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Improved insight into cancer cell populations responsible for relapsed disease will lead to better 

outcomes for patients. Here, we report a single-cell study of B-cell precursor acute lymphoblastic 

leukemia at diagnosis that revealed hidden developmentally dependent cell signaling states 

uniquely associated with relapse. With mass cytometry, we simultaneously quantified 35 B-cell 

developmental proteins in 60 primary diagnostic samples. Each leukemia cell was then matched to 

it’s nearest healthy B-cell population by a developmental classifier that operated at the single-cell 

level. Machine learning identified 6 features of expanded leukemic populations sufficient to 

predict patient relapse at diagnosis. These features implicated pro-BII cells with activated mTOR 

signaling, and pre-BI cells with activated and unresponsive pre-B-cell receptor signaling, to be 

associated with relapse. This model, termed Developmentally Dependent Predictor of Relapse 

(DDPR), significantly improves currently established risk stratification methods. DDPR features 

exist at diagnosis and persist at relapse. Leveraging a data-driven approach, we demonstrate the 

predictive value of single-cell ‘omics’ for patient stratification in a translational setting and 

provide a framework for application in human cancers.

Introduction

Despite high rates of initial response to frontline treatment, cancer mortality largely results 

from relapse or metastasis. Although there is debate as to whether resistant cancer cells are 

present at the time of initial diagnosis or whether they emerge under the pressure of therapy, 

many studies have suggested that it is the former1–4. Such cells can be rare and are not 

accurately represented in animal models or patient-derived xenografts5,6. Hence, the 

identification and study of the cellular species underlying cancer persistence will require 

high-throughput single-cell analyses of primary human tissues and new analytical tools to 

align these rare populations with clinical outcomes.

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a common childhood 

malignancy. Despite dramatic improvements in survival using current treatment regimens, 

relapse is the most frequent cause of cancer-related death among children with BCP-ALL7. 

BCP-ALL is characterized by the clonal proliferation of blast cells in the bone marrow 

and/or peripheral blood that bear the hallmarks of immature B cells. Known molecular 

alterations stall the development of B lymphocytes (B lymphopoiesis) in BCP-ALL8–12.

Healthy B lymphopoiesis occurs through sequential developmental stages marked by losses 

and appearances of surface proteins, intracellular mediators of DNA rearrangement, and 

activation of signaling pathways that regulate decisions of cell fate13,14. We previously 

applied single-cell cytometry by time-of-flight (CyTOF; mass cytometry) to align 

developing B cells into a unified trajectory, which enabled us to better define human pre-

pro-B, pro-B, and pre-B cells and their regulatory signaling during early developmental 

checkpoints14.

Currently, for children with BCP-ALL, risk prediction strategies integrate clinical, genetic, 

and treatment response features gathered during the first months of treatment15. As in most 

risk-prediction scenarios, prediction is imperfect. We reasoned that performing deep 

phenotypic single-cell studies of diagnostic leukemic samples could identify cell populations 

predictive of relapse and discover novel aspects of resistance to treatment in this disease.
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Building on our study of normal early B lymphopoiesis, we performed a mass cytometry 

analysis of primary diagnostic BCP-ALL samples. Aligning individual BCP-ALL cells with 

developmental states along the normal B-cell trajectory demonstrated expansion across the 

pre-pro-B to pre-BI transition. Applying machine learning to proteomic features extracted 

from these expanded cell populations, we constructed a predictive model of relapse that was 

validated in an independent patient cohort. This model revealed six cellular features that 

implicated a developmental phenotype and behavioral identity of two cell populations in 

portending relapse. Analysis of matched diagnosis-relapse pairs confirmed the persistence of 

these predictive features at relapse. Thus, BCP-ALL samples viewed through a lens of high-

resolution developmental maturity indicated that a unique and reproduced cellular behavior 

across patients is a main driver of relapse.

Results

Deep phenotyping reveals developmental heterogeneity in BCP-ALL

To understand the extent to which childhood BCP-ALL mimics the differentiation of its 

tissue of origin, we profiled 60 primary diagnostic bone marrow aspirates with diverse 

clinical genetics by single-cell mass cytometry in comparison to normal bone marrow from 

five healthy donors (Fig. 1a and Supplementary Tables 1–3). Examining expression of 

proteins routinely used in diagnostic flow cytometry on leukemic blasts revealed expected 

patterns of expression, with overexpression of CD10 and CD34 as compared to healthy bone 

marrow (Fig. 1b). To visualize similarity to normal developing B cells, we compared BCP-

ALL cells to their healthy bone marrow counterparts using principal component analysis 

(PCA) (Fig. 1c and Supplementary Fig. 1). Healthy developing B cells occupied a 

remarkably clear path in this representation space (Fig. 1c, left). Once projected into the 

same space, BCP-ALL cells from individual patients fell into areas with similarity to 

multiple healthy populations, with a heavy skewing towards early stages of B lymphopoiesis 

(Fig. 1c, right), as expected8. We thus reasoned that aligning individual leukemic cells to 

their closest developmental state would enable us to view each BCP-ALL sample as a set of 

aberrant developing B-cell populations, potentially uncovering novel aspects of BCP-ALL 

biology.

Organizing BCP-ALL with a single-cell developmental classifier

To approximate the developmental state of each leukemic cell, we constructed a single-cell 

developmental classifier. Building on our recent study14, we manually partitioned healthy 

bone marrow cells into twelve developing B-cell populations and three populations of mixed 

progenitors or mature non-B cells (Supplementary Fig. 1b). These fifteen populations were 

defined by expression of eleven B-cell developmental proteins, providing a phenotypic 

maturity ‘barcode’ (Fig. 2). To assign each cell to its closest developmental population, we 

used Mahalanobis distance (Supplementary Fig. 2a). We used manually gated healthy 

populations to test the reliability of this approach. In a 10-fold cross-validation, this 

classifier had an excellent predictive performance for each population and a 92% overall 

accuracy (Supplementary Figs. 2b–d). If a cell was misclassified, it was most likely to fall 

into a neighboring population, suggesting that the biological effect of misclassification is 

likely small (Supplementary Fig. 2c). We found that Mahalanobis distance was superior to 
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other distance metrics (cosine14,16, Euclidian17, and Manhattan18) in assigning cells to the 

correct developmental population (Supplementary Fig. 2d). Moreover, additional phenotypic 

markers did not improve classification relative to the original eleven proteins 

(Supplementary Fig. 2e).

