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Abstract

We review the psychology and neuroscience of reinforcement learning (RL), which has witnessed 

significant progress in the last two decades, enabled by the comprehensive experimental study of 

simple learning and decision-making tasks. However, the simplicity of these tasks misses 

important aspects of reinforcement learning in the real world: (i) State spaces are high-

dimensional, continuous, and partially observable; this implies that (ii) data are relatively sparse: 

indeed precisely the same situation may never be encountered twice; and also that (iii) rewards 

depend on long-term consequences of actions in ways that violate the classical assumptions that 

make RL tractable.

A seemingly distinct challenge is that, cognitively, these theories have largely connected with 

procedural and semantic memory: how knowledge about action values or world models extracted 

gradually from many experiences can drive choice. This misses many aspects of memory related 

to traces of individual events, such as episodic memory. We suggest that these two gaps are 

related. In particular, the computational challenges can be dealt with, in part, by endowing RL 

systems with episodic memory, allowing them to (i) efficiently approximate value functions over 

complex state spaces, (ii) learn with very little data, and (iii) bridge long-term dependencies 

between actions and rewards. We review the computational theory underlying this proposal and 

the empirical evidence to support it. Our proposal suggests that the ubiquitous and diverse roles of 

memory in RL may function as part of an integrated learning system.

Introduction

Reinforcement learning (RL) is the process by which organisms learn, by trial and error, to 

predict and acquire reward. What makes this challenging, from a computational point of 

view, is that actions have long-term effects on future reward (e.g., failing to save may lead to 

penury later in life; drinking stagnant water may slake thirst at the expense of later illness). 

Further, these deferred consequences may depend critically on other, subsequent actions and 

events: getting admitted to college pays off only if one manages to graduate. This sequential 

dependency greatly compounds the classic “curse of dimensionality” (Bellman, 1957) by 

extending it over time. Clearly, biological organisms cannot try every possible sequence of 
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actions. By making certain simplifying assumptions about the structure of the environment, 

computer scientists have designed efficient algorithms that are guaranteed to find the optimal 

behavioral policy. The discovery that the brain uses one (indeed several) of these algorithms 

is one of the great success stories of modern cognitive and computational neuroscience.

Two decades of research have buttressed this picture, with converging evidence from 

behavioral, neural and computational studies. One key advance has been the extension of the 

classic story in ways that enriched its content, both computational and cognitive. In 

particular, early celebrated work on RL focused on a dopaminergic and striatal system for 

simple, incremental learning of action values, known as model-free learning (Montague et 

al., 1996; Houk et al., 1995; Schultz et al., 1997). Recent work has extended this view to 

encompass additional processes for more deliberative, so-called model-based evaluation 

(Daw, Niv & Dayan, 2005; Dolan & Dayan, 2013). This increases the computational 

capability of the theories – allowing them, for instance, to choose more effectively in novel 

or changed circumstances – and also situates them in relation to a broader framework of 

research in the cognitive neuroscience of memory. Model-based learning formalizes how 

organisms employ knowledge about the world – maps or models of task contingencies – in 

the service of evaluating actions. This dovetails with research on multiple memory systems: 

e.g., distinguishing a striatal procedural learning system from a hippocampal declarative one 

(Eichenbaum & Cohen, 2004; Poldrack et al., 2001), each with several properties that echo 

their decision making counterparts. The emerging relationship between RL and the memory 

systems that likely subserve it has been illuminating for both areas.

Despite this success, we are still far from understanding how real-world RL works, either 

cognitively or computationally. Here, we suggest that these two sets of gaps have a common 

answer.

Cognitively, RL has long embraced procedural learning and more recently semantic memory 

(in the sense of knowledge of facts about the world that typically are viewed as abstracted 

from many experiences, like the map of a well-explored maze). But it has had limited 

contact with another prominent sort of memory: episodic memories connecting different 

aspects of individual events the organism experienced at a particular time and place 

(Tulving, 1972). Such traces seem, in principle, relevant to decisions; a goal of this review is 

to clarify what specific advantages they might confer.

Computationally, biological RL is still greatly hobbled by the restrictive formal assumptions 

that underpin it. With few exceptions, the kinds of experimental tasks that have been used to 

study RL are quintessentially “toy” problems: They are designed to isolate certain 

computations in a well-controlled setting, but they do not grapple with the complexity of 

many decision problems faced by organisms in their natural environments. In particular: (i) 

Real state spaces are high-dimensional, continuous, and partially observable; this implies 

that (ii) data are relatively sparse: indeed precisely the same situation will never be 

encountered twice; and also that (iii) rewards depend on long-term consequences of actions 

in ways that violate the classical assumptions that make RL tractable.
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Intuitively, these implications can be understood by considering the problem of investing in 

the stock market. The state of the stock market is high-dimensional and continuous, such 

that any given state is unlikely to be repeated (i.e., the market history sparsely samples the 

state space). Furthermore, the long-term consequences of an investment decision depend on 

forces that are only partially observable (e.g., the strategies of other investors). The kinds of 

algorithms that have been imputed to the brain will break down when confronted with this 

sort of real-world complexity. Since organisms clearly find a way to cope with this 

complexity, we are left with the conundrum that much of our understanding about RL in the 

brain may in fact be irrelevant to important aspects of how organisms naturally behave.

In this review, we suggest that one computational answer to this conundrum is to look to a 

different and complementary set of algorithmic approaches than those typically examined in 

cognitive neuroscience – those based on nonparametric estimation, kernel-, or instance-

based methods. These methods are statistically well-suited for dealing with sparse, 

arbitrarily structured, trial-unique data. Moreover, because they ultimately base their 

estimates on records of individual events, they also may clarify the missing links between 

decision making and episodic memory. These links are relatively underexplored, though they 

relate to a number of other ideas, and make contact with other empirical literatures, which 

therefore form the balance of our review. The key idea (building on one from Lengyel and 

Dayan, 2007) is that episodic memory could provide detailed and temporally extended 

snapshots of the interdependency of actions and outcomes from individual experiences, and 

this information may be a reliable guide to decision-making precisely in situations where 

classical algorithms break down. Episodic memory may thus enable organisms to (i) 

efficiently approximate value functions over complex state spaces, (ii) learn with very little 

data, and (iii) bridge long-term dependencies between actions and rewards.

In what follows, we review the current picture of RL in neuroscience and psychology, and 

lay out the main arguments, both theoretical and empirical, that make this picture at best 

incomplete. We then describe a theoretical framework for augmenting RL with additional 

systems based on nonparametric estimation which we tentatively identify with episodic 

memory. We consider the computational implications of this approach, and review the 

available evidence related to this framework and its connection to earlier ideas.

Reinforcement learning: the current picture

We begin this section with a brief overview of the RL problem formalism and standard 

algorithmic solutions, and then review behavioral and neural evidence that the brain 

implements these algorithms. For other, more extensive reviews of this material, see Niv 

(2009); Dolan & Dayan (2013); and a trilogy of textbook chapters (Daw and Tobler, 2013; 

Daw, 2013; Daw and O’Doherty 2013). Our goal here is mainly to motivate a more 

prospective review of possible connections with additional areas of research.

Markov decision processes

In machine learning, RL concerns the study of learned optimal control, primarily in 

multistep (“sequential”) decision problems (Sutton and Barto, 1998; Bertsekas and 

Tsitsiklis, 1997). Most classic work concerns a formal class of tasks known as Markov 
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decision processes (MDPs). MDPs are formal models of multi-step decision tasks like 

spatial navigation, games like Tetris, or scheduling problems as in factories; in a pinch 

(neglecting some game-theoretic aspects of the opponent’s behavior) they also model multi-

step multiplayer games like chess. The goal of RL is typically to learn, by trial and error, to 

make optimal choices in an initially unknown MDP.

