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To the Editor

We read with great interest the paper by Williams et al.1, who reported evidence for neutral 

evolution in tumors by analyzing data from The Cancer Genome Atlas (TCGA). They 

supported this conclusion by showing high R2 values for fits to a neutral evolutionary model 

predicting M ∝ 1/f, where M is the number of somatic mutations with allele frequency ≥f. 
However, we believe a conclusion of neutrality must be treated with caution, as high R2 

values are R2 values are consistent with many evolutionary models.

For example, we analyzed phenomenological models similar to that of ref. 1 but with 

parameter k, such that M ∝ 1/fk. Here k = 1 corresponds to the neutral model, k > 1 

corresponds to diversifying selection (excess of rare mutations), and k < 1 corresponds to 

purifying selection (excess of high-frequency mutations). We reanalyzed the TCGA data to 

determine whether values other than k = 1 fit the data better. To reduce pipeline 

uncertainties, we used only tumors for which calls were made by Mutect2, and similarly to 

ref. 1 we only used mutations with read count ≥10 and alternative read count ≥3 and only 

analyzed tumors with ≥12 genes within the fitting range (0.12 < f < 0.24). We then 

reproduced Figure 3 from ref. 1 by fitting mutation count to 1/f (Fig. 1a). Our R2 values 

were high although not identical to those in ref. 1, likely owing to differences in tumor sets 

and perhaps as a result of insufficient information about the exact methodological details in 

ref. 1. To determine whether the fit was due to neutral evolution, we repeated the same 

analysis by fitting to the functions 1/f2 (diversifying selection) and 1/ f  (purifying selection) 

(Fig. 1a). In all cases, we were able to closely fit the TCGA data (mean R2 values were 0.84, 

0.88, and 0.73 for k = 1, 0.5, and 2, respectively), but the purifying selection model 1/ f  in 

fact fit the data slightly better. Although our analysis does not clearly show a lack of 

neutrality, it does indicate that R2 is not a good measure for distinguishing neutral evolution.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.
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Another consideration is that noise inherent in M(f) curves limits conclusions about 

neutrality. Assuming that the true allele frequency of a mutation is ftrue, the observed allele 

frequency fobs will be a sample from a binomial distribution with mean μ = ftrue and s.d. 

σ f = f true(1 − f true)/n, given read depth n (on average, n = 102 in the TCGA samples). In 

the fitting range 0.12 < ftrue < 0.24, σf can take on values as large as 0.04, that is, ~30% of 

the fitting range. We analyzed the effect of this noise directly by simulating observed M(f) 
curves according to underlying neutral (k = 1), purifying (k = 0.5), and diversifying (k = 2) 

selection models. M(f) curves were generated by sampling values of ftrue from the 

underlying model and then for each value reporting an fobs generated from the binomial 

distribution with mean ftrue and read depth n, where n was drawn from a lognormal fit to the 

pooled TCGA read depth distribution. Figure 1b shows randomly generated M curves 

obtained by resimulating this process, suggesting that measurement uncertainty can 

substantially influence the shape of the observed curve and obscure the underlying 

evolutionary process. Moreover, we repeatedly simulated M(f) curves for each generating 

process (k = 0.5, 1, and 2) and tested whether the true generating process could be identified. 

Mean and s.d. of R2 values are shown in Table 1. R2 values to the true model (diagonal 

elements) were only marginally better than those to the incorrect models and in all cases 

these differences were less than the s.d. across replicates, suggesting that R2 is not a 

sensitive measure for resolving the evolutionary process.

The relationship M ∝ 1/f can be derived from assumptions of a homogeneously replicating 

population with constant mutation rate per cell division (M ∝ N) and neutral evolution: that 

is, a mutation that arises when the tumor is of size N will obey f ∝ N−1 at the time of 

measurement. Our model can be interpreted as maintaining the first assumption while 

replacing the second with f ∝ N−1/k to take selection into account. The described cases for k 
give the correct sign of the second derivative of M with respect to 1/f for purifying and 

diversifying selection. Still, the model is a simplification and treats selection as monotonic 

with N. In reality, selective pressures are likely to be spatially diverse and punctuated, 

although investigation of these aspects will require more extensive parameterization.

Williams et al.1 have provided a valuable conceptualization of population dynamics in 

tumors and have shown that neutrality is possible. However, models with selection can 

provide similarly good fits to the TCGA data, and TCGA data still yield substantial 

uncertainties about the true frequency distribution. More refined evolutionary models and 

further increases in sequencing depth, along with careful statistical modeling of sequencing 

data3, will be important to resolve what balance of selection and neutrality exists in cancer. 

Interestingly, even aside from the considerations we have raised, Williams et al.1 already 

found there to be many cases that did not fit the neutral model, and in some cases the 

selective processes may be resolvable. Promising areas for future investigation may include 

location-dependent selection, deviations from M ∝ N due to cell cycle–independent 

mutations, and tissue-specific selection such as differences in solid and liquid tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of evolutionary models for TCGA and simulated data. (a) Distribution of R2 

values for fits of TCGA allele frequency distribution data to three different models. The 

numbers on the right side of each plot show the fraction of total tumors in each cancer type 

with R2 >0.98 (right side of red dashed line). (b) Simulated allele frequency distributions for 

different generating processes. Thin curves are individual examples of simulated M curves 

from the neutral (left), purifying selection (middle), and diversifying selection (right) 

processes, while thick curves are the ideal when no measurement noise exists. See the 

Supplementary Note and Supplementary Code for details.
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