We used this single-cell classifier to assign each leukemic cell into the most phenotypically 

similar developmental stage. We emphasize that in this case we select the closest 
developmental stage and do not imply that a leukemic cell is equivalent to a normal 

developing B cell (e.g. a leukemic cell classified as pre-BI is not suggested to be a pre-BI 

cell, but is rather considered to be a ‘pre-BI-like’ cell). Leveraging prior knowledge of 

normal cellular differentiation to subset cancer cells into biologically meaningful 

populations enabled direct comparisons of these populations among healthy donors and 

patients.

BCP-ALL expands across the pre-pro-B to pre-BI developmental transition

Once classified, the frequency of cells in each developmental compartment was examined 

across all samples. Compared to healthy controls, we found a significant expansion across 

the pre-pro-B to pre-BI transitional populations in leukemic samples (Fig. 3a). Despite the 

clonal nature of leukemia, phenotypic heterogeneity was observed within individual ALL 

samples, such that in 100% of cases there was an expansion of cells in more than one 

developmental population (mean ± s.d. = 5.3 ± 1.9; Supplementary Fig. 3a).

Since prognosis and risk stratification in BCP-ALL are based partially upon recurrent 

chromosomal rearrangements, we determined whether there was any association between 

these translocations and leukemic developmental classification. All known genetic drivers 

showed little correlation to overall developmental classification, although in some cases 

expansion of particular populations did reach statistical significance (Fig. 3b). Specifically, 

patients with translocation 1;19 (TCF3/PBX1) had a contraction in immature B-cell 

populations when compared to patients without this translocation, corroborating prior 

findings19,20. In CRLF2-rearranged ALL, pro-BII and pre-BII compartments were 

contracted. In some cases, we had access to matched bone marrow and peripheral blood 

samples at diagnosis. In general, the overall classification did not substantially change based 

on the use of bone marrow vs. peripheral blood samples, but some pro-B to pre-B 

transitional populations were not as frequently seen in the peripheral blood as in the bone 

marrow (Supplementary Fig. 3b). Weak association of single-cell developmental 

classification with recurrent chromosomal rearrangements emphasizes the general 

applicability of our approach across BCP-ALL samples with diverse clinical genetics.

BCP-ALL maintains the developmental structure of early B cells

Comparing classified leukemia cell subsets to their normal B-cell counterparts, three major 

patterns emerged: i) an expression pattern similar to healthy B cells (CD45, IKAROS), ii) 

overexpression in all cell populations (CD10, PAX5), and iii) a developmentally 

inappropriate expression pattern (CD58, CD123, CD43) (Figs. 3c–e and Supplementary 

Figs. 3c–e). Surprisingly, despite aberrant expression of three (of 24 examined) 

developmental proteins, BCP-ALL cells generally maintained the expected developmental 
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progression of protein expression in leukemic populations compared to healthy bone 

marrow. Interestingly, PAX5, a master B-cell transcription factor frequently mutated in BCP-

ALL21, was highly overexpressed on all leukemic cell populations, even in the case of two 

patients who harbored heterozygous PAX5 deletions based on genomic analysis 

(Supplementary Fig. 3f and Supplementary Table 4). In contrast to the general maintenance 

of phenotypic structure in leukemic cells, there was a higher frequency of BCP-ALL cells 

with activated basal signaling than in controls. In particular, the frequency of cells with 

active ribosomal protein S6 (rpS6), activated during protein translation and downstream of 

mTOR, or with activated cAMP-response element-binding protein (CREB) expression, was 

markedly elevated in leukemic populations as compared to normal B-cells (Supplementary 

Fig. 3g). Thus, using healthy B-cell progenitor populations to organize BCP-ALL provides a 

refined view of aberrations in phenotypic and regulatory molecule expression in leukemic 

cell populations.

Developmentally Dependent Predictor of Relapse, a data-driven model based on BCP-ALL 
cellular features at diagnosis

Long-term survival without recurrence of disease is the primary clinical indicator of BCP-

ALL therapeutic success. For patients for whom ≥3 years of follow-up data were available 

(n = 54), 31% relapsed (n = 17), a slightly higher rate than the 15–20% expected relapse rate 

for childhood BCP-ALL15. We first determined whether developmental classification alone 

could stratify patients who would go on to relapse from those who would remain in 

remission. Cells from patients who relapsed were not enriched in a particular developmental 

state relative to cells from patients who did not relapse (Supplementary Fig. 4a), suggesting 

that relapse is not strictly connected to a particular phenotypic developmental state.

Utilizing the classified cellular features at diagnosis for each patient, we constructed a model 

to: i) predict clinical outcome (relapse vs. continued remission) and ii) identify a short list of 

leukemic cell features at diagnosis that are sufficient to predict relapse (Fig. 4a). To do this, 

we employed a machine learning approach, termed elastic net, designed to identify a small 

set of predictive features while preserving predictive power22. Since we cannot exclude the 

possibility that some patients may relapse after the last follow-up date, we modeled relapse 

as a time-to-event outcome in an elastic net-regularized Cox model23. We applied this 

method to a set of cell features from the expanded leukemic cell populations, including 

frequency of cells in each population, expression of surface and intracellular proteins, and 

frequency of cells with activated signaling molecules in the unperturbed state and in 

response to each perturbation (Supplementary Table 5). We also included patient age and 

white blood cell count at diagnosis, as these features are considered important clinically 

(Supplementary Table 1). This resulted in 352 features per patient across 54 patients, for a 

total of 19,008 data points.

Using random sampling, we divided the patient cohort into a training cohort (80% of 

patients, n = 44) and a validation cohort (20% of patients, n = 10). We applied pre-

validation24,25 to estimate performance of the relapse prediction model within the training 

cohort, and then validated the final model on the independent validation cohort. We 

therefore assessed the predictive performance of our model twice: within the training cohort 
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and then within the validation cohort. We termed the resulting model Developmentally 

Dependent Predictor of Relapse (DDPR; pronounced “deeper”).

Activated signaling in pro-BII and pre-BI cells at diagnosis predicts relapse

Of the 352 features, hierarchical clustering of six cellular features identified by DDPR 

almost perfectly separated patients according to their last documented relapse status (Fig. 

4b). Examining individual features revealed two developmentally dependent patterns: i) the 

ability of cells to respond to ex vivo stimulation was associated with continuous remission 

(Fig. 4b, yellow box); and ii) an increased frequency of cells with basally active rpS6 

signaling was associated with relapse (Fig. 4b, orange box). All six features were confined 

to pro-BII and pre-BI cell populations. In pro-BII cells of patients who ultimately relapsed, 

we observed high basal activity of rpS6 and a lack of response to pervanadate, as assessed 

by phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p4EBP1), 

due to high basal activation of 4EBP1 (Fig. 4c, left; Supplementary Fig. 4b). Similarly, in 

pre-BI cells, the response to pre-BCR crosslinking or pervanadate, as assessed by prpS6 and 

pCREB levels, and the response to TSLP stimulation, as assessed by phosphorylated spleen 

tyrosine kinase (pSYK), were significantly blunted in patients who would go on to relapse 

(Fig. 4c, right; Supplementary Fig. 4b, right; Supplementary Fig. 4c). In essence, the 

signaling features predictive of relapse relate to high basal activation of the mTOR pathway 

in pro-BII cells, as well as high basal activation and a lack of response to stimulation of the 

pre-BCR pathway in pre-BI cells. Differences in these features were apparent even when 

applied to a single common genetic subgroup of patients with translocations ETV6/RUNX1 
(t(12;21)(p13;q22); Supplementary Fig. 4d), who generally have a favorable prognosis.