Formally, MDPs are expressed in terms of discrete states s and actions a, and numeric 

rewards r. As we will see, much of the research in psychology and neuroscience surrounding 

these models turns on the tricky relationship between these formal objects and real-world 

situations, behaviors, and outcomes. But informally, states are like situations in a task (e.g., 

locations in a spatial maze), actions are like behavioral choices (turn left or right), and 

rewards are a measure of the utility obtained in some state (a high value for food obtained at 

some location, if one is hungry).

An MDP consists of a series of discrete timesteps, in which the agent observes some state st 

of the environment, receives some reward rt, and chooses some action at. The agent’s goal is 

to choose actions at each step so as to maximize the expected cumulative future rewards, 

discounted (exponentially by decay factor γ < 1) for delay, i.e. the sum rt + γrt+1 + γ2rt+2 + 

⋯ of future rewards.

Thus, the goal is not simply to maximize the immediate reward of an action, but instead the 

cumulative reward (the “return”), summed over all future timesteps. Actions influence 

longer-run reward expectancy because, in an MDP, each successor state st+1 is drawn from a 

probability distribution P(st+1 | st, at) that depends on the current state and action; and 

rewards at each step are generated according to a probability distribution P(rt|st) that depends 

on the current state. Informally, what this means is that the agent navigates the states (like 

positions in a maze) and harvests rewards by choosing actions. Each action affects not just 

the current reward, but by affecting the next state also sets the stage for subsequent ones. 

Conversely, because the consequences of an action for cumulative reward depend also on 

subsequent states and actions, choosing optimally can be quite involved.

What makes these problems nevertheless tractably solvable is the eponymous feature of 

MDPs, the Markov conditional independence property: At any timestep t, all future states 

and rewards depend only on the current state and action, via the probability distributions 

given above. Thus, importantly, conditional only on the present state and action, all future 

events are independent of all preceding events. This permits a recursive expression for the 

state-action value function (the sum of future rewards expected for taking some action in 

some state: the quantity that is the goal of optimization):

Qπ(st, at) = rt + γ ∑
st + 1

P(st + 1 st, at)Qπ(st + 1, π(st + 1)) [1]

Equation 1 is a form of the Bellman equation (Bellman, 1957), versions of which underlie 

most classical RL algorithms. Here, it says that the expected future reward for taking action 

at in state st (then following some policy π thereafter) is given by the sum of two terms: the 
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current reward, and the second term, which stands in for all the remaining rewards γrt+1 + 

γr2
t+2 + ⋯. The insight is that this sum is itself just the value Q of the subsequent state, 

averaged over possible successors according to their probability.

A chief problem in RL is how to choose advantageously given the deferred consequences of 

one’s actions. One way to solve this problem is to focus on predicting those consequences, 

via learning to estimate Qπ(st, at) (or some closely related quantity) from experience with 

rewards, states, and actions in the MDP. Given a good estimate of the value function, you 

can choose the action with the best return simply by comparing values across candidate 

actions. Many RL algorithms rely on variations on this basic logic. (We omit some details 

related to the dependence of Q on the continuation policy π; for our purposes, imagine that 

by learning Q and choosing according to it, we gradually improve our prevailing action 

selection policy, which in turn drives an updated Q until we arrive at the best policy.)

Model-based and model-free algorithms

There are two main classes of algorithms for RL based on Equation 1, which focus on either 

the left- or right-hand side of the equal sign in that equation. First, it is possible to use 

experience to estimate the “one-step” reward and state transition distributions P(rt|st) and 

P(st+1 | st, at), which together are known as an internal model of the MDP. Note that these 

concern only immediate events – which rewards or states follow other states, and are thus 

easy to learn from local experience, essentially by counting. Given these, in turn, it is 

possible iteratively to expand the right-hand side of Equation 1 to compute the state-action 

value for any state and candidate action. Algorithms for doing this, such as value iteration, 

essentially work by “mental simulation,” enumerating the possible sequences of states that 

are expected to follow a starting state and action, summing the rewards expected along them, 

and using the learned model to keep track of their probability. (See Daw and Dayan, 2014, 

for a detailed presentation.)

This approach is known as model-based learning due to its reliance on the internal model. Its 

main advantage is the simplicity of learning, but its main disadvantage is that this simplicity 

is offset by computational complexity at choice time, since producing state-action values 

depends on extensive computation over many branching possible paths.

An alternative approach is to eschew learning a world model, and instead learn a table of 

long-run state-action values Q (the left hand side of Equation 1) directly from experience. 

The discovery of algorithms for accomplishing such model-free RL (in particular, the family 

of temporal-difference, TD, learning algorithms; Sutton 1990) was a major advance in 

machine learning that continues to provide the foundation for modern applications (e.g., 

Mnih et al., 2015).

Briefly, these algorithms use experienced states, actions and rewards to compute samples of 

the right hand side of Equation 1, and average these to update a table of long-run reward 

predictions. More particularly, many algorithms are based on the temporal difference reward 
prediction error occasioned by comparing the value Q(st, at) to a sample computed one 

timestep later:
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δt = rt + γQ(st + 1, at + 1) − Q(st, at) [2]

When the value function is well estimated, this difference should on average be zero 

(because Q(st, at) should in expectation equal rt + γQ(st+1, at+1) by Equation 1). When error 

is nonzero, stored Qs can be updated to reduce it.

Choice is, accordingly, much simpler using model-free algorithms compared to model-based 

algorithms, because the long-run values are already computed, and need only be compared 

to find the best action. However, as we will discuss further, these computational savings 

come at a cost of inflexibility and less efficient learning.

Model-free learning in the brain

The initial and still most celebrated success of RL theory in neuroscience was the 

observation that the firing of dopamine neurons in the midbrain of monkeys behaving for 

reward resembles the reward prediction error of Equation 2 (Montague et al., 1996; Houk et 

al., 1995; Schultz et al., 1997), suggesting that the brain may use this signal for RL. The 

trial-trial fluctuations in this signal track the model quite precisely (Bayer & Glimcher, 

2005), and can also be measured in rodents using both physiology and voltammetry (Cohen 

et al., 2012; Hart et al., 2014). A similar signal can also be measured in the ventral striatum 

(a key dopamine target) in humans using fMRI (e.g., Hare et al., 2008). Although fMRI 

measurements are not specific to the underlying neural causes, dopaminergic involvement in 

these prediction error correlates is suggested by findings that they are modulated by 

dopaminergic medication (Pessiglione et al., 2006) and by Parkinson’s disease (Schoenberg 

et al., 2010), which is marked by the relatively selective degeneration of dopaminergic 

nuclei.

It is believed that dopamine drives learning about actions by modulating plasticity at its 

targets, notably medium spiny neurons in striatum (Frank et al., 2004). Via their projections 

to other basal ganglia nuclei (and ultimately to motor cortex), these neurons drive elicitation 

and withholding of behavior (Alexander and Crutcher, 1990). Accordingly, Parkinson’s 

disease and dopamine replacement therapy in humans modulate learning in RL tasks (Frank 

et al., 2004; Shohamy et al., 2005). More temporally specific optogenetic elicitation and 

suppression of dopaminergic responses in rodents also drives learning in tasks specifically 

designed to isolate error-driven learning (Steinberg et al. 2013; Parker et al., 2016). These 

studies refine an earlier literature using less selective electrical or pharmacological 

stimulation of the systems; notably, drugs of abuse invariably agonize dopamine as a 

common link of effect. This suggests the hypothesis that their reinforcing effects are 

ultimately driven by the same RL mechanisms discussed here (Redish, 2004; Everitt and 

Robbins, 2005).

