI) microbiome, and the immune
system, which leads to a state of metabolic endotoxemia de-
fined as a 2- to 3-fold increase in circulating levels of bacterial
LPS (20). Preclinical research provides evidence that micro-
bial, immune, and dietary factors are collectively necessary
for the development of metabolic endotoxemia as gnotobi-
otic mice (21, 22), mice with nonfunctional toll-like recep-
tor (TLR) signaling pathways (23), and mice fed diets low
in saturated fat (23, 24) do not exhibit the inflammation and
metabolic disease that occur when all these factors are com-
bined.

LPSs, also known as endotoxins, are structures present
on the outer membrane of gram-negative bacteria, consist-
ing of a polysaccharide O-antigen portion connected to a
membrane-dwelling lipid-A portion. It is the lipid-A por-
tion that exerts most of the immunogenic effects of LPSs,
including the activation of TLR4, an immune receptor that
upregulates the transcription of pro-inflammatory cytokines
(25). The O-antigen portion activates components of the
adaptive immune system, which results in the production
of antibodies. Both the lipid-A portion and O-antigen por-
tion vary structurally and immunogenically (26), although
this variation and its effects on metabolic endotoxemia are
poorly understood. As the primary source of LPSs in the
body, changes in the composition of theGImicrobiota and/or
production of microbial metabolites may alter the pool of
pathogen-associated molecular patterns that encounter the
intestinal epithelium and enter circulation. Increasingly, diet
has been shown to be the primary mediator of the compo-
sition and function of the GI microbiota (27). Fat and fiber,
2 important components of the Mediterranean diet pattern,
have differential effects on the GI microbiota. Diets high in
saturated fat may exacerbate endotoxemia and inflammation
by increasing transport of LPSs (24), by increasing the
amount of LPSs available for transport by expanding the

proportion of gram-negative bacteria in the gut (20), or by
the ability of saturated fats to stimulate TLR4 receptors di-
rectly (28, 29). Conversely, high-fiber diets may decrease the
proportion of gram-negative bacteria (30) and improve gut
barrier function, preventing endotoxemia (31) and subse-
quent metabolic disease.

The aim of this review is to summarize the current state
of knowledge about diet, the GI microbiome, and inflam-
mation; elucidate gaps in knowledge; propose future areas of
study; and suggest dietary strategies to address metabolic en-
dotoxemia.

Dietary fatty acids
Staples of the Mediterranean diet pattern include nuts,
seafood, and olive oil, which are rich in unsaturated fatty
acids and low in SFAs. Consumption of these foods is
lower than recommended for most age groups in the
United States (6). This is problematic as overconsump-
tion of saturated fats contributes to the development of
cardiovascular disease (32) and diabetes (33). The current
average saturated fat intake in the United States is 11% of
energy, which exceeds the recommended limit set by the
USDA of 10%, and it is estimated that only 29% of the
population meets this recommendation (6). In 1 clinical
cross-over trial, participants consumed dietary patterns rich
in SFAs or PUFAs for 5 wk each by substituting the respec-
tive fat sources, e.g., substituting butter with a PUFA-based
spread and cooking oils and vice versa. At the end of the
high-PUFA and reduced saturated fat period, participants
had a 20% increase in insulin sensitivity and a 19 mg/dL
decrease in LDL cholesterol (34). A systematic review of 102
clinical trials reported that replacement of saturated fat with
PUFAs resulted in decreased fasting glucose concentrations
(0.04 mmol/L reduction), fasting insulin concentrations (0.5
pmol/L reduction), and insulin resistance (4% reduction)
(35). However, a meta-analysis of 8 randomized controlled
trials enrolling 663 participants reported that there was
not strong evidence that replacement of dietary saturated
fat with unsaturated fat improved blood lipid profiles (36),
indicating a need for more high-quality studies on the
topic.

LPS translocation
There are 2 main purported mechanisms by which bacte-
rial LPSs from the GI tract may enter systemic circulation:
transcellularly, with the absorption of dietary fat; and para-
cellularly, through compromised enterocyte tight junctions
(37, 38). Preclinical studies have revealed that dietary fat
absorption facilitates the translocation of LPSs across the
intestinal epithelium (20, 24, 39), and there is increasing
evidence that these relations also translate to clinical pop-
ulations (37, 40–42) (Table 3). During digestion, TGs, the
predominant form of dietary fat, are broken down into free
fatty acids that enter enterocytes by free diffusion through
the cellular membrane and by specific fatty acid transporters
(43). These free fatty acids are then transported to the endo-
plasmic reticulum by fatty acid binding proteins where they
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TABLE 2 Summary of clinical studies of the Mediterranean diet pattern

Outcome Study type Sample size Treatment Reference

A Mediterranean diet pattern may be effective in
reducing the prevalence of metabolic syndrome

Interventional 180 adults with
metabolic
syndrome

Control—received advice to eat
generalized healthful diet

Esposito et al.
(77)

Treatment—received
personalized advice to
consume a Mediterranean
diet pattern

Consumption of a plant-based diet, consistent with
high-level adherence to the Mediterranean diet
pattern, is associated with beneficial
microbiome-related metabolomic profiles

Cross-sectional 153 individuals
following omnivore,
vegetarian, or
vegan diet

NA1 De Filippis
et al. (81)

Adherence to a Mediterranean diet pattern was
negatively associated with plasma endotoxin
concentrations (evaluated by ELISA) and major
adverse cardiovascular events; however, no
inflammatory markers were included

Prospective 912 patients with
atrial fibrillation

NA Pastori et al.
(96)

1NA, not available.

are repackaged, along with cholesterol, fat-soluble vitamins,
and LPSs, into prechylomicrons (43, 44). The prechylomi-
cron, stabilized by apolipoprotein B, is transported through
the Golgi apparatus, preparing it for secretion from the cell
into the lymphatic and eventually cardiovascular circulation
(44).