To assess DDPR performance, we calculated an integrated cumulative/dynamic area under 

the curve (iAUC)26 and a C-statistic27, the measures appropriate for censored time-to-event 

data. In the training cohort, DDPR had a predicted (cross-validated) iAUC of 0.92 and a C-

statistic of 0.87 (Fig. 4d, left). Applying the model to the independent validation cohort 

resulted in an iAUC of 0.85 and a C-statistic of 0.87 (Fig. 4d, right), indicating a strong 

model performance. To determine whether predictive cellular features could be detected in 

bulk leukemia cells without developmental classification, we repeated this analysis using 

features from all cells in the blast gate. Using unclassified bulk data, the model performed 

inferiorly to DDPR (training cohort iAUCDDPR = 0.92 vs. iAUCbulk = 0.71; validation 

cohort iAUCDDPR = 0.85 vs. iAUCbulk = 0.66; Supplementary Fig. 4e). DDPR performed 

well as a risk stratification method at diagnosis in predicting relapse-free survival (RFS) in a 

retrospective analysis of both cohorts (p = 2.8×10−7; Fig. 4e and Supplementary Fig. 4f). 

Thus, organizing data from primary diagnostic leukemia samples using single-cell 

developmental classification was critical for predicting future clinical outcomes.

DDPR synergizes with current risk stratification methods

Current risk prediction integrates a combination of clinical (NCI/Rome criteria28) and 

genetic (cytogenetic) features at diagnosis, as well as early response to therapy (prednisone 

response and/or MRD29,30). Final risk, which guides clinical decisions, integrates all of 

these features and is generally determined three months following initiation of treatment, 

although for some patients risk may be known earlier.
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As expected, NCI/Rome criteria successfully stratified 53 patients with available risk data 

according to RFS (log-rank p = 0.0083; Fig. 5a, top). However, integrating DDPR with NCI/

Rome criteria resulted in a significant risk stratification improvement, as assessed by the 

integrated discrimination improvement index (IDI), continuous net reclassification 

improvement (NRI), and median improvement (MI) for time-to-event data31,32 at five years 

following diagnosis (Fig. 5a, bottom; Supplementary Fig. 5a). Within the 45 patients for 

whom MRD and final risk were available (per AIEOP-BFM 2000 protocol definitions), 

either MRD risk (p = 0.0086; Fig. 5b, top) or final risk (p = 0.044; Fig. 5c, top) alone 

performed well in stratifying patients according to RFS. Combining DDPR prediction with 

either MRD risk (Fig. 5b, bottom) or final risk (Fig. 5c, bottom) significantly improved 

patient stratification at five years following diagnosis (Supplementary Fig. 5a).

In clinical practice, relapse risk determines treatment decisions for patients. Key DDPR 

features were clearly different in patients who went on to relapse from those who remained 

in continuous remission, regardless of their NCI/Rome or MRD status (Supplementary Figs. 

5b and 5c), suggesting that cellular phenotypes identified by DDPR may provide rational 

drug targets for patients at risk of relapse.

Cells characterized by activated mTOR and deficits in pre-BCR signaling persist from 
diagnosis to relapse

The analyses described thus far do not establish whether features identified by DDPR are 

present at relapse. To understand how BCP-ALL remodels under the pressure of treatment, 

seven matched diagnosis-relapse sample pairs were analyzed following developmental 

classification (Fig. 6a). These samples comprised diverse underlying prognostic genetics, 

including good risk (ETV6/RUNX1; n = 1), poor risk (BCR/ABL1; n = 2), and without 

known prognostic genetic aberrations (n = 4). In contrast to the initial diagnostic samples, 

which expanded to span the pre-pro-B to pre-BI transition, at relapse the expansion 

narrowed almost exclusively to the pre-BI population, but was also present in the diagnosis 

specimen (Fig. 6a, red box). In these paired samples, DDPR predictive features were present 

at diagnosis and were either maintained or exacerbated at relapse (Fig. 6b). Taken together, 

these results indicate that the cellular populations and features associated with poor outcome 

exist at diagnosis and persist at relapse.

Since we are able to examine the concomitant expression of proteins in the same cell, we 

examined single-cell pairwise correlation between prpS6 and p4EBP1 in pro-BII cells from 

the matched specimens. We found that the levels of these proteins were correlated at both 

diagnosis and relapse (Spearman’s rho±s.e.m. for prpS6-p4EBP1: diagnosis 0.31±0.10, 

relapse 0.39±0.05 ; Fig. 6c, left; Supplementary Fig. 6a). Similarly, pre-BI cells displayed a 

moderate correlation between their implicated molecules pSYK, pCREB, and prpS6 (e.g. 
pCREB-prpS6: diagnosis 0.27±0.04, relapse 0.45±0.05; Fig. 6c, right; Supplementary Fig. 

6b). To quantify the strengths of signaling relationships between these proteins in the pro-

BII and pre-BI populations, we utilized conditional-Density Resampled Estimate of Mutual 

Information (DREMI) to estimate the dependency between each pair of proteins33. In 

leukemic pre-BI cells, pSYK, pCREB, and prpS6 were indeed likely to belong to cross-

correlated signaling networks that persisted from diagnosis to relapse (Fig. 6d). These pre-

Good et al. Page 7

Nat Med. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BI cells cannot respond to pre-BCR crosslinking by further increasing the levels of pCREB 

and prpS6 (Supplementary Fig. 6b). Similarly, in the pro-BII population, DREMI confirmed 

an expected dependency between p4EBP1 and prpS6 (Supplementary Fig. 6d). Interestingly, 

for both p4EBP-prpS6 and pSYK-pCREB dependencies, the strength of the signaling 

relationship was enhanced at relapse, indicating that there was either a modest strengthening 

of the relationship between these molecules, or an increased homogeneity of cell 

populations. In either case, the evidence points towards the importance of these signaling 

relationships during progression towards an aggressive tumor state. By comparison, in 

patients who did not relapse, co-activation of CREB, rpS6, and SYK at baseline was 

diminished in pre-BI cells, and these cells had the ability to co-activate CREB and rpS6 in 

response to pre-BCR crosslinking (Supplementary Fig. 6c).

