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Abstract. We report on and evaluate the process and findings of a real-time modeling exercise in response to an
outbreak of measles in Lola prefecture, Guinea, in early 2015 in the wake of the Ebola crisis. Multiple statistical methods for
the estimation of the size of the susceptible (i.e., unvaccinated) population were applied to weekly reported measles case
data on seven subprefectures throughout Lola. Stochastic compartmental models were used to project future measles
incidence in each subprefecture in both an initial and a follow-up iteration of forecasting. Measles susceptibility among 1-
to 5-year-olds was estimated to be between 24% and 43% at the beginning of the outbreak. Based on this high baseline
susceptibility, initial projections forecasted a large outbreak occurring over approximately 10 weeks and infecting 40
children per 1,000. Subsequent forecasts based on updated data mitigated this initial projection, but still predicted a
significant outbreak. A catch-up vaccination campaign took place at the same time as this second forecast and measles
cases quickly receded. Of note, case reports used to fit models changed significantly between forecast rounds. Model-
based projections of both current population risk and future incidence can help in setting priorities and planning during an
outbreak response. A swiftly changing situation on the ground, coupled with data uncertainties and the need to adjust
standard analytical approaches to deal with sparse data, presents significant challenges. Appropriate presentation of
results as planning scenarios, as well as presentations of uncertainty and two-way communication, is essential to the

effective use of modeling studies in outbreak response.

INTRODUCTION

Between January 23 and April 4, 2015 (weeks 4-13 of the
year), 284 cases of measles were identified in Lola, a pre-
fecture of approximately 180,000 people in southeast Guinea
within the Nzérékoré region (Figure 1). Given healthcare sys-
tem disruptions caused by the Ebola outbreak, there was
concern that reductions in measles vaccination may have in-
creased susceptibility in the younger population.’ A supple-
mentary immunization activity, aimed at decreasing measles
susceptibility, was planned for Guinea in 2014. However, this
campaign was interrupted by the Ebola outbreak and never
reached Lola prefecture. In addition, within the Nzérékoré re-
gion of Guinea, measles vaccination coverage has been rel-
atively low (reaching only 61% of children aged 9-59 months
in 20122), suggesting that a large proportion of the population
aged less than 5 years was susceptible to a measles outbreak.
These factors raised concerns that these 284 reported cases
heralded alarge and potentially deadly measles outbreak (e.qg.,
the estimated case—fatality ratio of measles cases in Africa
was 3.7%).2

At the request of staff from the European Center for Disease
Prevention and Control (ECDC), who were coordinating the
Global Outbreak Alert and Response Network field team
based in Lola, an informal collaboration with the Johns Hopkins
School of Public Health, Princeton, and Penn State was
established to estimate measles susceptibility in Lola and to
forecast the course of the outbreak. Data collected by local
partners were used to create rapid estimates of population
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susceptibility to measles and to develop scenario-based fore-
casts of future incidence aimed at informing the local public
health response. Initial analyses and forecasts were based on
case data from January 23 to March 29, 2015 (week 13 of the
year), which we term the Week 13 report; a second set of
forecasts was based on data through April 26, 2015 (week 17),
termed the Week 17 report.

This response was particular in its opportunities and chal-
lenges. Because of the efforts of the local public health team, it
is believed that measles incidence in N’Zoo subprefecture of
Lola was nearly completely observed, providing a rare op-
portunity for the analysis of disease dynamics.* However, data
from surrounding areas were sparse and assumed to be
underreported, with very little of the epidemic observed at the
time the initial predictions were made (Figure 1). Furthermore,
the Week 13 report and the Week 17 report contained different
numbers of cases for the weeks that were included in both
data sets, presenting an additional challenge to generating
accurate results. The data from the Week 17 report, up to and
including week 13, are termed the corrected Week 13 report.

Here, we report the results of our analyses in support of an
ongoing public health response. We evaluate the accuracy of
round 1 predictions in forecasting later incidence and attempt to
evaluate the extent to which inaccuracies could be attributed to
data issues versus model misspecification. We also detail ca-
veats and complexities related to this real-time modeling effort.