The behavioral experiments discussed thus far mainly involve non-sequential decision tasks, 

such as one-step “bandit” tasks in which a subject repeatedly chooses between a set of 

actions (different slot machines) and receives reward or punishment. Indeed, the trial-by-trial 

dependency of choices on rewards in such tasks is quantitatively consistent with the pattern 
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predicted by error-driven learning in both monkeys (Lau and Glimcher, 2005) and humans 

(Seymour et al., 2012). However, model-free learning by Equation 2 makes more specific 

and characteristic predictions about the progression of learning across states in multistep, 

sequential tasks. The predicted patterns have been confirmed to be present in humans (Fu 

and Anderson, 2008; Daw et al., 2011), but not exclusively. Indeed, long before the advent 

of the neurophysiological models, behavioral psychologists had established that basic TD 

learning cannot by itself explain a number of learning effects, a point to which we turn next.

Model-based learning in the brain

Although model-free and model-based algorithms both ultimately converge to optimal value 

predictions (under various technical assumptions and in the theoretical limit of infinite 

experience in a fixed MDP; e.g., Bertsekas and Tsitsiklis, 1997), they differ in the trial-by-

trial dynamics by which they approach the solution. One difference between model-free and 

model-based algorithms for learning from Equation 1, is related to the fact that because the 

model-free algorithms learn long-run action values by sampling them directly along 

experienced trajectories. For this reason, they can in some cases fail to integrate information 

encountered in different trajectories (e.g., separate trials or task stages).

This basic insight has been investigated using tasks involving staged sequences of 

experience, ordered in a way to defeat a model-free learner. For instance, in latent learning 

(Tolman, 1948; Glascher et al. 2010, and a similar task called sensory preconditioning, 

Brogden, 1939; Wimmer and Shohamy, 2012), organisms are first pre-exposed to the state-

action contingencies in an environment without any rewards (e.g., explore a maze), then 

subsequently learn that reward is available at a particular location.

For a model-based learner, this experience has the effect of teaching them first the transition 

function P(st+1 | st, at), i.e. the map of the maze, and then, separately, the reward function 

P(rt|st). Together, this information enables them in a subsequent probe phase to navigate to 

reward from any location, by evaluating Equation 1. However, for a model-free learner, the 

pre-exposure stage teaches them nothing useful for the probe (only that Q is everywhere 

zero); in particular, since they don’t separately learn a representation of the map of the maze 

(the state transition distribution), they must learn the navigation task from scratch when 

reward is introduced.

Humans and even rodents can, at least under some circumstances, successfully integrate 

these experiences, demonstrated in this case by facilitated navigation learning in groups who 

received the pre-exposure (Tolman, 1948; Glascher et al., 2010). These results, and logically 

similar ones involving studying whether animals require additional experience to adjust their 

decisions following changes in reward value (e.g., outcome devaluation) or task 

contingencies (introduction of blockades or shortcuts; contingency degradation) have been 

taken to reject model-free RL, at least as a complete account of behavior (Dickinson and 

Balleine, 2002; Daw et al., 2005).

However, the same types of experiments actually do support the predictions of model-free 

learning mechanisms like TD, in that under other circumstances, organisms fail as the 

theories predict to integrate well (but separately) learned information about contingencies 
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and rewards. For instance, following overtraining on lever-pressing for food, rodents will 

lever-press even after the outcome is devalued by satiety (Adams, 1982), though less 

thoroughly trained animals can successfully adjust. In psychology, these two sorts of 

behaviors (incapable and capable of integration, respectively) are known as habitual and 

goal-directed. Lesion studies in rodents suggest that they are dependent on discrete networks 

in the brain, involving different parts of frontal cortex and striatum (see Daw & O’Doherty, 

2013 for review).

Altogether, the predictions of model-free learning and the prediction error theories of 

dopamine are well matched to habitual behavior, but fail to account for the additional 

category of goal-directed behavior and the ability of organisms to integrate experiences. This 

led to the suggestion (Daw et al., 2005) that the latter behavior might be understood in terms 

of model-based learning alongside the model-free system and competing to control 

behavioral output. This proposal put hitherto looser ideas about deliberative behavior and 

cognitive maps on more equal quantitative footing with the more specific 

neurocomputational theories of habitual learning, enabling further investigation of its 

properties.

For instance, with more specific characterizations of both sorts of learning, it is possible to 

dissociate trial-by-trial behavioral adjustments and neural correlates of decision variables 

like Q associated with either learning rule in multistep decision tasks (e.g., two-step, three-

state MDPs; Daw et al., 2011). Experiments using this technique have verified that 

signatures of both types of learning coexist in humans. Their prevalence can be manipulated 

situationally (Otto et al., 2013a,b); varies across individuals (e.g., with symptoms of 

compulsive disorders such as drug abuse; Gillan et al., 2016); and tracks “prospective” 

representation of future states measured in fMRI at choice time (consistent with choice-time 

evaluation via mental simulation; Doll et al., 2015). Research with elaborated multi-step 

decision tasks has also begun to shed light on computational shortcuts by which the brain 

manages to compute the expected reward (Dezfouli and Balleine, 2013; Diuk et al., 2013; 

Huys et al, 2015; Cushman and Morris, 2015; Solway & Botvinick, 2015).

Less is yet known about the neural circuits supporting putatively model-based behavior. 

Particularly in human neuroimaging, there appears to be more overlap between neural 

signals associated with model-based and model-free learning than might have been expected 

on the basis of lesion work. For instance, prediction error signals in human striatum (Daw et 

al., 2011) and rodent dopamine neurons (Sadacca et al., 2016) both reflect integrated, model-

based valuations. (This is surprising insofar as those signals provide the foundation for the 

standard model-free account discussed above.) As discussed further below, results like this 

might suggest that the systems interact more cooperatively in the intact than the lesioned 

brain; that model-based computations are built in part by leveraging phylogenetically earlier 

model-based circuitry; that there is more of a continuum between them; and/or that the 

integration of value that is taken as a signature of model-based computation is actually 

heterogeneous and may occur via a number of different mechanisms at different times 

(Wimmer and Shohamy, 2012; Gershman et al., 2014; Shohamy & Daw, 2015).

Gershman and Daw Page 8

Annu Rev Psychol. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other data point to the hippocampus as a key player in model-based RL. The model-free vs. 

model-based distinction appears to track a similar dichotomy in the study of multiple 

memory systems, which in broad terms distinguishes a rigid striatal procedural learning 

system from a more flexible declarative memory system associated with the hippocampus 

(Squire, 1992; Gabrieli 1998; Knowlton et al., 1996). A number of particular aspects of 

hippocampal function also suggest it as a candidate site for world models as envisioned in 

RL. For spatial navigation, it has long been viewed as a seat of cognitive maps (O’Keefe and 

Nadel, 1978). Perhaps the most directly suggestive data concerning a potential neural circuit 

for model-based evaluation also come from spatial navigation tasks, in which representations 

of place cells in rodent hippocampus appear to “run ahead” of the animal during navigation 

and at choice points (Johnson & Redish, 2007; Pfeiffer and Foster, 2013. This prospective 

activity has been suggested to instantiate a “search” of future trajectories to support model-

based evaluation (e.g., decision-time computation of Equation 1). However, this 

phenomenon has yet to be specifically linked to choice behaviors (like latent learning or 

other integrative tasks) that demonstrate model-based evaluation.