To determine if the predicted cellular signaling phenotypes can be therapeutically targeted, 

we treated primary diagnostic samples ex vivo with chemical inhibitors relevant to the 

activated pathways. Treatment of healthy or leukemic cells with BEZ235, a dual PI3K/

mTOR inhibitor (PI3K/mTORi) reduced the frequency of pro-BII cells with activated 

p4EBP1 (Fig. 6e, left). However, prpS6 was not as strongly inhibited by BEZ235 in 

leukemic pro-BII and pre-BI cells, suggesting multiple routes to rpS6 activation 

(Supplementary Fig. 6e). By contrast, treatment with dasatinib, a dual ABL/SRC family 

kinase inhibitor (ABL/SFKi), reduced the frequency of pre-BI cells with activated SYK in 

patients who remained in remission to levels approaching that in normal bone marrow; yet, 

its effect was minor in patients who would go on to relapse (Fig. 6e, right). Dasatinib was 

also able to slightly reduce the frequencies of pro-BII cells with activated rpS6 and 4EBP1, 

as well as of pre-BI cells with activated rpS6 and CREB (Supplementary Fig. 6f). Together, 

these data indicate that some DDPR features may be therapeutically targetable, but 

knowledge of underlying developmental signaling must guide the design of therapeutic 

approaches for improving patient outcomes.

Discussion

Deep phenotyping of primary cancer samples provides a unique opportunity to examine 

intratumoral heterogeneity and link patient outcomes to specific cellular populations. Yet, it 

remains challenging to organize these massive datasets into meaningful models. Data from 

single-cell analyses of primary tumors must be stratified to understand how cellular diversity 

of tumors impacts disease progression or treatment response.

This study leveraged the phenotypic profiling depth enabled by mass cytometry to perform 

high-parameter single-cell analyses of primary patient samples, without extended ex vivo 
culture or passage through an immunodeficient mouse, to preserve biology as it exists in the 

patient. We addressed the intrinsic heterogeneity of the single-cell data by showing that 

BCP-ALL cells could be reliably aligned to a developmental continuum of normal cell 

populations. In doing so, we organized diverse data from multiple patients into a ‘universal’ 

physiologic standard allowing relevant comparisons. This approach not only allowed for the 

identification of key cell populations and their behaviors in relation to clinical outcome, but 

also provided mechanistic insight into the persistent disease state.

Good et al. Page 8

Nat Med. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Direct comparison of BCP-ALL cells to human B-cell progenitors enabled identification of 

developmental states most vulnerable to malignant transformation: the pre-pro-B to pre-BI 

transition. During this transition, normal B cells rearrange their immunoglobulin heavy 

chain locus with coordinated cell fate decisions. We have previously demonstrated changes 

in network structure surrounding the differentiation of pro-B cells into pre-B cells, 

particularly regarding the transition between IL-7 receptor and pre-BCR signaling 

pathways14. Signaling through the IL-7 receptor in normal pro-B cells activates JAK/STAT 

and PI3K pathways34,35. Subsequently normal developing B cells proceed to further 

expansion and differentiation after receiving a strong pre-BCR signal informing them of a 

successful heavy chain rearrangement34. DDPR identified activation of signaling molecules 

in the pre-BCR (pSYK, pCREB) and PI3K/mTOR pathways (prpS6, p4EBP1) around this 

developmental transition in portending relapse. Aberrant BCR-related signaling is known to 

be pathogenic in other B-cell malignancies, such as diffuse large B-cell lymphoma36. 

Dysregulation of pre-BCR signaling has been described in Ph+ BCP-ALL, likely mediated 

by upregulation or mutation of inhibitory regulators37,38,39. Our results suggest that 

leukemia may exploit this normal developmental process to maintain pre-BCR signaling at a 

‘just right’ level. ABL/SFKi was effective in targeting pre-BCR signaling in pre-BI cells, as 

assessed by pSYK, but only in patients who would not go on to relapse. Thus, an 

understanding of normal developmental signaling states, and how leukemic cells maintain or 

diverge from these states in their developmental context, can guide therapeutic efforts to 

impact patient outcomes.

As we have demonstrated previously, cellular behavior is a key determinant of resistance to 

therapy40–44. It is not just the outward identity of leukemia cells, as measured by surface 

molecules, that determines therapy resistance, but instead how those cells behave, as 

measured by intracellular signaling states. This model cannot currently determine the origin 

of leukemic transformation, but our data suggest that the drive of leukemic cells to 

differentiate remains strong as they attempt to continue their developmental program. Given 

the limited size of the patient cohort studied, DDPR must be applied to larger cohorts of 

patients. It will be of interest to extend this type of analysis to adult BCP-ALL, as it is well 

understood that older age at diagnosis carries a higher risk of relapse. Moreover, this 

developmental model of BCP-ALL would benefit from integration with genomic, epigenetic, 

and transcriptomic investigations of both healthy and leukemic populations. Defining the 

mechanisms that control survival and proliferation decisions at the pro-BII to pre-BI 

developmental transition will inform how BCP-ALL exploits these pathways and how 

genetic lesions associated with leukemia cooperate with the underlying developmental 

program.

Altogether, this study shows that aligning transformed cells to their normal developmental 

path can improve the risk stratification system and identify, with improved precision, the 

most relevant cell populations for further study and therapeutic targeting. More broadly, this 

study highlights the translational value of understanding cancer at the single-cell level and 

applying machine learning to guide treatment paradigms for patients with cancer.
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Online Methods

Patient and healthy control bone marrow samples

Reagents and methods relevant to this work can also be found in the Life Sciences Reporting 

Summary. Fresh human bone marrow was obtained from healthy adult donors (n = 5; 3 

females: 20, 27, 44 y.o., 2 males: 26, 28 y.o., average: 29 y.o.; AllCells, Alameda, CA, 

USA). De-identified pediatric BCP-ALL bone marrow specimens were obtained under 

informed consent from Lucile Packard Children’s Hospital at Stanford (Stanford, CA, USA; 

Ph+ samples, n = 9) and from Pediatric Clinic University of Milan Bicocca (Monza, Italy; n 

= 51) for a total of 60 primary diagnostic patient samples. Use of these samples was 

approved by the Institutional Review Boards at both institutions. All relevant ethical 

regulations were followed in this study. No a priori power calculation was performed, as this 

is the first study of its kind. Patients were included based on availability of sufficient cells 

for mass cytometry study and with at least 3 years of follow-up data from date of diagnosis. 