METHODS

The aims of this analysis were 2-fold: to estimate the level of
measles susceptibility in the population and to forecast the
number of expected future cases in Lola prefecture. Initial
analyses focused on N’Zoo subprefecture as, along with a
high level of observation of the epidemic, it had the longest
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Ficure 1. (A) Map of Guinea, with regions outlined and the Nzérékoré region highlighted. (B) Zoomed in, we see the number of susceptible
individuals in the Nzérékoré region of Guinea if a 25% interruption of measles vaccination due to the impact of Ebola on the healthcare systemis
assumed. Lola prefecture is in the lower right-hand corner of the map and is seen in (C) with labeled subprefectures. The color of each subprefecture
coincides with the number of reported measles cases up to week 13 of 2015. This figure appears in color at www.ajtmh.org.

history of case reports, likely improving the accuracy of
analysis relative to other locations.

Susceptibility estimation. Three methods were used to
generate estimates of measles susceptibility in children be-
tween the ages of 9 months and 5 years. The first was based
on the work by Orenstein et al.,® which uses the proportion of
cases occurring in vaccinated individuals and vaccine efficacy
(VE) to estimate the proportion of the population vaccinated
(PPV) and immune, based solely on case data (see Supple-
mental Information). VE was assumed to be between 86% and
97%, reflecting reasonable bounds on the efficacy of one
dose of measles vaccination across several studies.®®

The second method combined data from the Demographic
and Health Surveys (DHS)® and demographic models to esti-
mate the PPV, given reductions in vaccination rates stemming
from the Ebola epidemic, as developed by Takahashi et al.
Based on data collected by Médecins Sans Frontiéres
throughout the Ebola-infected regions, it was assumed that
vaccination rates decreased by 25% over the previous
12 months. Subsequent analysis of the decrease in routine
immunization in Liberia showed drops in Ebola-affected areas

of between 33% and 58%, suggesting that a decrease of 25%
may be an underestimate of the drop in vaccination rate.'®
This was combined with DHS data from the 2012 survey in
Guinea and spatially explicit data on birth rates and population
distributions from the WorldPop project'" to estimate the level
of susceptibility in the population at the beginning of the
measles outbreak (see Supplemental Information).

The third method used Markov chain Monte Carlo methods
to fit a seasonally forced, time-series susceptible-infected-
recovered model (TSIR) to the initially observed course of the
epidemic. For N’Zoo subprefecture, specific values of the
basic reproductive number R, consistent with those pre-
viously estimated for measles,'?'® were assumed in the ini-
tial analysis: Ry values of 8, 12, and 18 were considered.
Susceptibility levels were estimated based on the relation-
ship between these assumed R, values and the observed
epidemic curves. Four independent chains of length 5,000
were run using RStan'#'® and convergence was assessed
using Gelman and Rubin’s'® Rhat statistic. We assumed that
the number of infections in a given week was dependent on
the number of infections 2 weeks earlier, that is, the force of
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infection on the population at a given time depends on the number
of infections 2 weeks earlier. This approximates the serial interval
of measles (the length of time between successive cases in a
transmission chain).'”'® Seasonality was modeled by the equa-
tion B(t) = mean(B)(1 + a cos(2mt)), where B is the transmission
parameter and a is the amplitude of the seasonal effect on
transmission and is related to Ry via the next-generation matrix of
the model.'® Initial analysis fixed Ry and the seasonality effect, a, in
the model, whereas retrospective analysis let Ry and a be fit via the
TSIR model. In the other subprefectures, measles was assumed
to be underreported; therefore, an observation parameter & was
also fit, translating numbers of infections to numbers of reported
cases. Susceptibility projections for N’Zoo were used as prior
distributions when fitting other locations. Additional model details
are available in the Supplemental Information.

Epidemic projections. We projected measles cases into
the following weeks via stochastic forward simulation of the
epidemic. It was assumed that the force of infection in a given
week was based on the mean of the number of infections in the
previous 2 weeks. The basic model for forward predictions
was the same for all subprefectures.