Outside space, the hippocampus is also associated with more abstract relational information 

reminiscent of the state transition function (Eichenbaum and Cohen, 2004; Shohamy et al., 

2008). But perhaps the most well-known function of the hippocampus is the formation of 

episodic memories, long-term, autobiographical snapshots of particular events. This function 

has also been linked to prospective construction of imagined future episodes, for planning or 

other decisions (Schacter et al., 2012). It has not, however, received as much attention in RL. 

Below we argue that it may underlie some decisions that appear “model-based.” The 

relationship between all these seemingly disparate aspects of hippocampal memory function 

is a deep conceptual issue and one of ongoing debate in the cognitive neuroscience of 

memory.

Computational shortcomings of the current picture

The computational and neural mechanisms described above appear to be a reasonably well 

supported picture, albeit with some uncertainty related to the neural implementation of 

world modeling and integrative evaluation. However, it is quite unclear how these 

mechanisms could “scale up” to real-world tasks. It is not so much that the tasks that have 

been studied in the laboratory are small and artificial – though they are – it is that the very 

assumptions that allow RL to work well in these sorts of tasks are inapplicable to many 

richer, real-world settings.

Many of the issues arise out of the definition of the state st. Laboratory experiments typically 

involve at most a handful of discrete states and actions, which are clearly signaled to the 

subjects and designed to satisfy the Markov conditional independence property. Real world 

sensations rarely meet these conditions. The typical sensory experiences of an organism are 

both too vast and too impoverished to serve as st in algorithms based on Equation 1. They 

are too vast because they are continuous, and high-dimensional, such that effective learning 

requires identifying the subset of relevant dimensions and generalizing appropriately across 

situations that will never exactly recur (Niv et al., 2015).
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Real world sensations are also too impoverished because despite all the extraneous detail in 

one’s immediate sensory observations, they rarely satisfy the Markov property; i.e., other 

information observed in the past but not currently observable affects future state and reward 

expectancies. This happens routinely in real-world tasks; e.g., in navigation whenever two 

different locations look similar enough to be indistinguishable (“state aliasing”), or due to 

long-run dependencies between day-to-day events, such as when someone tells you they’ll 

be back tomorrow at noon for lunch. If the Markov property fails to hold for some putative 

state s, it is not possible to decompose the state-action value via the Bellman equation 

(Equation 2).

Of course there exists extensive machine learning work on how to cope with some of these 

circumstances. Particularly relevant for neuroscience is the theory of partially observable 

Markov decision processes (POMDPs; Kaebling et al., 1998), which treats Markov 

violations as arising from “latent” states that would satisfy the Markov property, but can 

only be indirectly (and perhaps ambiguously) observed. With training, one can learn to infer 
the identity of these states (which may indeed provide part of a theoretical basis for state 

representation for RL; Daw et al., 2006; Rao, 2010; Gershman et al., 2010, 2015), but only 

after having done so is one in anything like a firm position to learn action values. In what 

follows, we consider mechanisms that might be applicable earlier in learning, and also might 

be flexible and able to adapt in the face of ongoing learning about how to define the state, 

which dimensions are relevant and how to infer latent aspects.

Episodic memory for nonparametric value function approximation

If the current computational picture of RL is incomplete, how can progress be made? One 

approach is to further examine what the brain’s memory systems might suggest about RL.

As already suggested, existing RL theories have recognized links to what in memory 

research is known as procedural memory (for model-free policies or action values) and to 

semantic declarative memories (for world maps or models). Strikingly, all these quantities 

represent statistical summaries extracted from a series of events – procedural knowledge of 

how to ride a bike, or semantic knowledge of what a typical breakfast might contain. In 

contrast, a great deal of research in memory concerns memory for one-shot events, from 

word lists to autobiographical events like your 30th birthday party or what you had for 

breakfast this morning. The remainder of this review considers how memories for individual 

events might serve RL, and in particular why it might help to enable RL to escape some of 

its previous weaknesses and the restrictive assumptions under which it operates.

Though an interesting computational object in the abstract, one-shot memories are not 

unique to long-term episodic memory. For instance, working memory clearly plays a role in 

maintaining and manipulating information briefly, as for phone numbers. It also arises in our 

review. However, we mainly have in mind long-term episodic memory, which apart from 

having a number of appealing computational features for RL is also associated with the 

hippocampus, whose other mnemonic roles are already implicated in model-based RL. 

(Though we are not yet in a position to entirely reconcile these functions, it is nevertheless 

clear that episodic aspects are conspicuously lacking from the current picture.)
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Psychologically, episodic memory is associated with detailed autobiographical memories 

linking many different sensory features of an experience at a particular time and place, such 

as what you had for breakfast this morning (Tulving, 1972). Computationally, for the 

purpose of this review, we would stress the notion of a record of an individual event (like a 

trial in a task) and the connection between many aspects of that event, including multiple 

sensory dimensions and sensations experienced sequentially. Below, we reason about what 

sort of advantages episodic memories might confer on an organism’s decision making, and 

argue that they are well suited to the situations poorly handled by the mechanisms 

considered so far, and well linked to another class of estimation algorithm.

For this, we build on an earlier proposal, dubbed “episodic control” by Lengyel and Dayan 

(2007), who suggested that episodic memories could be used to record, and later mimic, 

previously rewarding sequences of states and actions. Here we suggest a somewhat different 

computational rationale for a similar idea, which we call “episodic RL,” in which episodic 

memories are used to construct estimates to the state- or state-action value function (rather 

than for extracting policies, i.e. action sequences, directly). These evaluations can then be 

compared to derive choice policies in the usual way.

The previous section identified two difficulties with existing algorithms in real-world 

circumstances. First, the space of situations (“states”) is vast, and which features or 

dimensions of it are relevant to value prediction are not typically known in advance. Also, 

many RL systems harness the recursive structure of the Bellman equation, but the Markov 

assumptions that underpin this recursive structure are invalid in many real-world 

environments (e.g., when there are long-term dependencies). Memory for individual 

episodes can help ameliorate these problems by allowing for the later construction of a 

“nonparametric” approximation of the value function that need not precommit at the time of 

encoding to averaging with respect to particular relevant sensory dimensions, or to reliance 

on the Bellman equation for a particular choice of state.

To understand what this means, recall that the value of a state represents the cumulative 

future reward over a (possibly infinitely long) trajectory. Model-free algorithms store and 

update a running average of this value, and model-based algorithms compute the value on 

the fly using estimates of the reward and transition functions. These approaches are 

“parametric” in the sense that they estimate a set of parameters that specify the value 

function (cached values in the case of model-free control, model parameters in the case of 

model-based control). Once these parameters have been estimated, the raw data can be 

discarded.

Episodic RL keeps the raw data in memory and approximate state values by retrieving 

samples from memory. Intuitively, this works because the value of a state can be 

approximated simply by summing rewards collected along a remembered trajectory initiated 

in that state, or averaging such sums across several such trajectories. Because these 

trajectories are individual and temporally extended, they capture arbitrary long-range, non-

Markovian dependencies among events. Moreover, as discussed below, this procedure allows 

for flexible and adaptive generalization in terms of what counts as a similar “state” for the 

purpose of forecasting value in novel circumstances.
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Episodic RL is “nonparametric” in the sense that it does not rely on a fixed, parameterized 

form of the value function. The effective complexity of the approximation (i.e., the number 

of episodes) grows as more data are observed. This approach links to a well developed 

literature in statistics and machine learning on nonparametric estimation (see Wasserman, 

2006, for a textbook treatment) and a more specialized set of applications of these 

techniques to value estimation in the RL setting (e.g., Ormoneit & Sen, 2002; Engel et al. 