Whereas dietary lipids are absorbed mainly in the prox-
imal small intestine, the majority of the GI microbiota, the
largest source of LPSs in the body, is resident in the distal
small intestine and colon. One possible explanation for this
contradiction is that endotoxemia may be the result of small
intestinal bacterial overgrowth, which has been reported to
be 17.1% more likely in those with obesity (45). One clinical
study of patients with nonalcoholic steatohepatitis reported
that small intestinal bacterial overgrowth was present in

50% of participants. Intestinal permeability, plasma LPS
concentrations [measured by Limulus amebocyte lysate
(LAL) assay], and serum TNF concentrations were also
measured. Whereas intestinal permeability and plasma LPS
concentrations were not significantly different between
healthy patients and patients with nonalcoholic steatohep-
atitis, serum TNF concentrations were lower in healthy pa-
tients (14.2 pg/mL and 7.5 pg/mL, respectively) (46). In
another cross-sectional study, small intestinal bacterial over-
growth, defined as ≥105 total colony forming units/mL
of jejunal secretions, was present in 59% of patients with
liver cirrhosis. Endotoxemia (measured by LAL assay)
was associated with small intestinal bacterial overgrowth,
although no inflammatory markers were reported (47). Tak-
ing these studies into account, measures of small intestinal

TABLE 3 Summary of clinical interventional trials of metabolic endotoxemia1

Outcome Sample size Treatment(s) and control Endotoxin
Inflammatory

markers included Reference

A high-fat meal increased plasma
endotoxin concentrations and
endotoxin-neutralization capacity

12 healthy
adult men

Control—no meal
Treatments—∼900 kcal

serving of toast with butter
with or without 3 cigarettes

↑2 TNF↔ Erridge et al. (40)

A high-fat, high-carbohydrate meal
increased plasma endotoxin
concentrations and
pro-inflammatory activity

20 healthy
adults

Control—oatmeal, milk,
orange juice, raisins, peanut
butter, and English muffin

Treatment—egg muffin and
sausage muffin sandwiches
and 2 hash browns

↑2 TNF↔, CRP↔, NFκB↑ Ghanim et al. (41)

A high-fat meal increased plasma
endotoxin concentrations and these
concentrations were positively
correlated with triglyceridemia

40 morbidly
obese
adults

Treatment—50 g fat
(10 g SFA, 29.46 g MUFA, and
10.625 g PUFA)

↑2 CRP↔ Clemente-Postigo
et al. (42)

A high–saturated fat meal increased
plasma endotoxin concentrations
and inflammation compared to a
high–unsaturated fat or low-fat meal

20 healthy
adults

Control—porridge made with
olive oil (20% fat)

Treatment—porridge made
with fish oil, grapeseed oil,
or coconut oil (35% fat)

↑2 IL-6↔, IL-8↔, TNF↔ Lyte (37)

1CRP, C-reactive protein. ↑, increase; ↓, decrease; ↔, even
2Measured using the Limulus amebocyte lysate assay.
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TABLE 4 Summary of preclinical studies of saturated fat and endotoxemia1

Outcome Model Treatment(s) and control Endotoxin
Inflammatory

markers included Reference

High-saturated fat diet increased
proportion of gram-negative gut
microbiomes and increased
endotoxemia

C57BL/6J mice Control—standard murine
diet

Treatment—72% energy from
fat (corn oil and lard), 28%
energy from protein, and
>1% energy from
carbohydrate

↑2 TNF↑, IL-1↑, IL-6↑,
plasminogen
activator inhibitor↑

Cani et al. (20)

Chronic high-saturated fat diet
increased metabolic endotoxemia

C57BL/6, Myd88−/− ,
Trif−/− , Tlr4−/− ,
and Tlr2−/− mice

Treatments—45% of energy
from fish oil or lard

↑2 TNF↑ Caesar et al. (23)

Saturated fat increased postprandial
endotoxemia and treatment of
ileal epithelium increased
permeability to LPS

Pig Control—porridge made with
50 mL water

Treatments—porridge made
with 50 mL of fish oil,
vegetable oil, or coconut oil

↑3 None Mani et al. (24)

Arabinoxylan supplementation
resulted in less fat mass
development, better insulin
sensitivity, greater gut integrity, less
endotoxemia, less inflammation, a
bloom of Bifidobacterium, cecal
and colon enlargement, and an
increase in colonic expression of
genes related to SCFA response

C57BL/6J mice Control—high-fat (60% of
energy)

Treatment—high-fat diet
supplemented with 7.5%
(wt:wt) arabinoxylan
extract

↓2 TNF↔, IL-1↔, IL-6↓,
monocyte
chemoattractant
protein↔

Neyrinck et al. (93)

1LAL, Limulus amebocyte lysate; ↑, increase; ↓, decrease; ↔, even.
2Measured using the LAL assay.
3Assessed using the PyroGene rFC Assay, Lonza, Switzerland.

bacterial overgrowth may be prudent additions to clinical
studies of metabolic endotoxemia.

The differential effects of dietary fats on metabolic endo-
toxemia have been investigated in several preclinical stud-
ies (Table 4). One murine study compared mice fed diets
supplemented with SFAs in the form of lard or unsaturated
fatty acids in the form of fish oil. Circulating LPS levels
(measured by LAL assay) were similar between groups at
3 wk of feeding, but were higher in the lard-fed group at
11 wk. Acutely, both saturated fat and unsaturated fat facil-
itate LPS translocation; however, chronically, metabolic en-
dotoxemia was more pronounced in the high-saturated fat
group, which may be due to long-term changes in the GI mi-
crobiota including an increase of Akkermansia muciniphila,
whichwas only enriched in the fish oil-fedmice at 11wk (23).
In mice, Akkermansia is routinely reduced following periods
of high-fat feeding and is inversely associated with obesity
and inflammation (48, 49), whereas reconstitution with A.
muciniphila may improve insulin signaling and glucose tol-
erance (50).