Retrospective analysis. Results from the first round of
analyses were compared with subsequent data from the Week
17 report. For N'Zoo, forecast cases could be directly com-
pared with reported cases from the Week 17 report. For other
subprefectures, the assessment was not as straightforward as
the epidemics were not fully observed (i.e., underreported). In-
stead, we compare the forecasted number of cases for weeks
14-17 when the TSIR model is fit to the week 13 report, with the
number of cases estimated to have occurred during those
weeks when fitting the TSIR model to the week 17 report. We
also fit an alternate TSIR model to the data, estimating the
seasonality effect a based on data rather than fixing it.

As the case counts from the Week 13 and the Week 17
report are different in overlapping weeks, we consider how our
results would have differed if the Week 13 report were the
same as the corrected Week 13 report. We finally considered
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Ficure 2. Expected susceptibility/percent unvaccinated. We use
various fit scenarios and values of Rg for our time-series susceptible—
infected-recovered method. Boxplot (a) shows the estimated pro-
portion of individuals from 9 months to 5 years old who are susceptible,
whereas boxplots (b-e) show the proportion of individuals from 1 year
to 5 years old who are susceptible. Box plots give the interquartile range
of estimates and whiskers the 95% credible interval of posterior esti-
mates. This figure appears in color at www.ajtmh.org.
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Ficure 3. Predictedtotal cases up to Week 23 across age groupsin
N’Zoo subprefecture for three scenarios corresponding to Ry = 8, 12,
and 18 (pessimistic, mid, and optimistic, respectively), using the Week
13 report to fit the model. Box and whisker plots represent interquartile
range and 95% credible interval of posterior estimates. This figure
appears in color at www.ajtmh.org.

how the estimates for N’Zoo changed if we calculated the
force of infection in a given week using numbers of infections
from 1 week earlier, rather than 2.

RESULTS

The Week 13 report gave observed measles cases in several
subprefectures of Lola up to week 13 of 2015. N’Zoo sub-
prefecture was the first to report cases of measles, beginning in
the 4th week of the year. In the 9th week of the year, two cases
were observed in Kokota subprefecture. The following week,
cases were observed in N’Zoo and Kokota, along with a third
subprefecture, Foumbadou; and by week 12, cases had been
observed in eight subprefectures in total. Tounkarata sub-
prefecture had four reported cases in week 15 and no other
reported cases, and so is excluded from analysis entirely.

Figure 2 shows estimates of susceptibility in the 1- to
5-year-old age group in N’Zoo for our three methods. Esti-
mating the proportion of susceptible individuals in the
Nzérékoré region (which includes Lola prefecture), via the
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Ficure 4. Predicted epidemic trajectory up to week 23 of 2015 for
three scenarios corresponding to Ry = 8, 12, and 18 (pessimistic, mid,
and optimistic, respectively). The green dots represent observed
cases from weeks 14 to 17. Boxes represent the interquartile range
and whiskers represent the 95% credible interval of posterior esti-
mates. This figure appears in color at www.ajtmh.org.
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TaBLE 1

Estimated parameters from time-series susceptible-infected-recovered—fit model where the seasonal effect a is a parameter fit by the model