2005).

Formalization of episodic reinforcement learning

The simplest implementation of episodic RL (Figure 1) is to store individual trajectories in 

memory, and, when a familiar state is encountered, retrieve the set of trajectories that have 

followed each candidate action in that state, and average the rewards subsequently obtained 

to estimate the value of each action. Formally,

Qπ(s1, a) = En ∑
n = 1

N
γn − 1rn sn, a ≈ 1

M ∑m = 1
M Rm

where M is the number of retrieved trajectories, Rm is the cumulative discounted return for 

each trajectory, and π is the prevailing policy. This approach works reasonably well when 

the state space is small and sequences are not very deep. However, there are several 

problems with this implementation when applied to more general environments (e.g., with 

large state spaces and long planning horizons). First, since it seems likely that only relatively 

short trajectories can be stored in memory (much work in memory concerns the 

segmentation of events between episodes; e.g., Ezzyat & Davachi, 2011), episodic RL may 

tend to be myopic, neglecting long-term future events due to truncation of the trace. 

Computationally, estimates of long-run reward based on sample trajectories also have large 

variance as the horizon grows longer, since increasing numbers of random events intervene 

along the way (Kearns & Singh, 2000). Second, in complex or continuous state spaces, 

states may be rarely if ever revisited; thus, the controller needs a mechanism for 

generalization to new states.

The first problem can be addressed by combining episodic RL with the Bellman equation. 

Consider an agent who retrieves a set of M trajectories starting with action a in state s, and 

ending N timesteps later in some state smN which may differ for each episode. The value of 

this state can be expressed as follows:

Qπ(s1, a) = 1
M ∑m = 1

M Rm + γN∑sP sN + 1 = s smN, π(smN) Qπ sN + 1, π sN + 1

The first term in this equation represents the expected return from an episode of length N, 

and the second term represents the expected return after that trace has terminated. The 

second term could be computed using model-based or model-free value estimates, or by 

chaining together a sequence of episodes. Combining these terms allows episodic RL to 

correctly take into account the long-term consequences of a finite trajectory. Note that the 

individual sequences capture arbitrary long-run dependencies among events (up to their 

Gershman and Daw Page 12

Annu Rev Psychol. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



length), and a Markovian assumption is invoked only to knit them together. It is also 

possible to knit together shorter sequences, or in the limit, individual state transitions 

themselves each drawn from a set of sample episodes (Ormoneit & Sen, 2002), to the extent 

the Markovian assumption can be relied upon. Unlike traditional model-free approaches 

(Sutton, 1988), the decision of how heavily to rely on the Markovian assumption need not be 

made when experience is first acquired, but instead later, at choice time, when it is used to 

compute decision variables. This means this decision can be informed by additional 

experience in the interim.

Chaining episodes bears a striking resemblance to the use of options in hierarchical RL 

(Botvinick et al., 2009). Options are policies that have specific initiation and termination 

conditions; when one option terminates, another option is invoked. Just as options allow an 

agent to build reusable subroutines out of primitive actions, episodes allow an agent to reuse 

past experience. In fact, episodic retrieval may be one way in which options are created.

The second problem—generalization—can be addressed by allowing values to be smooth 

interpolations of episodes. Specifically, the expected return of a trajectory can be estimated 

by:

Eπ ∑
n = 1

N
γn − 1rn s1, a ≈

∑m = 1
M RmK(s1, sm1)

∑m = 1
M K(s1, sm1)

where M is the number of retrieved memory traces, sm1 is the initial state of the trajectory 

stored in memory trace m, and Rm is the return for the trajectory. The “kernel function” 

K(s1, sm1) measures the similarity between the current and retrieved state. The kernel 

function can also be defined over state-action or state-action-reward tuples. Such 

generalization is important for the purposes of choice, because it allows an agent to estimate 

the value of taking a particular action in novel circumstances or in continuous state spaces. 

Again, an important feature of this model is that the kernel function K need not be fixed at 

the time of initial learning, but can be shaped by subsequent experience, before the episodes 

are used to guide choice. This contrasts with traditional generalization based on parametric 

function approximation schemes like neural networks, which amount to averaging values 

over some area of the state space at encoding time (e.g., Sutton & Barto, 1998).

The appropriate kernel depends on the structure of the state space. For example, in a smooth, 

real-valued state space, a commonly used kernel is the Gaussian:

K(s, s′) = exp − s − s′ 2

2σ2

where the bandwidth parameter σ2 governs the smoothness of the value function 

approximation; a smaller bandwidth induces sharper generalization gradients, and in the 

limit produces no generalization (i.e., a pure episodic memory). The optimal bandwidth 

decreases with the number and increases with dispersion of episodes (Wasserman, 2006). 

Intuitively, the bandwidth provides a form of regularization, preventing the kernel estimate 
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from overgeneralizing. Kernels can also be defined over discrete state spaces, as well as 

structured objects like graphs, grammars and trees (Gärtner et al., 2004), and an analogous 

parameterization of bandwidth can sometimes be specified.

Kernel-based approaches to RL fit snugly with similar approaches applied to other areas of 

cognition (Jäkel et al., 2009). Exemplar models of memory, categorization, object 

recognition and function learning can be interpreted as forms of kernel density estimation. 

Of particular relevance is Gilboa & Schmeidler’s (2001) case-based decision theory, which 

(as we discuss later) applies kernel density estimation to decision problems. Work in 

machine learning has demonstrated the efficacy of kernel-based approaches (Ormoneit & 

Sen, 2002), though relatively little work has compared the computational and statistical 

trade-offs of these approaches with conventional model-based and model-free RL.

RL and memory for individual episodes

The framework outlined above, and the predecessor proposal by Lengyel and Dayan (2007) 

suggest that RL behavior should, in some circumstances, be driven by memory for 

individual episodes, distinct from the aggregate statistics of these episodes as would be 

employed by a model-based or model-free learner. The empirical literature directly 

supporting these predictions is, at present, fairly sparse, mostly because the sorts of 

behavioral tasks so far mostly used in RL do not easily lend themselves to addressing these 

questions. Two limitations of the tasks contribute to this.

First, unlike studies of categorization – where subjects render judgments about many unique 

stimuli, and exemplar-based models reminiscent of our framework have long been 

contenders (Nosofsky, 1986) – most laboratory studies of RL consist of many repetitions of 

essentially identical trials. This means that there has so far been little, experimentally or 

psychologically, to differentiate episodes, and few objectively predictable features other than 

temporal recency to govern which episodes subjects might retrieve. Second, although some 

of the most interesting features of nonparametric episodic evaluation (like RL evaluation in 

general) play out in the evaluation of sequential decision tasks, existing work relevant to 

these ideas has mostly taken place in repeated choice-reward “bandit” tasks without 

sequential structure. However, some supporting evidence does exist.

Recently, Collins & Frank (2012) proposed a model and associated experimental task that 

argued that many trial-by-trial choices in RL tasks in humans were driven by a small set of 

memories of previous events, held in working memory, rather than incremental running 

averages of the sort associated with model-free (and model-based) RL. This idea bears some 

resemblance to the current episodic RL proposal (though focusing on a different memory 

system for the store). In support of it, they found that increasing the number of stimuli (the 

set size) or time delays between state visits in a bandit-like task slowed learning, a finding 

inconsistent with standard RL models but well explained by a model that uses a limited 

memory buffer over stimulus history to determine action values. Individuals with a genetic 

polymorphism associated with higher levels of prefrontal dopamine (COMT) exhibited 

greater retention of previous stimulus history in the action values. Further work using this 

task has shown that schizophrenic patients have a selective impairment in the working 
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memory component of RL (Collins et al., 2014), consistent with the observation of reduced 

prefrontal dopamine levels in schizophrenia.