Other murine studies that compare the immunomodula-
tory effects of dietary fat types have similarly demonstrated
the deleterious effects of diets high in saturated fats. Mice fed
a high-MUFA (canola oil) diet or a high-saturated fat (palm
oil) diet had higher plasma LPS concentrations (measured
by LAL assay) in the canola oil condition, but higher plasma
concentrations of the pro-inflammatory cytokines IL-6 and
IL-1β in the palm oil condition. In an accompanying in vitro

experiment, adipocytes stimulated with LPSs and incubated
with palm oil had higher expression of the endotoxin-sensing
TLR4 and cluster of differentiation (CD)14 compared with
adipocytes incubated with canola oil (high n–3 PUFA), sun-
flower oil (high n–6 PUFA), or milk fat (high saturated fat)
(Table 5). This suggests that whereas both high saturated and
unsaturated fats may induce endotoxemia, high-saturated fat
diets generally lead to more inflammation than unsaturated
fats in mice (39).

The differential effects of postprandial saturated and un-
saturated fat exposure on gut permeability and endotoxemia
were further demonstrated in a porcinemodel, whereby post-
prandial serum LPS concentrations (measured by PyroGene
rFCAssay, Lonza, Switzerland)were increasedwith saturated
fat (coconut oil) consumption as compared with n–3
PUFAs (fish oil). In addition, ex vivo treatment of ileal ep-
ithelium with fish oil and cod liver oil reduced gut perme-
ability, whereas treatment with coconut oil increased perme-
ability. The authors attributed this increase in permeability to
the tendency of saturated fats to form lipid rafts in the cellu-
lar membranes of enterocytes, thereby decreasingmembrane
fluidity. Saturated fat–induced endotoxemia was attenuated
by administration of a compound that causes dissociation of
lipid rafts (24). This preclinical evidence (23, 24, 39) demon-
strates how diets high in saturated fat may induce metabolic
endotoxemia and systemic inflammation through increasing
intestinal permeability and altering the GI microbiota
composition.
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TABLE 5 Lipid composition of fats and oil1

Fish oil2 Canola oil Sunflower oil3 Olive oil Palm oil Coconut oil Milk fat (39) Lard

% PUFAs 37 29 11 7 10 7 10 12
% MUFAs 29 64 81 79 39 7 49 47
% Saturated 33 7 7 14 52 86 41 41
n–6/n–3 PUFAs 0.07 2.08 NA 12.83 45.5 88.58 NA 10.2

1Based on reference 130.
2Menhaden.
3Med-oleic.

Fat and the GI microbiota
Diets high in saturated fat may alter the GI microbiome and
intestinal physiology in ways that contribute to metabolic
dysfunction. Using a murine model, 1 study demonstrated
that a high-fat (45% energy) palm oil diet decreased fat
absorption and increased fecal fat concentrations compared
with a high-fat olive oil or high-fat safflower oil diet, with
the 3 groups presenting daily fecal fat concentrations of
27.7 mg/day, 16.8 mg/day, and 17.6 mg/day for the palm
oil, olive oil, and safflower groups, respectively. Increased
fecal fat concentrations in the palm oil group were accom-
panied by a reduction in microbial diversity, an increased
Firmicutes:Bacteroidetes ratio, and an increase in mucosal
expression of lipid-related genes. The authors hypothesized
that the presence of higher amounts of fatty acids in the
distal intestine had an antimicrobial effect that produced
a loss of overall diversity (51), considered to be a sign of
dysbiosis.

Another murine study demonstrated the deleterious ef-
fects of an exceptionally high fat diet (72% energy), reporting
an increased proportion of gram-negative gut microbes;
a 2- to 3-fold increase in circulating levels of LPSs; in-
creased liver, adipose, and skeletal muscle expression of pro-
inflammatory cytokines (TNF, IL-1, IL-6, and plasminogen
activator inhibitor); poorer glucose tolerance; and increased
hepatic TG. Interestingly, mice deficient in the LPS receptor
protein, CD14,were spared the negative effects of the high-fat
diet, exhibiting hypersensitivity to insulin and normal liver
TG content, suggesting the LPS/CD14 systemwas driving the
metabolic effects of the high-fat diet in the wild-type mice
(20). Although these 2 preclinical studies utilized diets higher
in fat (45% and 72% of energy for these 2 studies, respec-
tively) than the American average of 35% (52), they draw at-
tention to the need for further clinical investigation of dietary
fats, the GI microbiota, and endotoxemia.

Fat and fiber have differential effects on the GI micro-
biome. Preclinical research has demonstrated that high-fat
feeding may increase the proportion of gram-negative bacte-
ria in the gut while decreasing the abundance of some gram-
positive bacteria like the Eubacterium rectale/Clostridium
coccoides group and Bifidobacterium (20). This may be be-
cause gram-negative bacteria are generallymore bile-tolerant
than gram-positive bacteria for reasons that are still poorly
understood, but which may include the protective qualities
of LPSs (53), as bacteria lacking the O-antigen portion of
the LPS structure have reduced bile acid–tolerance (54).

However, not all gram-positive bacteria respond poorly to
a fat challenge and some gram-negative bacteria flourish
during high-fiber feeding. For example, the gram-negative
genus Prevotella is fiber-degrading and enriched in high-
fiber diets (55), whereas the gram-positive Clostridia class
are bile-resistant and increased during high-fat feeding (56).
In addition, a cross-sectional study of children consuming
a traditional rural African diet in Burkina Faso compared
with children consuming a Western diet in Italy revealed
that children from Burkina Faso had greater (58.5%) abun-
dance of gram-negative bacteria, particularly Bacteroidetes,
whereas European children had greater (70.4%) abundance
of gram-positive bacteria, particularly Firmicutes. The di-
ets of these 2 groups varied greatly with the African chil-
dren consuming more fiber and fewer calories (1–2 y of age:
10 g fiber, 672.2 kcal; 2–6 y of age: 14.2 g fiber, 996 kcal) than
the European children (1–2 y of age: 5.6 g fiber, 1068.7 kcal;
2–6 y of age: 8.4 g fiber, 1512.7 kcal) (55). Clinical studies
utilizing complete feeding interventions have demonstrated
that the addition of walnuts or almonds (high in unsaturated
fats and fiber) to the diet facilitates increases in several gen-
era of gram-positive bacteria in the Clostridia class including
Lachnospira, Roseburia, Oscillospira (57), Faecalibacterium,
and Clostridium (58), and decreases in others, including Ru-
minococcus, Dorea, and Bifidobacterium (member of class
Actinobacteria) (58).