Week 13 report—mean

Corrected Week 13 report—mean Week 17 report—mean

Parameter Location (95% confidence interval [CI]) (95% Cl) (95% Cl)
Basic reproduction number Rq N’Zoo 20.19 (15.93-24.96) 18.73 (14.55-23.57) 16.41 (12.56-21.07)
Foumbadou 11.09 (8.41-14.27) 14.61 (11.14-18.47) 15.69 (12.58-19.15)
Gueasso 13.38 (9.82-17.38) 17.50 (13.79-21.51) 11.64 (9.08-14.79)
Gama Berema 13.59 (9.72-17.93) 18.40 (14.48-22.44) 12.02 (9.52-14.76)
Kokota 15.80 (10.97-20.46) 15.11 (12.61-19.63) 16.28 (12.73-19.66)
Laine 18.48 (14.32-22.67) 19.56 (14.76-24.19) 17.16 (14.42-19.90)
Less than 1 year’s susceptibility N’Zoo 42% (25-63%) 31% (17-50%) 21% (13-33%)
Foumbadou 51% (37-68%) 37% (24-50%) 26% (19-35%)
Gueasso 37% (19-55%) 24% (10-39%) 15% (7-21%)
Gama Berema 36% (20-54%) 29% (16-44%) 18% (11-27%)
Kokota 45% (30-62%) 18% (0-38%) 10% (1-15%)
Laine 41% (24-60%) 33% (18-48%) 19% (11-30%)
1-5’s susceptibility N’Zoo 30% (25-35%) 29% (24-35%) 27% (22%-33%)
Foumbadou 26% (21-31%) 27% (22-32%) 23% (19-27%)
Gueasso 26% (21-31%) 28% (23-32%) 25% (20-28%)
Gama Berema 26% (21-31%) 29% (24-35%) 25% (21-29%)
Kokota 27% (22-32%) 27% (22-31%) 29% (24-35%)
Laine 29% (24-34%) 29% (23-34%) 27% (13-26%)
6-10’s susceptibility N’Zoo 18% (10-29%) 18% (9-30%) 19% (12-28%)
Foumbadou 9% (1-21%) 13% (1-24%) 15% (9-22%)
Gueasso 17% (9-27%) 19% (11-28%) 20% (15-27%)
Gama Berema 12% (2-23%) 12% (2-23%) 14% (8-20%)
Kokota 10% (0-22%) 19% (12-26%) 20% (15-27%)
Laine 15% (4-25%) 17% (6-27%) 19% (13-26%)
11-15’s susceptibility N’Zoo 8% (2-19%) 4% (0-10%) 6% (2-12%)
Foumbadou 8% (2-13%) 5% (2-10%) 8% (5-12%)
Gueasso 5% (0-13%) 3% (0-8%) 0% (0-1%)
Gama Berema 5% (0-13%) 3% (0-8%) 1% (0-5%)
Kokota 2% (0-11%) 1% (0-7%) 0% (0-2%)
Laine 6% (0-14%) 4% (0-9%) 2% (0-8%)
16+ susceptibility N’Zoo 3% (1-6%) 3% (1-7%) 2% (1-4%)
Foumbadou 1% (1-3%) 2% (0-5%) 1% (0-2%)
Gueasso 2% (0-4%) 2% (0-4%) 0% (0-1%)
Gama Berema 3% (1-5%) 3% (1-5%) 1% (0-3%)
Kokota 1% (0-3%) 0% (0-3%) 2% (0-3%)
Laine 2% (0-5%) 3% (0-5%) 1% (0-2%)
Seasonal effect a N’Zoo 0.31(0.21-0.46) 0.33(0.21-0.49) 0.45 (0.39-0.59)
Foumbadou 0.44 (0.32-0.56) 0.44 (0.28-0.57) 0.48 (0.34-0.59)
Gueasso 0.44 (0.31-0.56) 0.44 (0.31-0.56) 0.46 (0.33-0.57)
Gama Berema 0.45 (0.32-0.56) 0.44 (0.31-0.56) 0.45 (0.32-0.57)
Kokota 0.44 (0.32-0.56) 0.43 (0.31-0.53) 0.51(0.34-0.58)
Laine 0.44 (0.32-0.56) 0.45 (0.31-0.57) 0.43 (0.31-0.55)
Reporting rate & Foumbadou 8% (5-13%) 14% (8-27%) 20% (16-26%)
Gueasso 14% (8-25%) 32% (23-43%) 17% (14-22%)
( (
( 6
(

Gama Berema
Kokota
Laine

16% (10-26%)
40% (5-100%)
7% (5-14%)

36% (22-69%)
6% (5-9%)
7% (5-12%)

17% (13-22%)
6% (5-9%)
6% (5-8%)

The final three columns describe which data were used to fit the model.

method of Takahashi et al., results in an estimated 24% (95%
confidence interval [Cl]: 2-65%) of children in the 9 months to
5-year-old age group being susceptible (Figure 2, boxplot [a])
(geo-located estimates for absolute numbers of susceptibles
in this age group are shown in Figure 1). Results from Orenstein’s
and TSIR methods consider the 1- to 5-year-old age group, as
data were stratified into five nonoverlapping age groups: Less
than 1 year, 1-5, 6-10, 11-15, and 16+ years olds. Using
Orenstein’s method, we combined the proportion of cases oc-
curring in vaccinated individuals with the assumed VE to es-
timate susceptibility and obtained a mean estimate of 43%
(95% CI: 15-76%) (Figure 2, boxplot [b]).