MLL-rearranged infants were excluded from this study. Clinical data were available for 

these samples, including minimal residual disease (MRD) risk group and final risk 

assignment as per AIEOP-BFM ALL 2000 protocol (ClinicalTrials.gov identifier: 

NCT00613457)45, diagnostic cytogenetics, age at diagnosis, gender, white blood cell count 

at diagnosis, date of diagnosis, date of relapse, and date of the last follow-up 

(Supplementary Table 1). Median follow-up time was 5.5 years. In agreement with the 

AIEOP-BFM ALL 2000 study45, median time-to-relapse was 2.0 years. Median follow-up 

time for patients in continuous complete remission (CCR) was 7.6 years. Gene copy number 

and mutational analysis for genes IKZF1, P2RY8-CRLF2, CDKN2A/B, PAX5, ETV6, 
BTG1, RB1, and ERG was carried out using multiplex ligation-dependent probe 

amplification (MLPA) for 20 patients; IGH@-CRLF2 rearrangement was tested by 

fluorescent in situ hybridization (FISH) for 20 patients; and JAK2 mutations were identified 

by high-resolution melt (HRM) for 16 patients (Supplementary Table 4).

Clinical protocol definitions

Treatment protocols for each patient are indicated in Supplementary Table 1. Therapy for all 

patients was based on the Berlin-Frankfurt-Munster (BFM) backbone46. For Italian patients 

(the majority in this study), MRD risk and final risk were assigned as per the AIEOP-BFM 

ALL 2000 clinical protocol45. Briefly, after 7-day monotherapy with prednisone and 1 dose 

of intrathecal methotrexate, treatment was complemented with corticosteroid, vincristine, 

daunorubicin, and L-asparaginase. Remission induction was followed by intravenous 

cyclophosphamide and cytarabine, intrathecal methotrexate, and oral mercaptopurine. Risk 

group assignment resulted from a combination of presenting features and response to 

therapy measured by peripheral blood morphology at day 8 and MRD at Time Point (TP) 1 

(day 33) and TP2 (day 78) as assessed by polymerase chain reaction analysis of 

immunoglobulin gene rearrangements. Patients were determined to be standard risk (SR) if 

MRD was negative at both TP1 and TP2 and no adverse clinical features were observed; 

intermediate risk (IR) if MRD was positive at TP1 or TP2 but less than 10−3; MRD high risk 

(HR) if MRD was greater than 10−3 at TP2. The HR group included patients with any of the 

following criteria: Ph+ ALL, t(4;11) or MLL/AF4; “prednisone-poor-response” (PPR: 

>1,000 blasts/mL on day 8); failure to achieve CR on TP1; or high degree of MRD at TP2 
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(more than 1×103)45. Clinical remission is defined by the presence of less than 5% blasts in 

the bone marrow by morphologic inspection.

Mass cytometry

Samples were processed as previously described47. Briefly, viably preserved bone marrow 

cells were thawed and resuspended in 90% RPMI with 10% FCS supplemented with 20 

U/mL sodium heparin (Sigma-Aldrich, St. Louis, MO, USA), 0.025 U/mL benzonase 

(Sigma-Aldrich), 1X L-glutamine, and 1X penicillin/streptomycin (Invitrogen, Carlsbad, 

CA, USA). Cells were rested at 37°C for 30 minutes and stained for viability with cisplatin 

as described48. Following viability staining, cells were perturbed under the following 

conditions: pervanadate,

BCR crosslinking, IL-7, thymic stromal lymphopoietin (TSLP), dasatinib, BEZ-235, or 

tofacitinib; sources, concentrations, and timepoints are listed in Supplementary Table 3. 

Cells were then fixed with paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, 

PA, USA) to a final concentration of 1.6% for 10 minutes at room temperature. Cells were 

barcoded using 20-plex palladium barcoding plates prepared in-house as described49. In 

order to control for batch effects, we included at least one healthy bone marrow reference 

sample within each barcoding plate. A total of 36 barcode plates were used in this study. 

Following barcoding, cells were pelleted and washed once with cell staining media (CSM; 

PBS with 0.5% BSA, 0.02% sodium azide) to remove residual PFA. Blocking was 

performed with Purified Human Fc Receptor Binding Inhibitor (eBioscience, San Diego, 

CA, USA) following the manufacturer’s instructions. Surface marker antibodies were added, 

yielding 50 or 100 μL final reaction volumes, and samples were incubated at room 

temperature for 30 minutes (Supplementary Table 2). Cells were pelleted and washed with 

CSM before permeabilization with 4°C methanol for 10 minutes at 4°C, then optionally 

stored at −80°C. Cells were washed with CSM and stained with intracellular marker and 

phospho-specific antibodies in 50 μL for 30 minutes at room temperature (Supplementary 

Table 2). Cells were washed once in CSM, then stained with 1:5000 191Ir/193Ir DNA 

intercalator (Fluidigm, South San Francisco, CA, USA) in PBS with 1.6% PFA for 20 

minutes at room temperature. Cells were washed once with CSM, washed twice with 

double-distilled water, filtered to remove aggregates, and resuspended in 139La/142Pr/159Tb/
169Tm/175Lu normalization beads50 immediately prior to analysis using a CyTOF1 mass 

cytometer (Fluidigm). Throughout analysis, cells were maintained at 4ºC with Sample 

Chiller and introduced at a constant rate of ~300 cells per second.

Lineage depletion of healthy samples

To enrich Ficoll-treated bone marrow from healthy donors for rare hematopoietic and B 

lymphocyte progenitors, cells were incubated with biotin-conjugated antibodies 

(Supplementary Table 6) for 30 minutes at a concentration of 5 million cells per 100 μL. 

Cells were washed with CSM twice then incubated with BD Streptavidin Particles Plus (BD 

Biosciences, Franklin Lakes, NJ, USA) at the manufacturer’s recommended concentration 

for 30 minutes at room temperature. Particle-labeled cells were resuspended in CSM to 

approximately 2–8×107 cells/mL and placed in a magnetic holder for 7 minutes. The 

supernatant was transferred to a new tube, and the beads/cells were washed and resuspended 
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and placed back in the magnetic holder for an additional round of depletion and supernatant 

recovery. This washing procedure was repeated. Cells from the supernatant were then 

pelleted by centrifugation at 250 g for 5 minutes. Depleted healthy cells were then 

stimulated and fixed before being aliquoted for use as controls on each barcode plate. These 

samples were then stained and analyzed alongside the leukemia samples.