One reason a simple gram-negative/gram-positive divide
may not be possible is the variation in immunogenicity of
LPSs between species of gram-negative bacteria, so that it
may not be the abundance of gram-negative bacteria that
predicts inflammation, but rather the abundance of highly
immunogenic LPS-producing gram-negative bacteria. It has
been demonstrated that GI microbial dysbiosis can result in
inappropriate immune activity. One study comparing type 1
diabetes incidence and differences in microbiome structure
in children reported a high abundance of Bacteroides and
low abundance of Escherichia coli in children from Finland
and Estonia, where type 1 diabetes rates are high, and a high
abundance of E. coli and low abundance of Bacteroides in
children from Russia, where type 1 diabetes rates are low.
The authors further demonstrated that differences in the LPS
structure between the Bacteroides species and E. coli may
account for the improper education of the immune system in
children with type 1 diabetes (59). These results were com-
plemented by a study that demonstrated that mice with non-
functional TLR4 pathways do not develop type 1 diabetes,
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further implicating the LPS-TLR4 system in inappropriate
immune education (60). This type of work has not been
replicated for metabolic endotoxemia in adults, but would be
of great value in the elucidation of the mechanisms by which
microbiome structure affects inflammation and metabolic
disease.

Endotoxemia and inflammatory markers
Clinical studies of metabolic endotoxemia often use a
method of LPS quantification called the LAL assay (Table 3).
The LAL is an extract of blood cells from the North Amer-
ican horseshoe crab, which coagulates when in contact with
LPSs. However, this reagent cannot be used for LPS detec-
tion in human blood due to proteins and other factors in hu-
man blood which interfere with the enzymatic cascade that
results in LAL coagulation (61). Indeed, the LAL assay fails
to provide specific, sensitive, and reproducible results for the
quantification of endotoxin in human blood, plasma, and
sera samples (62). To improve reproducibility, some have in-
troduced a method which involves diluting and heating the
plasma or sera samples before the introduction of the LAL,
which denatures the interfering proteins (63). Although this
does improve reproducibility, thismethod fails to produce re-
sults that are reflective of the total amount of circulating LPSs
(63).

As plasma LPS is difficult to measure by direct assay, in-
direct methods may be more accurate, such as LPS-binding
protein assay (64), or proxy measures of endotoxemia like
inflammatory cytokines (IL-6, TNF, and CRP). A compari-
son of 2 clinical trials assessing LPSs and other inflammatory
cytokines exemplifies the inconsistencies among measures.
One clinical study of the effects of a high-fat meal (∼900 kcal
serving of toast with butter) on endotoxemia reported a 50%
increase in circulating endotoxin concentrations compared
with baseline (measured by LAL assay) (40). However, nei-
ther plasma CRP nor TNF concentrations were increased
after the high-fat challenge (40). In another clinical trial,
participants given a high-fat, high-carbohydrate meal (egg
muffin and sausage muffin sandwiches and 2 hash browns)
had a 47% increase in plasma LPS concentrations (measured
by LAL assay) 3 h postprandially compared with baseline.
This increase in LPSs was accompanied by a 72% increase
in DNA binding by NFκB, a transcription factor which up-
regulates the expression of pro-inflammatory cytokines, in
mononuclear cells over baseline, as well as increased ex-
pression of TLR2 and TLR4 in these cells (41). These addi-
tional inflammatory measures provide valuable insight into
the physiologic postprandial state that is not possible to at-
tain with LPS measurements alone.

Bile acids
Bile acids are another mechanism by which dietary fats and
fibers affect the GI microbiota and intestinal physiology. Bile
acids are increasingly implicated in the pathogenesis of hu-
man colitis and colorectal cancer and this may be due to
their interactions with the microbiome and immune system
(65). Exposure to secondary bile acids alters gene expression

in enterocytes and microbiota. Cholic acid and chenodeoxy-
cholic acid, the primary bile acids produced in the human
liver (66), are deconjugated and dehydroxylated by gut bacte-
ria to produce the secondary bile acids deoxycholic acid and
lithocholic acid (67), which have both been associated with
localized gut inflammation in mice (68). Elevated levels of
deoxycholic acid in the serum and feces have been reported
in humans with colon cancer (69) and in murine studies, de-
oxycholic acid exposure modifies the expression of genes in-
volved in inflammation, apoptosis, cell proliferation, DNA
repair, and angiogenesis (70). Fecal concentrations of deoxy-
cholic acid at levels associated with a high-fat diet have been
associated with disruption of gut barrier function in mice,
whereas fecal concentrations of deoxycholic acid associated
with low-fat diets are not associated with changes in gut bar-
rier integrity (71). Furthermore, mice fed deoxycholic acid
had a 1.5-fold increase in intestinal permeability compared
with control mice. High-fat diets are also associated with de-
creased fecal concentrations of ursodeoxycholic acid, which
may be cytoprotective as these decreased fecal concentrations
of ursodeoxycholic acid are also associated with gut barrier
dysfunction in mice (71).