Fitting N’Zoo incidence data for scenarios with Ry of 8, 12,
and 18, using the TSIR method, we found that assuming a
lower Ry led to a prediction of a larger epidemic than that for
higher Rq values, as this required a higher level of susceptibility
to explain observed cases (Figure 2, box plots [c]-[e]). The
scenarios were thus designated as pessimistic, mid, and

optimistic for the 8, 12, and 18 values of Ry, respectively.
Estimates from the optimistic scenario were mostly in line with
estimates from other methods.

Figure 3 shows estimates of cases by age group between
weeks 14 and 23 of 2015 for N’Zoo only, whereas Figure 4
shows estimated cases by week over the same period, with the
reported cases from weeks 14 to 17 also included (green dots).
These were included in the first report that was sent to the
ECDC and were shared with the World Health Organization.

These forecasts predicted a large outbreak of measles in
N’Zoo, with an interquartile range of 539-759 total cases
expected (mean 657) even in the optimistic scenario, with the
vast majority of the cases in the 1- to 5-year olds.

Retrospectively, we compared estimates when the sea-
sonality effect a is fixed across Lola with estimates when a is
allowed to vary between subprefectures. These estimates are
shown in Table 1, where we compare parameter estimates
from this model for each subprefecture. The first two columns
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Ficure 5. Reported cases by week in the seven subprefectures of Lola prefecture, with the data from the week 13 report shown in red and data
from the week 17 report shown in blue. We see a disagreement in the cases reported in the overlapping weeks from both reports, in some cases the
beginning of the epidemic being in different weeks. In addition to cases in these subprefectures, there were also four cases reported in Tounkarata
subprefecture in week 15, which are not displayed here. The two vertical lines indicate when data were received and when forecasts were provided
to collaborators in Guinea, respectively. This figure appears in color at www.ajtmh.org.

give the parameter being estimated and the subprefecture as from week 14 onward there is a greater decrease in
in question, respectively. The final three columns of the ta- transmission due to this strong seasonal effect (Supplemental
ble give estimates from the model when we use, in turn, the Figure 1).

Week 13 report, the corrected Week 13 report, and the Week To gauge the accuracy of forecasts, we compare with the
17 report to fit the model. For all subprefectures except Week 17 report. Asin N’Zoo, we assume that the outbreak was
N’Zoo, the posterior means for a were between 0.41 and almost fully reported. We can compare our forecasts from the
0.44 (95% CI: 0.32-0.54), implying a stronger seasonal Week 13 report directly with the number of cases reported in
signal than was initially assumed. In N’Zoo, the posterior the Week 17 report. We see that estimates of the number of
mean was 0.31 (95% Cl: 0.22-0.43). The overall size of the cases between weeks 14 and 17 were far higher than what was

outbreak is forecast to be smaller if seasonality is stronger, observed (Figure 5).
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In the other subprefectures, as we do not assume complete
observation, we instead compare results from the Week 13
report with those when using the Week 17 report. We find a
good agreement between the results produced from analyzing
both data sets (Figure 5). Central Lola was excluded from this
analysis as the number of cases reported was insufficient for
the models to fit.

To understand to what degree errors in our predictions were
due to differences in the reported number of cases up to week
13 between the Week 13 and Week 17 reports, we examined
the forecasts to week 17 that we would have made had our
data at week 13 been consistent with the corrected Week 13
report (comparisons of predictions by week are shown in
Figure 5). In Table 2, we compare estimates for the attack rate
in each subprefecture up to week 17 when using the Week 13
report, the corrected Week 13 report, and the Week 17 report.
For N’Zoo, Foumbadou, and Laine, we see that if the Week 13
report were in agreement with the corrected Week 13 report,
then our initial predictions would have been closer to the later
predictions. However, in the other subprefectures, the results
would have been further from later predictions.

We also considered sensitivity to model specification
for N°’Zoo. Initially, a 2-week time step was used in the TSIR
model here, whereas in other subprefectures, because of the
lack of data, a 1-week case dependence was used. Figure 6
shows case predictions up to week 17 when we use cases from
1 week and 2 weeks earlier to calculate the force of infection to
fit the data from the Week 13 report in the TSIR framework. The
mean estimate for the cumulative cases through week 17 of the
year with a 2-week dependence was 508, whereas when using
a 1-week dependence this was down to 302, more in line with
the number of reported cases, 221.