This mechanism does not fully coincide with episodic evaluation as we have described it; 

first, the task is deterministic and the state space discrete, so aspects of generalization and 

averaging over noisy outcomes are not exercised. Also, we (and other theorists, like Zilli & 

Hasselmo, 2008), have assumed that for an episode-based RL system to be useful over 

longer delays (including retaining learning from, say, one day to the next) and larger state 

spaces, it is likely to involve the episodic memory system of the hippocampus rather than 

short term working memory.

Another line of work on bandit tasks, in this case with stochastic outcomes, has been carried 

out by Erev and colleagues (e.g., Erev et al., 2008). These investigators have argued that 

many aggregate features of subjects’ choice preferences are best explained by a model that 

maintains individual trial outcomes rather than running averages. According to the model, 

which can be thought of as an instance of episodic RL, subjects evaluate bandits on the basis 

of a small sample (e.g., 1 or 2) of particular rewards previously received from them, but not 

always (as would be predicted by running averages) the most recent ones. The statistics of 

decision variables implied by such sampling explain a variety of features of preferences in 

these tasks, such as sensitivity to risk and loss.

One issue standing in the way of examining this sort of model is the basic similarity of all 

trials to one another in a bandit task. Recent work has integrated incidental trial-unique 

images with bandit tasks to begin to get leverage on individual episodes. Bornstein et al. 

(2015) found that using these images to remind subjects of previous trials influenced their 

subsequent action immediately after the reminder: if a past action resulted in a reward, then 

a reminder of that trial induced subjects to repeat it, whereas if the action resulted in a loss, 

then a reminder induced subjects to avoid it. This manipulation might be understood as 

influencing memory retrieval in episodic RL.

Wimmer et al. (2014) investigated a similar manipulation using fMRI. Here, episodic 

memory for the trial-unique objects (tested after the experiment) covaried negatively with 

the influence of reward history on decisions at encoding time, such that better (subsequently 

measured) episodic memory was associated with weaker feedback-driven learning. This 

negative effect of successful episodic encoding was also associated with an attenuated 

striatal prediction error signal and increased connectivity between the hippocampus and the 

striatum. One possible interpretation of this result in terms of episodic RL is that because the 

trial-unique objects were entirely incidental to the task, episodic evaluation mechanisms (to 

the extent that they were engaged) effectively injected uncontrolled noise into the evaluation 

process, obscuring both reward-driven choice behavior and associated striatal signals.

Overcoming state aliasing

One advantage of episodic RL already mentioned is its robustness: state values can be 

validly estimated by remembered trajectories even when the Markov properties do not hold 

within the trajectory. That is, a set of returns following some current state s1 validly estimate 

its long-term value, even if there are arbitrary long-range dependencies across the events 
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within the sample trajectories. However, this property only partly solves the problems of 

state representation. In particular, if the starting state s1 does not itself satisfy the Markov 

property (that is, if outcomes following s1 depend on events that happened prior to s1 but 

aren’t reflected in it), then the set of returns matching s1 will not reflect this additional 

information. This will introduce additional noise in even episodic value estimates.

Violations of this assumption can occur when states are aliased: if multiple states are 

indistinguishable on the basis of the current observation, then the value is not conditionally 

independent of the agent’s history given the current observation. Work on this problem again 

looks to memory (in this case, short term working memory) to disambiguate the state, by 

augmenting it with appropriate recent stimulus history. For example, if you received 

instructions to turn left after the second traffic light, the value of a left turn is not specified 

simply by whether you are at a traffic light, but by the trajectory preceding it. This 

dependence is eliminated, though, if you can just remember how many traffic lights you 

passed. In other words, the number of traffic lights is a sufficient statistic for your history, 

and storing it in memory allows you to incorporate it into the state representation and validly 

apply standard RL algorithms. The main problem here is how much, and what sort of history 

to store.

This insight is the basis of several computational models of how working memory aids RL. 

It has long been recognized that dopamine functions as a “gating” signal in the prefrontal 

cortex, whereby phasic bursts of dopamine transiently increase the gain of prefrontal 

neurons, making them more responsive to afferent input (Cohen, Braver & Brown, 2002). 

Importantly, Braver and Cohen (2000) demonstrated that TD learning could be used to 

adaptively gate relevant information into working memory, excluding irrelevant distractors. 

In essence, this work treated the evaluation (via RL) and selection of “cognitive” actions 

(inserting and removing items from working memory) in the same way as the selection of 

motor actions, providing an integrative explanation of dopamine’s role in both cognitive and 

motor control. O’Reilly & Frank (2006) extended this idea by showing how adaptive gating 

could be realized in a biologically detailed model of prefrontal-basal ganglia interactions. 

Further insight was provided by Todd, Niv & Cohen (2008), who articulated how adaptive 

gating could be understood as a normative computational solution to partial observability.

The challenge that all these models address is discovering which particular past events need 

to be retained in working memory, and for how long. It is noteworthy that Todd et al.’s 

(2008) model leverages TD(1) value estimation – which is statistically related to the 

evaluation of state values by episodic sample trajectories (Sutton & Barto, 1998) – to 

discover these long-run relationships. This suggests that episodic memory might also be 

useful for the same purpose. From the perspective of an episodic RL model, learning of this 

sort, in effect, allows the organism to figure out in what circumstances to apply the Markov 

property. This understanding can then be applied, going forward, to computing values using 

the experience stored in episodic traces. In keeping with a theme now heard repeatedly, one 

advantage of this, relative to state learning models such as Todd et al.’s (2008), is that action 

values need not be relearned from new experience – only recomputed – as the understanding 

of the state space evolves.
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Approximating value functions over complex state spaces

As discussed earlier, raw memory traces are of limited usefulness when making decisions in 

novel situations, since they generalize poorly. To use a previous example, exactly counting 

the number of traffic lights will fail if one is forced to take a detour; in this case, it is 

necessary to use a value function approximation that degrades gracefully with deviations 

from the stored memory traces. This limitation motivated the use of kernel methods that 

allow some degree of generalization.

In RL, this problem is typically addressed as a question of value function approximation: 

how does an agent approximate the function V(s) over (potentially continuous and high 

dimensional) states. Much work in computational neuroscience has gone towards trying to 

understand how these issues play out in the brain. Proposed architectures typically 

implement linear or non-linear parametric approximations, e.g. taking V(s) to be 

approximated by a weighted sum of a set of basis functions defined over the state space. 

However, it is unclear whether such parametric approximations can scale up to real-world 

problems, where the appropriate feature space is elusive. One approach pursued in machine 

learning has been to develop complex architectures like deep neural networks which can 

learn to discover good parametric representations from a large amount of training data (Mnih 

et al., 2015). However, this approach does not seem to provide a complete account of human 

performance, which can in certain cases be effective after observing a very small amount of 

data (see below). This ability is partially attributable to strong inductive biases that guide 

learning (Griffiths et al., 2010). Another factor may be the brain’s use of kernel methods that 

generalize from sparse training examples to new testing situations, in a way that captures the 

underlying structure of the state space.

