Skip to main content
. 2018 May 15;13(5):e0197004. doi: 10.1371/journal.pone.0197004

Table 5. Results of Linear SVM and Random Forest Models.


aMCI versus Deficit SCZ
Linear SVM Random Forest
Validation accuracy (%) Top-features Feature weights Validation accuracy (%) Top-features Feature importances
7 CERAD 81.0 (13.0) BNT -0.6682 78.0 (10.7) BNT 0.2991
WL -0.3866 WLM 0.2489
False Recall 0.2759 VFT 0.1390
WLM
7 CERAD 97.0 (4.6) BNT -0.2699 98.0 (4.0) BNT 0.1977
- Age WLM 0.2606 WLM 0.0925
- Sex VFT 0.2465 WL 0.0406
- Education False Recall
aMCI versus Nondeficit SCZ Validation accuracy (%) Top-features Feature weights Validation accuracy (%) Top-features Feature importances
CERAD 73.6 (10.9) BNT -0.5626 71.4 (14.3) BNT 0.3410
WLM 0.3562 WLM 0.2226
WLRec total -0.2955 VFT 0.1882
7 CERAD, 100.0 (0.0) BNT -0.3144 98.9 (3.3) BNT 0.1545
- Age WL 0.3013 WL 0.0573
- Sex False Recall False Recall
- Education WLM 0.2719 VFT 0.0477

10-fold cross-validation performances and predictive weights in Support Vector Machine with linear kernel (Linear SVM) and importances in Random Forest Models performed using 7 Consortium to Establish a Registry for Alzheimer’s disease (CERAD) test results as explanatory variables and amnestic mild cognitive impairment (aMCI) versus (non)deficit schizophrenia (SCZ) as dichotomous classes. VFT: Verbal Fluency Test. BNT: Boston Naming Test. WLM: Word List Memory. WL False Recall: Word List Recall, Delayed, false recall. WLRec total: Word List Recognition total.