Although absolute numbers differed, the relative number of
reported cases by age group for each subprefecture was a
good match for our predictions, indicating that the estimates
of relative susceptibility by age was in line with reality
(Supplemental Figures 2 and 3).

DISCUSSION

Here we describe an analysis of a measles outbreak in
Lola prefecture of Guinea beginning in the 4th week of 2015,
including estimates of population susceptibility and projec-
tion of future cases in the Nzérékoré region and Lola prefecture
using several methods of different complexity. Projections
made from the Week 13 report were supplied to the WHO on
April 12, 2015. A measles vaccination campaign deployed to
compensate for the interrupted Guinea-wide campaign origi-
nally planned for 2014 began in Lola prefecture on April 18
(week 16). This campaign was conducted over 7 days (the
entirety of week 17), and it is estimated that ultimately 92% of

children from 6 months to 10 years old were vaccinated.*
Despite this vaccination effort, the area has remained vul-
nerable to measles, as demonstrated by the subsequent
measles outbreak in Guinea in 2017. More than 2,100 children
were infected with measles from January 2017 to March 12,
2017, with 675 of these cases reported in Nzérékoré pre-
fecture®® (located within the Nzérékoré region and bordering
Lola prefecture), a greater number of cases than were reported
in Lolain2015. A vaccination campaign was initiated on March
12, 2017, in Nzérékoré prefecture, aimed at protecting
140,000 children between the ages of 6 months and 10 years.

In general, our models projected a greater number of cases
than were reported. Our analyses considered two different
data reports: one provided in week 13 of the outbreak and one
in week 17, termed the Week 13 and Week 17 reports, re-
spectively. For N’Zoo, where cases were assumed to be fully
reported, our predictions for weeks 14-17 made from the
Week 13 report were higher than those observed in the sub-
sequent report. Outside of N'Zoo, as it was assumed that
cases were underreported, we cannot directly compare our
forecasts with reported cases to assess accuracy. However,
the predictions made for weeks 14-17 with the Week 13 report
were generally consistent with model fits of this period using
the Week 17 report. In N’Zoo, analyses using the data from the
corrected Week 13 report improved forecasts, suggesting that
dataissues hampered forecasts here; however, this worsened
forecasts for other subprefectures. Outside of N'Zoo, the es-
timated peak week of the epidemic when using the Week 13
report was generally closer to the data and the estimate when
using the Week 17 report, than it was when using the corrected
Week 13 report (Table 3).

It is possible that surveillance changed over time and that
this was responsible for the peak in cases around week 13,
followed by a precipitous drop, which was seen in all sub-
prefectures except N’Zoo (Figure 7). This pattern is hard to
reproduce with any epidemic model, so it seems likely that
changes in surveillance or behavioral changes in advance of
the start of vaccination might have modified the dynamics in
ways unaccounted for by the models.

As well as the impact of data variation, using different model
variants produced different forecasts. Fitting the seasonal
fluctuations in transmission resulted in a decrease in the
predicted cases. Furthermore, comparisons over models fit-
ted to the N’Zoo data implied that a 1-week rather than a
2-week case dependence gave better predictions over the
subsequent weeks of the epidemic. This may be due to non-
constant serial intervals among individuals,'”"'® which our
initial model assumed to be 2 weeks across all individuals.

Initial estimates for the attack rate up to week 17 were
broadly in agreement across subprefectures, with Kokota and
Laine being on the low and high end of the estimates,

TABLE 2
Estimated attack rates per 1,000, across the entire population, up to Week 17 of 2015 by subprefecture and data on which predictions are based on

Subprefecture Week 13 report Corrected Week 13 report Week 17 report
N’Zoo 32.6 (22.0-48.4) 17.7 (13.0-25.5) 14.2
Foumbadou 37.2 (25.2-50.5) 32.7 (20.6-47.4) 29.0 (20.6-34.0)
Gueasso 30.6 (20.1-43.7) 36.5 (25.2-52.3) 26.7 (27.3-28.2)
Gama Berema 31.9 (21.7-44.7) 37.6 (23.7-53.5) 24.8 (19.0-28.6)
Laine 47.7 (31.3-64.0) 32.8 (16.1-54.4) 20.8 (13.0-29.2)
Kokota 22.8 (3.1-42.5) 34.8 (27.5-49.4) 39.0 (36.7-43.0)