Changes in the intestinal bile acid pool during periods
of high saturated fat intake may alter the microbiome com-
position and increase intestinal inflammation. One murine
study investigating the effects of dietary fat saturation on bile
acids and the gut microbiota reported a bloom in the sulfite-
reducing bacterium Bilophila wadsworthia, a pathobiont not
normally abundant in healthy individuals, and the develop-
ment of colitis in genetically susceptible mice during a high-
saturated fat diet. After feeding mice a diet with 37% of en-
ergy from fat in the form of milk fat, lard, or safflower oil,
or a low-fat diet, the milk fat group exhibited an expansion
of B. wadsworthia, which the authors attribute to an increase
in bioavailable sulfur in the form of taurine-conjugated bile
acids. This effect was reported to be a direct effect of the di-
etary milk fat. The increase in sulfur-containing bile acids
was not found in the lard, safflower, or low-fat groups, but
was replicated in a low-fat group with taurocholic acid sup-
plementation (72). A strength of this study is that the com-
position of this diet (37% of energy from fat, including 15%
from saturated fat) is similar to the Western diet (35% of en-
ergy from fat, including 11% from saturated fat) (52).

Bile acids have profound effects on the structure of the
microbial community in the GI tract, both stimulating the
growth of microbes that utilize bile as an energy source and
repressing the growth of microbes that are intolerant to its
detergent effects (56). Increased concentrations of bile acids,
which may result from a high-fat diet, favor the expansion of
gram-positive members of the Firmicutes phylum, including
some members of the Clostridia class capable of secondary
bile acid production like Blautia and Rumminococcaceae
(56). Secondary bile acid production allows certain microbes
to decrease competition for nutrients because these bile
acids act as electron carriers for cellular metabolism and as
antimicrobial agents (56). In a murine model, the addition of
cholic acid to the diet increased the Firmicutes:Bacteroides
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ratio, decreased bacterial diversity, and increased deoxy-
cholic acid production (73). The authors noted that dietary
cholic acid mimicked the effects of a high-fat diet and also
resulted in a decrease in serum adiponectin concentrations
(73), which is associated with obesity and its related comor-
bidities (74).

Dietary fiber
Much like dietary fats, dietary fibers are a highly heteroge-
neous group of molecules that vary in solubility (the abil-
ity to dissolve in aqueous solutions), viscosity (the ability to
form gels in aqueous solutions), and fermentability (the abil-
ity to be anaerobically metabolized by GImicrobes) (75). Us-
ing these 3 characteristics, dietary fiber can be divided into
4 clinically significant designations: insoluble; soluble, non-
viscous, and readily fermentable; soluble, viscous, and readily
fermentable; and soluble, viscous, and nonfermentable (75).
Other recent reviews provide additional insight on the differ-
ential effects of these 4 designations of fiber on the structure
and function of the GI microbiota (76) and clinical implica-
tions of fiber ingestion (75).

Americans fall short of the 14 g fiber/1000 kcal recom-
mendation with the average adult consuming only 8 g fiber
· 1000 kcal−1 · day−1 (52). The current level of intake is re-
lated to deficits in the consumption of legumes, whole grains,
fruits, and vegetables (6). Indeed, the majority of fiber in the
US diet is from foods made of refined grains, which have
up to 80% of the fiber removed during processing (6). The
Mediterranean diet pattern, abundant in plant foods, may
be one way of increasing fiber intake. In a 2-y randomized
controlled trial, those following aMediterranean diet pattern
increased fiber intake by 18 g/day—at baseline, participants
were consuming 14 ± 1.2 g/day, which mirrors the average
intake in theUnited States, whereas at the 2-y time point, par-
ticipants were consuming an average of 32 ± 2.8 g/day (77).
Evidence supporting the health benefits of a high-fiber diet
is abundant and continues to grow with 1 review compar-
ing metabolic disease risk in high and low fiber consumers
reporting reductions in the relative risks of developing obe-
sity (30%), coronary artery disease (29%), and diabetes (18%)
(78). In addition, a recent meta-analysis of 12 randomized
controlled trials, including 609 adult participants with over-
weight and obesity, reported that isolated soluble fiber intake
reduced BMI (kg/m2) by 0.84, body weight by 2.52 kg, body
fat by 0.41%, fasting glucose by 0.17 mmol/L, and fasting in-
sulin by 15.88 pg/mL compared with the effects of placebo
treatments (79).

Fiber and the GI microbiota
Knowledge of the associations between the GI microbiota
and health has expanded greatly in recent decades. It is now
known that altered microbiota composition is associated
withmany disease states including obesity, nonalcoholic fatty
liver disease, and inflammatory bowel disease (80). Diet,
and dietary fiber especially, has a profound impact on the GI
microbiota. Fiber-rich, plant-based diets have been asso-
ciated with greater microbial richness in terms of both

taxonomy and gene expression (81). Richness is a marker of
microbial community health and perhaps host health as well.
Low microbial richness has been associated with greater
adiposity, insulin resistance, dyslipidemia, and inflammation
(82).

Humans rely on microbes to metabolize the indigestible
components of food like dietary fibers (83). SCFAs are
the end products of microbial fiber fermentation and our
understanding of their effects on human health is still un-
folding. An observational study of high-level adherence to
a Mediterranean diet pattern found significant associations
between plant-based diets and microbiome structure and
function (81). Those consuming vegetarian and vegan diets
had enriched fiber-degrading bacteria Prevotella and Lach-
nospira, compared with those following an omnivorous diet.
In addition, SCFA concentrations were positively correlated
with adherence to the Mediterranean diet pattern regardless
of diet type. The authors also reported that those with high
animal protein and fat intake had higher urinary levels of
phenolic and indolic compounds derived from the deam-
ination of aromatic amino acids and methylamines by the
GI microbiota. Of specific concern is the microbial-derived
compound trimethylamine oxide, which has been linked to
the development of atherosclerosis (81).

Fecal SCFA concentrations are indicative of intestinal
health and are an important measure in clinical research
where more direct sampling of the intestinal environment
is not always feasible. The most abundant fecal SCFA is
acetate (40–70 mM), followed by propionate and butyrate
(10–30 mM). SCFAs are readily absorbed from the intesti-
nal lumen into the circulation with acetate, of the 3, reaching
the highest concentration in serum.Acetate ismainly utilized
by peripheral tissues, propionate by the liver, and butyrate
by the colonic mucosal cells (84). In 1 study of the effects
of butyrate on colonic gene expression, healthy adult volun-
teers received enemas containing butyrate in concentrations
achievable through a high-fiber diet or a placebo enema con-
taining no butyrate. Analysis of human colon tissue biopsies
revealed an increase in expression of genes involved in en-
ergy metabolism, fatty acid metabolism, and oxidative stress
in the butyrate group. In addition, butyrate was shown to dif-
ferentially regulate genes involved in gut integrity and apop-
tosis (85), which may be one mechanism by which butyrate
decreases gut inflammation. Indeed, colonic expression of
NFκB inhibitorα, an inhibitor of the pro-inflammatory tran-
scription factor NFκB, was upregulated in the butyrate group
(85).