Intuitively, a good kernel assigns high “similarity” to states that have similar values, 

allowing the value function approximation to average across the rewards in these states 

while abstaining from averaging over states with different values. In the literature on 

biological reinforcement learning, these issues of generalization have mainly been discussed 

in terms of selecting an appropriate set of basis functions for parametric (linear) value 

function approximation (e.g., Foster et al., 2000; Ludvig et al., 2008), but exactly the same 

considerations apply to the choice of kernel for nonparametric generalization. A particular 

advantage of the latter is that the kernel is used at choice time rather than encoding time, so 

it can be learned or adapted by subsequent experience, as in many of the schemes below.

In spatial domains, appropriate generalization can be given a concrete, geometric 

interpretation. For example, a Gaussian kernel defined over Euclidean spatial coordinates 

would incorrectly predict that standing outside a bank vault is highly valuable. This mistake 

is the result of failing to encode the fact that getting inside the vault has very low probability. 

Geometric boundaries induce discontinuities in an otherwise smooth value function, and 

such discontinuities can be encoded by representing similarity in terms of geodesic distance 

(the shortest path along the connectivity graph of the space). This principle extends beyond 

physical space to arbitrary feature spaces (Tenenbaum et al., 2000; Mahadevan, 2007).

Gustafson and Daw (2011) suggested that place cells in the hippocampus (there conceived as 

basis functions rather than approximation kernels) encode a geodesic spatial metric, as 
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evidenced by systematic spatial distortions in geometrically irregular environments. This 

idea was extended by Stachenfeld et al. (2014), who argued that a geodesic spatial metric in 

the hippocampus might arise from a more general predictive representation known as the 

successor representation (SR; Dayan, 1993). In particular, each state (e.g., spatial location) 

can be represented in terms of the expected future occupancy of successor states. This agrees 

with geodesic distance in the sense that passing through boundaries is very unlikely and 

hence the expected future occupancy is low (Figure 2). The SR goes beyond geodesic 

distance by also incorporating spatial distortions induced by changes in behavioral policy. A 

key computational virtue of the SR is that it renders value computation trivial: the value of a 

state is simply the sum of expected future occupancies for each successor state weighted by 

the expected reward in that state.

Instead of a basis function for encoding a parametric value approximation, one can also 

think of the SR (or the geodesic distance function) as a particular choice of kernel that 

encodes the underlying structure of the state space. The Bellman equation implies that states 

and their successors will tend to have similar values, and thus the SR is a good kernel 

precisely because it is predictive. The SR can be learned directly from state transitions using 

TD methods (Dayan, 1993; Stachenfeld et al., 2014), and therefore provides a plausible 

mechanism for adapting the kernel function, with learning, to arbitrary state spaces.

Another aspect of kernel design pertains to multidimensional state spaces: In many real-

world tasks, only some of the dimensions are relevant for task performance, necessitating 

some form of selective attention applied to the feature space. In the kernel view, selective 

attention would manifest as a distortion of the similarity structure between states depending 

on the task at hand. This idea has been embodied in several influential exemplar models of 

categorization, which posit that error-driven learning shapes the mapping from feature inputs 

to similarity (Kruschke, 1992; Love et al., 2004). Recently, related ideas have begun to be 

explored in RL tasks (Gershman et al., 2010; Niv et al., 2015; Vaidya & Fellows, 2015). 

This research has shown that classical attention areas in parietal and prefrontal cortex are 

involved in credit assignment to stimulus features on the basis of reward history. While the 

researchers offered an account of this phenomenon in terms of model-free RL, it is possible 

that the same attentional filter impinges on the kernel used by episodic RL. Again, this 

would be advantageous because applying the attentional filter at choice time, rather than 

encoding time, reduces the need for relearning values once appropriate dimensional attention 

is discovered.

Learning with sparse data

Another advantage of various sorts of episodic estimation is that they can succeed (relatively 

speaking) in the extreme low-data limit when model-based and model-free learning fail, as 

demonstrated in simulations by Lengyel & Dayan (2007). This analysis is consistent with 

evidence for a shift in behavioral control from the hippocampus to the striatum over the 

course of training in a variety of tasks (Packard & McGaugh, 1996; Poldrack et al., 2001), 

although these tasks do not specifically isolate an episodic RL strategy.

Some suggestive recent evidence suggests that the hippocampus plays a special role in one-

shot learning in decision tasks. Lee et al. (2015) found that humans could learn a novel 
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stimulus-reward outcome after a single observation, and this rapid learning selectively 

recruited the hippocampus. Rapid learning was also associated with increased coupling 

between the hippocampus and ventrolateral prefrontal cortex, interpreted in terms of an 

earlier idea that the ventrolateral prefrontal cortex acts as a meta-controller arbitrating 

between different RL systems (Lee et al., 2014).

The statistically-minded reader may object here that nonparametric approximations like 

kernel density estimation are typically less data-efficient than parametric methods, which is 

paradoxical in light of our claim that such approximations may be utilized in the low-data 

limit. It is true that strong parametric assumptions (like the Markovian assumption) can offer 

an inductive bias to guide and discipline inference, but only a useful one to the extent they 

are correct. Given the twin problems of high dimensionality and state aliasing in the natural 

environment, it may well be that standard parametric assumptions can only be relied upon if 

they are validated and tuned by an initial learning phase that identifies relevant dimensions 

and stimulus history. Furthermore, while the convergence rate of nonparametric 

approximations is indeed typically slower, they also achieve an asymptotically lower error 

because of their superior flexibility (Wasserman, 2006). All this is an example of the bias-

variance trade-off (Geman et al., 1992), where nonparametric methods more closely 

approximate the value function (lower bias) at the expense of poorer generalization (higher 

variance). The purpose of kernel smoothing is precisely to reduce variance by introducing 

bias (i.e., regularization). If the value function is itself smooth, and this smoothness is well 

matched to the kernel function, the added bias will be small; as discussed above, kernel 

smoothing should be strongest across states with similar expected values, a point that can be 

made precise using the theory of reproducing kernel Hilbert spaces (Schölkopf & Smola, 

2002). From this discussion, we can posit that episodic RL should perform relatively well in 

the low-data limit when the value function cannot be well approximated by a parametric 

family but the values are nonetheless smooth over the state space in a way that is captured 

by the kernel.

Interactions between learning systems

A central theme in contemporary research on RL is the interplay between multiple learning 

and control systems (Daw et al., 2005; Dolan & Dayan, 2013). Much of this research has 

focused on the principles guiding competitive interactions between model-free and model-

based systems – for instance, under what circumstances is it worth engaging in model-based 

deliberation vs. simply acting according to previously learned model-free preferences (Daw 

et al., 2005; Keramati et al., 2011) – but the full story is more complex and unsettled, 

particularly in light of the suggested involvement of episodic memory. First, the possibility 

of additional influences extends the arbitration questions – when should the brain consult 

episodes vs. plan using a previously learned map or model? Which episodes? Second, the 

influences may interact in ways other than simple competition. For instance, as discussed 

below, in addition to being used to compute values at decision time, episodes may also be 

useful for off-line training of model-free values, e.g. during sleep. Third, and relatedly, all of 

these considerations may complicate or confound the working of the model-free and model-

based systems as they have previously been conceived. In particular, the cognitive and 

computational bases for putatively model-based choice are as yet underdetermined, and at 
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least some of what has been taken as model-based behavior may arise from some of these 

episodic influences.

As we have made clear, episodic RL may well constitute yet another system alongside (or as 

part of) model-based and model-free. Indeed, in previous research, influences of individual 

episodes on choice may have been mistaken for either model-free or model-based learning, 

which are typically assumed to instead depend on statistical summaries learned over many 

episodes. For instance, in one-step “bandit” choice tasks, memory for individual recent 

episodes can support trial-by-trial choice adjustment that appears similar to model-free 

incremental learning of action values (Erev et al., 2008; Collins and Frank, 2012; Bornstein 

et al., 2015).