We assume that N’Zoo is fully observed up to week 17; therefore, the Week 17 report result has no credible intervals.
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Ficure 6. Predictions of total cases in six subprefectures when Ry and a are allowed to vary. We plot the predictions made when using the Week 13
report in red, predictions from the corrected Week 13 report in green, and those from the Week 17 report in blue. For N’Zoo, we assume that the observed
cases are equal to all cases; therefore, we plot the data from the Week 13 and Week 17 reports as dots. Because of the lack of data (see Figure 7), the
estimates for Central Lola subprefecture were poor (because of non-converging Markov chain Monte Carlo chains) and so are not displayed here. Boxes
represent the interquartile range and whiskers represent the 95% credible interval of posterior estimates. This figure appears in color at www.ajtmh.org.

respectively. In particular, N’Zoo’s estimated attack rate up to
week 17 was approximately equal to that of Foumbadou,
Gueasso, and Gama Berema. Using the corrected Week 13
report, the estimated attack rate up to week 17 was lower in
N’Zoo (attack rate of 14.2 per 1,000 down from 32.7 per
1,000 using the Week 13 report) than in all other subprefectures
(estimated attack rates ranging from 20.6 to 38.9 per 1,000).
This may be because of the fact that the surveillance process
and the epidemic process are not independent of each other;

therefore, the highly effective surveillance of the local health
workers in N’Zoo may have led to a more effective response,
significantly curtailing the epidemic. In addition, this may in-
dicate a bias in the initial reporting, which was mitigated when
data were updated. It may also follow that if other sub-
prefectures had good data, then a decrease in the attack rate
may also have been seen for these places.

This analysis highlights the uses and limitations of “just-in-
time” modeling studies in outbreak response. This outbreak
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TaBLE 3
Peak week of the epidemic by subprefecture according to data from
the Week 17 report, and model fits using the Week 13, corrected
Week 13, and Week 17 reports

Week Corrected Week Week
Subprefecture Data 13 report 13 report 17 report

N’Zoo 13 >17 15 NA
Foumbadou 14 13 15 13
Gueasso 13 13 15 13
Gama Berema 13 13 16 13
Laine 14 15 13 13
Kokota 14 16 >17 >17

NA = notapplicable. N’Zoo has NA for the estimate from the Week 17 report, as the model was
never run for the full Week 17 report, as observation was assumed to be complete. Entries that
are “> 17” imply that the number of cases were estimated to still be increasing at week 17.

was in some ways a special case, as the Ebola outbreak had
disrupted routine vaccination and interrupted a scheduled
vaccination campaign. In addition, routine disease surveil-
lance, along with many other public health activities, had
been negatively affected, as virtually all focus was directed
toward responding to the Ebola crisis. For these reasons, a
measles vaccination campaign was long overdue, and the
outbreak served to highlight its necessity. Generally during
outbreaks, modeling can be useful for motivating action and
preventing many additional cases?'?>—indeed, in the situ-
ation described, the modeling efforts may in part have mo-
tivated a campaign de novo. Modeling can also be used to
help plan vaccination campaigns by characterizing the sus-
ceptibility of the population in different areas, thereby helping
to focus initial efforts. As demonstrated by the results from
refitting models with the corrected Week 13 data, updating
analyses when corrected data becomes available can po-
tentially lead to improvements in estimates and hence con-
clusions and recommendations, when compared with using
a static system which is not updated over time.