Butyrogenic bacteria and bacteria that cross-feed with
butyrogenic bacteria are common targets of prebiotic fiber
interventions. Cross-feeding occurs when one species pro-
duces substrates that are utilized by another species. For
example, 2 molecules of acetate can be converted into bu-
tyrate via microbes that possess the enzyme butyryl-CoA
(86). Bifidobacterium is a main GI symbiont of interest
because of its interaction with the innate immune system
and production of acetate and lactate, which has been
shown in vitro to be a substrate for cross-feeding with
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butyrogenic species like Faecalibacterium prausnitzii,
Anaerostipes spp., Eubacterium spp., and Roseburia spp.
that possess the butyryl-CoA enzyme (86). In vivo, a study in
healthy adults consuming≤7.5 g agave inulin/day reported a
bloom in Bifidobacterium and a positive correlation between
increasing dietary fiber and butyrate concentration, as well
as positive relations between Faecalibacterium and butyrate
concentrations. As Faecalebacterium possess the butyryl-
CoA enzyme, the authors purported that these relations
between butyrate and increasing dietary fiber may be in
part related to the increased Bifidobacterium that resulted
from inulin consumption (87). Indeed, in in vivo studies of
prebiotic supplementation which report an increase in Lac-
tobacillus and/or Bifidobacteria and butyrate, cross-feeding is
likely the mechanism responsible for an increase in butyrate
as neither Lactobacillus nor Bifidobacteria are capable of
producing butyrate.

LPS translocation
Dietary fibers are the second nutrient of greatest interest
in preventing metabolic endotoxemia owing to their abil-
ity to block both transcellular and paracellular routes of
LPS translocation. As stated earlier, dietary fiber can be di-
vided into 4 clinically significant classifications described by
McRorie and Fahey (75). Those fibers that are soluble and
viscous like pectin, β-glucan, and psyllium, reduce lipid di-
gestion, which may also contribute to reduced transcellular
translocation of LPSs. Pectins specifically have been shown
to interact with bile acids and phospholipids, reducing the
amount of surface-active components, and reducing the sol-
ubility of dietary fats (88). Another study investigating the ef-
fects of cereal fiber on fecal composition reported an increase
in fecal fat concentrations when dietary fiber consumption
was increased from 17 to 45 g/day (89). This reduced fat ab-
sorption may also lead to reduced LPS translocation.

Through interactions with the GI microbiota, the pres-
ence of fermentable dietary fibers in the diet may strengthen
gut barrier function, thus preventing paracellular translo-
cation of LPSs. In a study of fermentable compared with
nonfermentable fiber supplementation on a high-fat diet,
mice fed 10% short-chain fructooligosaccharide or 10%
inulin fiber (both fermentable fibers) had greater cecal crypt
depth (short-chain fructooligosaccharide: 141 μm; inulin:
145 μm) than mice fed cellulose (nonfermentable fiber)
(5% and 10%: 109 μm). In addition, inulin-fed mice had
greater cecal transmural resistance (101 � × cm2) than 5%
cellulose-fed mice (45 � × cm2) (90). Butyrate has been
shown to upregulate the expression of tight junction proteins
and increase the rate of tight junction assembly, buttressing
gut barrier integrity. An in vitro study of rat intestinal cells
found that butyrate increases the expression of tight junction
claudin-1, an important component of barrier function (31).
Similarly, an in vitro study of human colonic epithelial cells
showed that butyrate also increases the activity of adenosine
monophosphate-activated protein kinase, increasing the rate
of tight junction assembly (91). This type of mechanistic
research can be difficult to replicate in humans, but an

increasing number of clinical studies investigate fecal SCFA
concentrations. A recent systematic review andmeta-analysis
of 68 clinical studies of SCFAs and systemic inflammation
reported a significant decrease in ≥1 marker of systemic
inflammation (CRP, TNF, IL-6) in 14 of the 29 included
prebiotic studies and 13 of the 26 synbiotic studies and
this association was stronger in studies that supplemented
oligosaccharides. The meta-analyses revealed a reduction
in CRP with prebiotic consumption and a reduction in
CRP and TNF with synbiotic consumption although there
was a high degree of heterogeneity amongst the included
studies indicating a need for further research (92). In a study
measuring high-level adherence to the Mediterranean diet
pattern, those with the greatest level of adherence to the
diet pattern had the highest fecal SCFA concentrations (81);
however, no measures of endotoxemia or inflammation were
collected.

Using a murine model, 1 preclinical trial demonstrated
the effects of prebiotic (arabinoxylan oligosaccharide) sup-
plementation on metabolic endotoxemia and inflammation.
Obesemice fed a high-fat (60% of energy) diet supplemented
with 7.5% (wt:wt) arabinoxylan extract exhibited less fatmass
development, better insulin sensitivity, upregulation of in-
testinal tight junction proteins, lower plasma endotoxin con-
centrations (measured by LAL assay), and significantly lower
circulating levels of IL-6 than mice fed the same high-fat diet
without arabinoxylan supplementation (93). These improve-
ments in metabolic health and measures of metabolic endo-
toxemia may be explained by changes in the GI microbiota.
Arabinoxylan supplementation resulted in a 2-log increase
in cecal Bifidobacterium, cecal and colon enlargement, and
an increase in colonic expression of genes related to SCFA
response (93). This thorough experiment, which provides
measures of GI microbial structure, gut integrity, circulat-
ing LPSs, and inflammation, creates a detailed picture of how
diet-induced changes in the microbiome affect the transloca-
tion of LPSs and development of endotoxemia.