Processing of mass cytometry data

Data were normalized together using bead normalization50, and files were debarcoded as 

described49. After debarcoding, we obtained ≥600,000 single-cell events per patient. Single-

cell protein expression data were extracted using Bioconductor software 

(www.bioconductor.org) and transformed using the inverse hyperbolic sine (arsinh) function 

with a cofactor of 5. To control for batch effects among barcoding plates, we performed 

percentile normalization using healthy reference bone marrow sample(s) included within 

each plate (normalization values across barcoding plates were in the range 0.97 – 1.18, 

indicating that batch effects prior to normalization were small). Expression of proteins in 

each population of interest was determined by calculating the mean level of expression after 

arsinh transformation. Percent positive cells for each phosphorylated protein was based on a 

mass cytometry cutoff of ≥10 counts. For single-cell correlation between two antigens, we 

calculated Spearman’s rank correlation coefficient using arsinh-transformed data for each 

patient separately. To perform DREMI (conditional-Density Resampled estimate of Mutual 

Information) analysis and DREVI (conditional-Density Rescaled Visualization) 

visualization, we sampled up to 5,000 cells from each patient and assessed strengths of 

pairwise interaction on pooled samples using a MATLAB-based software, simpledremi 

(www.c2b2.columbia.edu/danapeerlab/html/dremi.html)33.

Manual gating

Single cells were gated using Cytobank software (www.cytobank.org) based on event length 

and 191Ir/193Ir DNA content (in order to avoid debris and doublets) as described47. 

Following single-cell gating, live non-apoptotic cells were gated based on cleaved PARP 

(cPARP) and 195Pt content48. Platelets and erythrocytes were excluded by gating on CD61 

and CD235a, respectively. The remaining fraction was gated to exclude T cells and myeloid 

cells based on CD3e and CD33/CD16, respectively. After further exclusion of CD38High 

plasma cells, the remaining fraction was defined as lineage-negative blasts (Lin− B+; see 

Supplementary Fig. 1a for gating). Further analysis was applied to this Lin− B+ fraction 

unless otherwise noted.

Single-cell developmental classification

Lin− B+ fraction from healthy human bone marrow was gated into 15 developmental 

populations of normal B lymphopoiesis, mixed progenitors, and mature non-B fractions as 

shown in Supplementary Fig. 1b. The distribution of each population was based on the 

expression of 11 B-cell developmental proteins that were used for manual gating: CD34, 

CD38, CD127, CD24, terminal deoxynucleotidyl transferase (TdT), CD179a, CD179b, 

intracellular immunoglobulin heavy chain (IgHi), surface IgH (IgHs), CD19, and CD20. 

Prior to classification, each leukemia sample was normalized to control for batch effects (see 

Processing of mass cytometry data). Lin− B+ cells from each leukemia sample were then 
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assigned to the most similar healthy fraction based on the shortest Mahalanobis distance 

among distances to all healthy developmental populations in these 11 dimensions. For 

stability in calculating Mahalanobis distance, the covariance matrix eigenvalues were set to 

≥0.2. A cell was designated “unclassified” if none of the distances were below the 

classification threshold (Mahalanobis distance = 11 based on the number of dimensions). 

These single-cell classification parameters were optimized via 10-fold cross-validation using 

cells with known population assignment from healthy bone marrow donors. Optimization 

parameters included additional protein markers as well as cosine, Manhattan, or Euclidian 

distance metrics. By using bone marrow from adult healthy donors as a reference, we 

assume that B lymphopoiesis proceeds through the same stages of development in both 

children and adults. The percentages of B-cell developmental fractions in healthy samples 

are not relevant to the performance of the single-cell developmental classifier. As such, the 

gradual decline in the B-cell output with age does not confound single-cell developmental 

classification under this assumption.

Relapse predictive modeling

To construct a predictive model of relapse, termed the Developmentally Dependent Predictor 

of Relapse (DDPR), we allocated 54 BCP-ALL patients with ≥3 years of follow-up data into 

training (80% of patients, n = 44) and validation (20% of patients, n = 10) cohorts using a 

random assignment function that preserves proportions of cases and controls. A complete set 

of mass cytometry features available to DDPR is listed in Supplementary Table 5. It includes 

frequency of cells in each of 5 expanded populations (pre-pro-B, pro-BI, pro-BII, pre-BI, 

early progenitors), average expression of 24 proteins in these populations (CD10, CD19, 

CD20, CD22, CD24, CD34, CD38, CD43, CD45, CD58, CD79b, CD123, CD127, CD179a, 

CD179b, HLA-DR, IgHi, IgHs, IKAROS, Ki-67, PAX5, RAG1, TdT, TSLPr), and 

frequency of cells with each of 9 activated signaling molecules (p4EBP1, pSTAT5, pPLCγ2, 

pAKT, pSYK, prpS6, pERK1/2, pCREB, pIKAROS) in the unperturbed state and in 

response to each of 4 perturbations (BCR crosslink, IL-7, TSLP, pervanadate; as per 

Supplementary Table 3). Two clinical features available to DDPR (age and white blood cell 

count at diagnosis) are in Supplementary Table 1. Missing values were imputed as a median 

of all values. All features were scaled using their mean and s.d. within the training cohort, 

and these scaling parameters were also applied to the validation cohort. DDPR was built 

using elastic net22, a regularized machine learning approach that utilizes both L1 and L2 

penalty types to prevent overfitting. To take advantage of the follow-up data in our cohort, 

relapse was modeled as a time-to-event outcome in a regularized Cox proportional hazard 

model23. To estimate DDPR predictive performance, we used pre-validation24,25. In a 10-

fold cross-validation, we sequentially constructed an elastic net-regularized Cox model 

using 90% of the training cohort samples and tested that model on the remaining 10% of the 

training cohort samples. We then used all training cohort samples to construct the final 

model. Feature scaling parameters and final DDPR coefficients are listed in Supplementary 

Table 7. To test DDPR predictive performance, we applied the final model to the validation 

cohort. To assess performance, we reported an integrated cumulative/dynamic area under the 

curve (iAUC)26 and a C-statistic27 for censored time-to event data calculated using predicted 

relative risk (with reference to the sample average; RR) values within each cohort. To 

stratify patients into low and high DDPR risk groups, we selected a RR threshold (0.9967) 
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based on the optimal log-rank p-value calculated from the fitted RR values within the 

training cohort. We then applied this threshold to pre-validated (training cohort) and 

predicted (validation cohort) RR values, yielding the final DDPR risk group assignments for 

all patients (Supplementary Table 1).