Our forecasts may have overestimated the number of cases
by 1.5-3 times (Table 1). Discrepancies between forecasts

N'Zoo
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150

Cases
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4 5 6 7 8 9 10 11 12 13 14 15 16 17
Week

E32-week &2 1-week B2 Cases

Ficure 7. Predicted cases in weeks 14-17 from fitting time-series
susceptible-infected-recovered (TSIR) models for N°’Zoo when Ry and
a are allowed to vary using 1- and 2-week time steps to the Week 13
report. The reported cases in N’Zoo are given by blue dots. Box plots
indicate the interquartile range of posterior estimates. Predictions
when we use a 2-week time step in the TSIR model are plotted in gray
and when using a 1-week time step in yellow. Boxes represent the
interquartile range and whiskers represent the 95% credible interval
of posterior estimates. This figure appears in color at www.ajtmh.org.

and observed cases were likely a result of a combination of
factors, including inaccurate and inconsistent reporting of
case numbers across reports, selection of models that were
necessarily underpowered given the length of the time series
available, and the effects of interventions and changing sur-
veillance patterns on the observed course of the epidemic.
Overcoming these challenges is not something that can take
place over the course of a single outbreak, but requires long-
term improvements in the storage, dissemination, and han-
dling of infectious disease data so that when a crisis does
occur, information is available to formulate an appropriate
response. Not all these limitations can be overcome, nor do
they necessarily indicate a shortcoming of model forecasts; in
particular, model forecasts may lead to subsequent inter-
ventions that change the course of the epidemic, rendering the
forecasts themselves invalid.23-2°

Although forecasting can be a useful stand-alone tool, these
analyses can shed light more broadly on the underlying
processes that generated the observed epidemic data. Here,
and in other settings, models provided a picture of what was
driving the outbreak: high measles susceptibility in the region.
Although the point estimates of measles susceptibility from
our three methods diverged, all three provided a consistent
picture of at least 24% of children in Lola prefecture being
unvaccinated for measles, consistent with previous estimates
in the Nzérékoré region.2 Models further provide plausible
planning scenarios based on current information and can be
important tools for health officers on the ground.25 In this case,
although projections of case numbers ultimately were found to
be overestimates, they provided a correct order-of-magnitude
picture of what could be expected even in the worst plausible
scenarios. Given the uncertainties in outbreaks, particularly
where there is few prior data, this may set a practical limit on
expectations from modeling in this context, and model
forecasts should be presented and interpreted with
caution.?®

For the analysis and forecast team, the main difficulties
of this collaboration were the quick turnaround in estimates
and predictions, which were required and thus generated in
little over 1 week. This involved construction of models
from the ground up, followed by fitting parameters and
generating forecasts, leaving little time to consider differ-
ent model formulations that may have resulted in improved
forecasts. In future, having multiple models developed and
available for forecasting before an outbreak occurs would
aid the production of time-sensitive forecasts.

Challenges faced by the team in the field were pre-
dominantly related to the logistics of obtaining regular data
updates and to their uncertainties surrounding the quality of
the reported data. Given the outbreak situation across multiple
subprefectures that each required at least half a day to visit, it
was not feasible or possible for the team to validate all re-
ported data as they came in; some data were only able to be
validated several days after the initial reporting. Another
challenge related to the ad hoc establishment of this project:
the field team was required to try to learn on the fly the specific
modeling methodologies being deployed. In an ideal situation,
a relationship between a field and a modeling team would be
preestablished to ensure that all parties were thoroughly fa-
miliar with the key model inputs, uncertainties, and outputs.
Nonetheless, the initial modeling results were very useful for
the field team to understand the potential trajectories of the
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outbreak and to advocate for action and collaboration with
local and international partners.

From a longer term perspective, enhanced collabora-
tion between modelers and field epidemiologists would be
best achieved in non-outbreak situations as part of emer-
gency preparedness planning. Necessary understanding
about a range of issues could then be discussed and
agreed upon. These would include data usage and pri-
vacy, the types of data likely to be available during an outbreak
situation, and the nuances of specific modeling approaches in
terms of key data requirements, limitations, and uncertainties.

In every emerging disease crisis, decisions are made in highly
uncertain situations, and making full use of the data is critical to
making the best possible decisions as to how to respond.
Modeling approaches that provide both situational awareness
and practical projections for planning purposes can help, but
are best positioned as part of an iterative collaboration between
analysts and those setting policy in the field, where forecasts
can be updated as new data are collected. The Lola prefecture
experience illustrates some of the challenges and benefits of
this approach and highlights the need for established tools and
partnerships to address future outbreaks.
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