Inflammation andmetabolic disease
A reduction in endotoxemia and inflammation may be one
mechanism by which increased consumption of dietary fiber
improves metabolic health. An analysis of data from the
1999–2000 NHANES reported an inverse relation between
dietary fiber intake and the risk of having elevated CRP, de-
fined by the American Heart Association as a serum con-
centration >3.0 mg/L, and a modest direct association of
saturated dietary fat intake and the risk of elevated serum
CRP, a potent pro-inflammatory cytokine (94). The pro-
tective effects of dietary fiber were seen in the third and
fourth highest quartiles of intake defined as consuming 13.3–
19.5 and ≥19.5 g/day, respectively, which both fall short of
the 28 g/day suggested by the 2015–2020 Dietary Guide-
lines for Americans (6). Those in the highest quartile of satu-
rated fat intake were consuming >35.1 g/day (94). Although
these analyses are almost 2 decades old, this study main-
tains its relevance as fiber consumption has remained sim-
ilar from 1999–2014. Median fiber consumption reported
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in 1999–2000 NHANES data was 6.5 g/1000 kcal compared
with 8 g/1000 kcal in the 2013–2014 NHANES data. This
is one illustration of the pro-inflammatory effects of sat-
urated fat and anti-inflammatory effects of dietary fiber.
However, when the effects of a Mediterranean diet pattern
were tested clinically in a cohort of healthy male univer-
sity students there was no change in CRP levels (95), which
may be due to the difficulty of measuring CRP in healthy
individuals (94).

A recent large prospective single-center cohort study ex-
amined the relation between consumption of a Mediter-
ranean diet pattern and endotoxemia—the authors reported
that plasma LPS concentrations (measured by ELISA) were
negatively associated with adherence to the Mediterranean
diet pattern (measured by validated questionnaire) and with
fruit and legume intake in adults with atrial fibrillation (96).
Plasma LPS concentrations were also positively associated
with plasma LDL cholesterol and major adverse cardiovas-
cular events (96). This study provides a valuable report
on the links between consumption of a Mediterranean diet
pattern and improved cardiometabolic health through de-
creasedmetabolic endotoxemia. However, interventional tri-
als in a more general population should be conducted to de-
termine whether these links are causative. It should also be
noted that use of ELISA for the quantification of plasma LPS
concentrations is regardedwith similar skepticism as the LAL
assay (97). Unfortunately, no other inflammatory measures
were reported in this article.

SCFAs and particularly butyrate have further immunoreg-
ulatory effects and are increasingly recognized for their abil-
ity to disrupt the development and progression of metabolic
disease. SCFAs have a profound ability to regulate the ac-
tivity of leukocytes including recruitment to sites of inflam-
mation and the production of cytokines like TNF, IL-2, IL-
6, and IL-10, eicosanoids, and chemokines (98). In vitro,
butyrate appears to have a greater influence on leukocyte
behavior than acetate or propionate and an overall anti-
inflammatory effect (99). This may be one mechanism by
which butyrate prevents the development of metabolic dys-
function. One murine study demonstrated the ability of bu-
tyrate to prevent insulin resistance in obese mice fed a high-
fat diet supplemented with 5% wt:wt butyrate (100). Another
set of murine studies has demonstrated that supplemen-
tation of sodium butyrate (101) and a butyrate-producing
probiotic, Clostridium butyricum (102), hinders the pro-
gression of nonalcoholic fatty liver disease to nonalcoholic
steatohepatitis.

There have been many clinical trials that have investi-
gated the effects of aMediterranean diet pattern onmetabolic
syndrome and 1 meta-analysis, reporting on 8 studies with
>10,000 participants, found 5 studies which reported a ben-
eficial effect of a Mediterranean diet pattern. Some of these
benefits included reduced waist circumference (–0.42 cm),
increased serum HDL cholesterol (1.17 mg/dL), decreased
serumTGs (–6.14mg/dL), decreased systolic (–2.35mmHg)
and diastolic (–1.58 mm Hg) blood pressure, and decreased
blood glucose (–3.89 mg/dL) in participants instructed to

consume a Mediterranean diet pattern compared with those
who were not given instructions to change their diet (103).
Although it has been demonstrated that aMediterranean diet
pattern can improve metabolic health, interventional studies
investigating the mechanism of metabolic endotoxemia are
needed.

Phytochemicals
In addition to dietary fiber, high consumption of whole plant
foods as part of the Mediterranean diet pattern provides an
abundance of phytochemicals that also affect the GI micro-
biome, inflammation, and the development of metabolic dis-
ease. Phytochemicals, which include polyphenols, phenolic
acids, flavonoids, carotenoids, and lignans (104, 105), are
not defined as essential nutrients but have been shown to
decrease the risk of coronary heart disease (104, 106), dia-
betes (107), and nonalcoholic fatty liver disease (108). This
reduction in risk may be due to interactions with the GI
microbiome and immune system. Phytochemicals that es-
cape absorption in the proximal small intestinemay be trans-
formed by the microbiota in the distal small intestine, in-
creasing phytonutrient availability and altering the structure
of the microbial community (109, 110). One in vitro study
of the effects of phenolic compounds in tea reported re-
pression of pathogenic microbes such as Clostridium perfrin-
gens, Clostridium difficile, and Bacteroides spp. without sig-
nificantly affecting concentrations of commensal microbes
such as Clostridium spp., Bifidobacterium spp., and Lacto-
bacillus spp. (111). Proanthocyanidins have a similar effect on
themicrobiome, stimulating the growth of Lactobacillus spp.,
Bifidobacterium spp., and some butyrate-producing bacteria
while decreasing colonic inflammation (112).