Statistical analysis

Data analysis was performed using R statistical software (www.r-project.org). To test 

statistical significance between two groups, we applied two-tailed unpaired Student’s t test; 

when more than two groups were compared, we used Tukey’s honest significance difference 

test; Bonferroni correction was included for multiple comparisons; when equal variance 

assumption was not met based on an F test, Welch’s t test was used instead of Student’s t 
test; normality was assessed using the Shapiro-Wilk test. Paired Welch’s t test was used for 

paired samples. The Kaplan-Meier method was used to estimate relapse-free survival rates; 

differences between groups were assessed using the log-rank test. DDPR relapse-free 

survival curves were built using predicted risk group assignment for each patient (i.e. based 

on pre-validated RR for the training cohort and predicted RR for the validation cohort). To 

test for synergy between current risk stratification methods and DDPR, we calculated 

integrated discrimination improvement index (IDI), continuous net reclassification 

improvement (NRI), and median improvement (MI) for censored time-to-event data and 

their statistical significance at 5 years32,51.

Data availability statement

The mass cytometry data are available at https://github.com/kara-davis-lab/DDPR/releases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Using mass cytometry data from diagnostic biopsies of children with B-cell precursor 

acute lymphoblastic leukemia (BCP-ALL), Good et al. match leukemic cells to their 

closest counterparts in normal B-cell development and use this information to identify a 

signaling state that predicts relapse.
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Figure 1. Mass cytometry analysis of BCP-ALL reveals phenotypic heterogeneity of leukemic 
cells
(a) Summary of primary BCP-ALL sample processing for mass cytometry analysis (see 

Supplementary Tables 1–3 for patient information, antibody panel, and perturbation 

conditions, respectively). 60 primary BCP-ALL samples and 5 healthy control bone marrow 

aspirates were included. Prognostic cytogenetic translocations identified at diagnosis, as well 

as relevant ex vivo perturbations used to uncover cell state, are indicated. ‘Negative’ patients 

were negative for any of the prognostic cytogenetic translocations analyzed. (b) Mass 

cytometry analysis of commonly used diagnostic antigens expressed by lineage-negative 

bone marrow cells (see Supplementary Fig. 1a for gating) from 4 representative BCP-ALL 

patients and 1 healthy donor. (c) Left panel: 5,000 cells from 12 manually gated stages of B-

cell development in healthy bone marrow demonstrate phenotypic progression during 

normal B lymphopoiesis (1,000 cells sampled from each of n = 5 donors). The first 2 

principal components were constructed using 11 markers defining B-cell developmental 

populations (see Supplementary Figs. 1b–d for gating, marker weights, and variance 

captured by each principal component). The developmental time color scale was defined by 

setting hematopoietic stem cells as red and mature B cells as blue. Intermediate populations 

were placed on this red-to-blue color gradient at equal intervals. For each stage, a black dot 

indicates the population centroid, and the surrounding circle indicates standard error based 

on 5 healthy donors. Right panel: Data from 4 patients in (b) shown projected onto healthy 

B-cell progression. Each sample uniquely occupies the PCA space, while overlapping with 

multiple healthy populations and other patient samples. BCR, B-cell receptor; TSLP, thymic 

stromal lymphopoietin; PCA, principle component analysis.
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Figure 2. Single-cell developmental classifier for BCP-ALL
Healthy bone marrow aspirates from 5 donors were manually gated into 12 consecutive 

developmental stages of B lymphopoiesis (final gate is shown as a red box on a contour plot 

in the bottom, while the text above indicates prior gate(s) on lineage-negative cells; see 

Supplementary Figs. 1a and 1b for complete gating strategy). The mean arsinh-transformed 

expression of 11 proteins with relevance to normal B lymphopoiesis, shown in the heat-bar, 

was determined for each normal cell population (shown above the contour plots, where 

black indicates low expression and white – high expression). Single cells from each BCP-

ALL sample were then assigned to their most similar normal population based on the 

shortest Mahalanobis distance calculated from expression of the same 11 proteins. Cells 

with distance above the classification threshold to all developmental populations remained 

unclassified (<1% for each patient). IgHi, intracellular immunoglobulin heavy chain; IgHs, 

surface immunoglobulin heavy chain.
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Figure 3. Developmental classification reveals that BCP-ALL expands across the pre-proB to 
pre-BI transition
(a) Percentage of cells from healthy donor (n = 5, gray line) or diagnostic BCP-ALL patient 

(n = 60, orange line) bone marrow classified into each developmental population. Cell 

populations significantly expanded in leukemic samples are shown in the blue box (pre-pro-

B p = 0.0012, pro-BI p = 0.011, pro-BII p = 0.00013, pre-BI p = 0.011, early progenitors p = 

0.00013); late progenitors contracted (p = 0.036), and the remaining populations did not 

change significantly (p ≥ 0.05). (b) Percentage of cells in each developmental patient 

population grouped by diagnostic cytogenetics: i) translocation t(9;22)(q34;q11) BCR/
ABL1: t(9;22)- (n = 50) vs. t(9;22)+ (n = 10); ii) translocation t(1;19)(q23;p13) TCF3/
PBX1: t(1;19)- (n = 56) vs. t(1;19)+ (n = 4): progenitor I p = 0.015, pre-pro-B p = 0.037, 

pro-BI = 0.026, pro-BII p = 6.2×10−6, pre-BI p = 0.022; iii) translocation t(12;21)(p13;q22) 

ETV6/RUNX1: t(12;21)- (n = 47) vs. t(12;21)+ (n = 13), and iv) CRLF2-rearranged: 

CRLF2r- (n = 51) vs. CRLF2r+ (n = 9): pro-BII p = 0.0033, pre-BII p = 0.00017. (c–e) 
Antigen expression on bone marrow developmental populations from healthy donors (n = 5, 

gray line) or patients (n = 60, orange line): CD45 (c), CD10 (d), and CD58 (e). Mean ± 

s.e.m.; p-values in (a) and (b) are from unpaired two-tailed Welch’s t test accounting for 

multiple comparisons using Bonferroni correction. “Combined” in (c–e) denotes expression 

in all cells without developmental classification. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. DDPR predicts which patients will go on to relapse based on features of expanded 
BCP-ALL populations at diagnosis
(a) Construction of the Developmentally Dependent Predictor of Relapse (DDPR) model 

that predicts relapse in BCP-ALL. Data from 54 patients with ≥3 years of follow-up were 

divided into training (n = 44) and validation (n = 10) cohorts. Cellular features available to 

DDPR included signaling in the basal state, changes in signaling state following 

perturbations, mean arsinh-transformed expression of surface and intracellular proteins, and 

frequency of cells in the expanded developmental populations. DDPR performance was 

estimated using 10-fold cross-validation (CV) within the training cohort to yield pre-

validated relative risk for each patient. The final DDPR model (elastic net-regularized Cox 

model) was then built using all training cohort samples. Once constructed, DDPR was 

applied to predict relative risk for samples in the validation cohort. (b) Hierarchical 

clustering of 6 predictive features of relapse identified by DDPR within the training cohort. 