Preclinical trials have demonstrated the ability of polyphe-
nols to improve gut barrier function inmice (113), ameliorate
metabolic endotoxemia in mice and rats (113, 114), prevent
LPS-induced liver damage on a high-fat diet in rats (114),
and aid in the prevention of type 2 diabetes in humans (115).
One clinical trial in which participants were given a meal
with grape extract or a placebo reported lower postprandial
endotoxemia (measured by LAL assay) in the grape extract
group (116). Unfortunately, the Western diet pattern, which
is characterized by low consumption of fruits, vegetables,
legumes, and whole grains, provides a dearth of phytochem-
icals. There is a large gap between the 2 cup-equivalents/d of
fruits and 2.5 cup-equivalents/d of vegetables recommended
by the 2015–2020 Dietary Guidelines for Americans (6) and
the 1.1 cup-equivalents/d of fruits and 1.6 cup-equivalents/d
of vegetables consumed by Americans (117). However,
a 2-y randomized controlled trial studying the effects of
the Mediterranean diet pattern on adults with metabolic
syndrome reported fruit, vegetable, legume, and nut con-
sumption of 487 g/day at the end of the trial compared with
a baseline intake of 198 g/day (increase of 289 g/day) (77),
illustrating the ability of the Mediterranean diet pattern to
promote plant food consumption, thereby increasing dietary
intake of the phytochemicals that may prevent metabolic
disease.
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Conclusions and future directions
The complexity of the associations between diet, the GI mi-
crobiome, and inflammation is vast, but there aremany high-
quality studies on the topic. Animal studies have demon-
strated differential effects of saturated and unsaturated fats
on intestinal permeability and endotoxemia, but large-scale
human trials are lacking. One potential obstacle for clini-
cal research is the inability to easily access intestinal tissue
for testing, but peripheral markers of intestinal permeabil-
ity may be able to partially overcome this. Many murine and
human studies only differentiate between high- and low-fat
diets or high-saturated and high-unsaturated fat diets, but
additional studies on specific dietary fats and their effects
on the microbiome, bile acids, and inflammation would be
greatly beneficial as some researchers have found differen-
tial physiologic effects of saturated fat from different food
sources (i.e., milk fat compared with palm oil) (118). Many
murine studies also use supra-physiologic doses of dietary fat
with low amounts of carbohydrates and fiber, making them
of questionable translational relevance (20, 51). In addition,
owing to the TLR4-stimulating effects of some fatty acids,
it is unclear in some studies of postprandial endotoxemia
whether LPSs or dietary fats are the source of inflammation. It
should also bementioned that saturated fats vary in their pro-
inflammatory ability. Preclinical research has demonstrated
that medium-chain TG supplementation may ameliorate the
obesogenic, diabetogenic, and pro-inflammatory effects of a
high-fat diet (119). Similarly, a recent review demonstrates
evidence that medium-chain TG intake may be related to
the maintenance of metabolic health during obesity through
mechanisms that involve the GI microbiota (120).

Research of fiber and health is also plagued by a lack
of specificity with many studies measuring total grams
of dietary fiber with no further differentiation (i.e., soluble
comparedwith insoluble or fermentable comparedwith non-
fermentable). Dietary fibers vary greatly in their impact on
digestion, theGImicrobiota, and health depending on chem-
ical composition, degree of polymerization, and biological
or synthetic origin (76). Of specific interest is how fibers of
differing solubility and fermentability affect bile acids,
microbiota composition and function, and inflammation.
Preclinical studies on fiber have found that high-fiber diets
do improve barrier function and decrease endotoxemia dur-
ing a high-fat diet, but the ability to extrapolate these results
to clinically significant reductions in metabolic disease risk
has yet to be demonstrated.

What clinical interventional studies exist for metabolic
endotoxemia are scant (Table 3) and most use the LAL as-
say, which is an unreliable measure of plasma LPS concen-
tration (63). Use of ELISA for LPS quantification should
be regarded with similar skepticism (97). As the reliability
and accuracy of measuring direct serum LPS concentrations
are limited, researchers are encouraged to measure and re-
port proxy measures like LPS-binding protein, inflammatory
markers, and/or use cell-based methods (mononuclear cell
stimulation with LPSs) for a more accurate investigation of
metabolic endotoxemia.

Research on the microbiome is rapidly expanding owing
to technological and computational advances thatmakeDNA
sequencing cheaper and data analysis easier. However, cur-
rent research is focused more on individual taxa and their
contributions to the microbiome rather than the metabolic
potential of the microbial community. As the major source
of endotoxins in the body, the importance of characterizing
diet-induced changes in the GI microbiota cannot be un-
derstated. Additional studies utilizing shotgun sequencing
and multi-omic approaches will help answer the questions of
which bacteria are present, what functional capacities they
possess, and what their metabolic outputs are. The bacterial
metabolic processes of fermentation and bile acid modifica-
tions are of specific interest in investigating endotoxemia and
inflammation.

The area of inflammation and metabolic disease is better
understood. Much has been done to characterize the inflam-
matory profiles of those with obesity and metabolic diseases.
In addition, there is accumulating evidence on the benefi-
cial effects of the Mediterranean diet pattern on metabolic
syndrome (103, 121), diabetes (122–124), cardiovascular dis-
ease (5, 125–127), and nonalcoholic fatty liver disease (128,
129). Now is the time to further investigate mechanisms that
inform dietary recommendations for the treatment and pre-
vention of inflammatory metabolic disorders.

Although the crisis of obesity and its related comorbidi-
ties continues to deepen, there is a wealth of high-quality
research occurring. Evidence of the efficacy of the Mediter-
ranean diet in treating and preventing metabolic disease is
abundant. Moving away from a Western diet pattern rich in
red and processed meats, refined grains, and solid cooking
fats toward a Mediterranean pattern rich in MUFAs and PU-
FAs from foods like nuts, avocados, salmon, and olive oil
could help Americans meet dietary recommendations and
improve theirmetabolic health. Research on themechanisms
by which a Mediterranean diet pattern improves health, in-
cluding modulation of the GI microbiota, endotoxemia, and
inflammation, is minimal and there is a need for large-scale
comprehensive clinical trials.
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