The last documented relapse status is shown above the heatmap as relapse (red) or 

continuous complete remission (blue). Coefficients of predictors are shown on the left of the 

heatmap. Yellow box indicates 5 features with negative correlation to relapse. Orange box 

indicates 1 feature with positive correlation to relapse. (c) Bar plots show mean ± s.e.m of 

key DDPR cellular features in pro-BII and pre-BI cells in all patients (n = 54); p-values are 

not shown, because these features were selected to be different and non-redundant between 

classes (unpaired two-tailed Welch’s t test from left to right would yield: p = 0.055, p = 

0.044, p = 0.13, p = 5.7×10−6, p = 1.6×10−7). Dashed lines indicate mean levels in the 

corresponding developmental populations within healthy bone marrow aspirates of 5 healthy 

donors; dotted lines indicate standard error. (d) Time-dependent AUC curves showing 

performance for relapse prediction in the training (left) and validation (right) cohorts. 

Integrated dynamic/cumulative AUC (iAUC) and C-statistic (C-stat) summary measures are 
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shown for each curve built using pre-validated (green, left), overall model fit (blue, left), and 

predicted (green, right) relative risk of relapse with reference to the sample average. (e) 
Kaplan-Meier analysis of relapse-free survival (RFS) of all patients with ≥3 years of follow-

up (n = 54) stratified by DDPR risk group. An estimate for relative risk of relapse was used 

to assign a risk group to each patient (pre-validated in the training cohort; predicted in the 

validation cohort; see Methods). P-values were calculated using the log-rank test. Log-rank 

tests for the training cohort alone: p = 5.6×10−6; validation cohort alone: p = 0.040. RFS 

estimates, standard error, number of patients at risk, and p-values for both groups at 5 and 7 

years are shown on the right (5 years p = 1.02×10−3, 7 years p = 3.03×10−6). BCR-XL, B-

cell receptor crosslink; TSLP, thymic stromal lymphopoietin; PVO4, pervanadate.
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Figure 5. DDPR synergizes with existing risk stratification methods to improve relapse-free 
survival prediction for patients with BCP-ALL
(a) A Kaplan-Meier analysis showing RFS for patients with ≥3 years of follow-up data and 

known NCI/Rome criteria (n = 53), stratified by NCI/Rome criteria alone (top) or NCI/

Rome criteria and DDPR (bottom). (b–c) RFS as in (a) for patients with known MRD risk 

(b) or final risk (c), as determined by protocol definitions (n = 45), stratified by the clinical 

risk group alone (top) or risk group and DDPR (bottom). An estimate for relative risk of 

relapse was used to assign a DDPR risk group to each patient (pre-validated in the training 

cohort; predicted in the validation cohort; see Methods). Kaplan-Meier estimates with 

standard error and the number of people at risk are shown for 5-year and 7-year RFS in the 

top plots (5-year and 7-year p-values: NCI/Rome criteria: p = 0.033 and p = 0.040, MRD 

risk: p = 0.157 and p = 0.084, final risk: p = 0.157 and p = 0.169). The p-values were 

calculated using the log-rank test; p-values in (b) and (c) are between standard risk and 

intermediate/high risk groups due to low number of patients in the high risk group. Black 

arrows with asterisks indicate a significant improvement in patient risk stratification at 5 

years following diagnosis achieved by adding DDPR to each established criteria: continuous 

net reclassification improvement (NRI) for NCI/Rome criteria: p = 0.027, MRD risk: p = 

0.033, final risk: p = 0.013; see Supplementary Fig. 5a for NRI estimates and 95% 

confidence intervals. MRD, minimal residual disease; RFS, relapse-free survival.
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Figure 6. Cells with DDPR features pre-exist at diagnosis and persist at relapse
(a) Percentage of cells in each developmental population (mean ± s.e.m.) of all diagnostic 

BCP-ALL samples from patients who stayed in continuous remission for ≥3 years (gray, n = 

37) or went on to relapse (black, n = 17), compared to matched diagnosis-relapse pairs 

(diagnosis: blue, relapse: purple, n = 7). Red box highlights a significant (p = 0.0030) 

expansion of pre-BI population at relapse compared to diagnostic samples of patients who 

did not relapse. P-values were calculated using a two-sided Tukey’s honest significance test 

and were corrected for multiple comparisons using Bonferroni correction. (b) Bar plots 

(mean ± s.e.m.) showing key DDPR features in all diagnostic samples compared to matched 

diagnosis-relapse pairs, as in (a): percent of pro-BII cells with phosphorylated (p) rpS6 or 

4EBP1 in non-stimulated (basal) state, percent of pre-BI cells with pSYK in basal state, and 

change from basal state in percent of pre-BI cells with pCREB or prpS6 signaling following 

pre-BCR cross-linking (BCR-XL). (c) Bar plots (mean ± s.e.m.) showing Spearman's rank 

correlation coefficient for key DDPR features listed in (b) was calculated for matched 

diagnosis-relapse pairs (n = 7): single-cell correlation of arsinh-transformed values between 

prpS6 and p4EBP1 in pro-BII cells (left), or between pCREB and prpS6, pSYK and pCREB, 

or pSYK and prpS6 in pre-BI cells (right). None of the DDPR features changed significantly 

from diagnosis to relapse in (b-c) (paired two-tailed Welch’s t test applied to matched 

diagnosis-relapse pairs only). (d) DREMI analysis and DREVI visualization for DDPR 

features in pre-BI cells. Up to 5,000 pre-BI cells from matched diagnosis-relapse pairs (n = 

7) were sampled and pooled prior to analysis. Left: Estimated conditional density functions 

for pSYK-to-pCREB signaling response (pSYK→pCREB) and pCREB→pSYK at 

diagnosis and relapse; sigmoidal response functions were fitted to each plot. Right: 

Quantification for strengths of pairwise signaling relationships within the network formed 

by pSYK, pCREB, and prpS6 at diagnosis and relapse. (e) Bar plots (mean ± s.e.m.) 
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showing response of DDPR features (basal p4EBP1 in pro-BII cells and basal pSYK in pre-

BI cells) to short-term ex vivo treatment (see Supplementary Table 3) in healthy donors (n = 

5) or diagnostic samples (no relapse: n = 37, relapse: n = 17). Shown are the effects of 

BEZ235 (a dual PI3K and mTOR inhibitor, PI3K/mTORi) in pro-BII cells (healthy p = 

0.023, no relapse p = 0.0032, relapse p = 0.0092) and of dasatinib (a dual BCR-ABL and 

SRC family kinase inhibitor, ABL/SFKi) in pre-BI cells (healthy p = 0.031, no relapse p = 

0.048, relapse p = 0.22). Effects were assessed using two- tailed Welch’s t test. n.s, not 

significant (p ≥ 0.05), *p < 0.05, **p < 0.01.
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