Episodic influences may also, in a number of ways, have masqueraded as model-based. In 

multistep sequential tasks, episodic snapshots of individual trajectories also contain 

information about the sequential state-state “map” of the task, and may support behavior that 

has the signatures of map- or model-based choice (Tolman, 1948; Daw et al., 2011) without 

actual use of a statistical world model (e.g., Gershman et al., 2014). Indeed, the idea that 

planning by mental simulation is supported by episodic rather than (or in addition to) 

semantic representations is a prominent proposal in the cognitive neuroscience of 

hippocampal function (Schacter et al., 2012; Hassabis & McGuire, 2009).

As we have already described, episodic and model-free RL also appear to compete with each 

other, much like model-based and model-free are thought to. Such competition might be 

understood as a third system, or an episodic aspect to the model-based system. Successful 

episodic memory on individual trials is negatively correlated with sensitivity to reward 

history and neural prediction error signals (Wimmer et al., 2014; but see Murty et al., 2016 

for contrasting results). Interfering effects of episodic memory on reward-guided choice can 

also be directly induced by adding incidental reminders of past actions (Bornstein et al., 

2015). More generally, hippocampal involvement in behavioral control tends to predominate 

early in training, while striatal involvement predominates later in training (Packard & 

McGaugh, 1996; Poldrack et al., 2001).

These competitive interactions fit with the picture of largely independent systems vying for 

behavioral control, with a meta-controller arbitrating between the three (or two) systems 

according to their relative efficacy at different points during training. In particular, episodic 

RL may be primarily useful early in training when parametric value approximations break 

down due to the sparsity of data and complexity of the state space (Lengyel & Dayan, 2007). 

In all these respects, episodic RL as we have envisioned it echoes features that have also 

been attributed to model-based RL. Though it seems unlikely that episodic RL alone can 

account for all of the manifestations of model-based RL, it is also clear that these two 

putative systems so far have not been clearly teased apart in the way that they (collectively) 

have been dissociated from model-free learning. Doing so will require more precise 

identification of influences on behavior and brain activity that are verifiably tied to the 

retrieval of individual episodes, vs. statistical summaries of them as in a map or world 

model. To the extent this turns out to be true, it also will suggest fleshing out the emerging 

theoretical and experimental account of competition between model-based and model-free 
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influences – broadly speaking, thought to reflect rational speed-accuracy tradeoffs about the 

usefulness of recomputing action values (Keramati et al., 2010) – to also weigh the relative 

costs and benefits of consulting raw episodes for these recomputations, vs. a summary 

model.

The influences of episodic memory may also crosscut the model-based and model-free 

distinction, complicating the picture still further. For instance, the striatum and hippocampus 

may interact cooperatively as well as competitively (for a review, see Pennartz et al., 2011). 

Evidence suggests that replay of memories (Lansink et al., 2009) and oscillatory dynamics 

(van der Meer & Redish, 2011) in the two regions are coordinated. Human neuroimaging 

studies have demonstrated functional connectivity between hippocampus and striatum 

during virtual navigation (Brown et al., 2012) and context-dependent decision making (Ross 

et al., 2011).

One functional explanation for some of these interactions is that they support synergistic 

influences of episodic memory on model-free values. Such interactions would further 

leverage episodic memory for choice (beyond the nonparametric value computation 

discussed thus far) and also produce choices that again might appear to mimic some of the 

behaviors of a model-based system. Model-free RL is, in its traditional conception, limited 

to learning from direct experience, which renders it inflexible. For example, separately 

experiencing different parts of an environment will result in a disjointed model-free value 

function, where the consistency of values implied by the Bellman equation is violated at the 

part boundaries. One of the traditional signatures of a model-based system is the ability to 

“stitch” these parts together by using them to build a world model that can then be used to 

simulate sequences of state transitions and rewards that were never experienced together 

(Shohamy and Daw, 2015). However, another way to achieve the same effect is to feed such 

ersatz experience to a model-free learner, which can then use it like actual experience it to 

update its stored values. This can actually be achieved without even building a world model, 

by simply replaying snippets of experience from episodic memory, interleaved across the 

otherwise separate experiences. Such a replay mechanism is another way (other than 

nonparametric evaluation) in which episodic memories might influence choice, by driving 

model-free value learning. This hybrid architecture was originally proposed in the machine 

learning literature by Sutton (1991), who referred to it as Dyna.

Gershman and colleagues (2014) reported behavioral evidence that valuation in humans is 

supported by Dyna-like offline replay. In these experiments, people separately learned 

different parts of a single MDP and then were given a retrospective revaluation test to see if 

their decisions reflected an integrated value. The experiment indeed found evidence for 

revaluation, which has typically been taken as a signature of model-based value 

computation. However, the experiments showed that the extent of successful revaluation was 

sensitive to several manipulations designed to affect Dyna-style offline replay, but which 

would be irrelevant to model-based choice (in the sense of “just in time” computation of 

decision variables by mental simulation at choice time). In particular, revaluation was 

disrupted by placing people under cognitive load during the learning rather than the 

subsequent choice phase, using a secondary task. The deleterious effects of load could be 
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mitigated simply by giving people a brief period of quiescence (listening to classical music) 

before the revaluation test, consistent with the operation of an offline simulation process.

Recent neuroimaging studies (Wimmer and Shohamy, 2012; Kurth-Nelson et al., 2015) also 

demonstrate that successful revaluation in a similar integration task is supported by 

memories retrieved at learning (rather than choice) time. More generally (though without 

being linked to decisions or learning), replay of the neural responses to previous experiences 

has repeatedly been observed in neuronal recordings from hippocampus, during quiet rest, 

sleep, and even ongoing behavior (Skaggs and McNaughton, 1996; Carr et al., 2011). These 

phenomena provide a suggestive candidate for a neural substrate for replay-based learning. 

However, in all these cases, including the human experiments, it is not yet wholly clear 

whether the memories being retrieved are episodic (e.g., in the sense of autobiographical 

snapshots of individualized events), vs. reflecting more semantic knowledge derived from 

the statistics of multiple episodes, like a statistical world model.

Relationship to other frameworks

Case-based decision theory and decision by sampling

Work in behavioral economics has explored the role of memory in decision making, 

focusing on one-shot decision problems rather than the sequential problems on which we 

have focused. The starting point of this work is a critique of expected utility theory, the 

cornerstone of neoclassical economics, which assumes that a decision maker will consider 

all possible states of the world and all possible outcomes, so as to average over these in 

computing expected value. As pointed out by Gilboa & Schmeidler (2001), many real-world 

situations poorly fit the expected utility framework: the set of states and set of outcomes are 

not readily available to the decision maker. For example, the choice of a nanny would 

require the enumeration of all possible nanny profiles and all possible consequences of 

hiring a particular nanny. These sets are, for all practical purposes, infinite. To address this 

problem, Gilboa & Schmeidler developed a “case-based” decision theory (CBDT), drawing 

upon a venerable tradition in cognitive science (Riesbeck & Schank, 1989).

A basic primitive of this theory is the case, consisting of a decision problem, an act, and an 

outcome. Previously observed cases constitute memories. The decision maker is endowed 

with a similarity function on decision problems and a utility function on outcomes, and is 

assumed to rank acts for a new decision problem by comparing it to previous cases using the 

similarity function. This formulation does not require the exhaustive enumeration of states 

and outcomes, only the retrieval of a subset from memory. Interestingly, the ranking 

mechanism is precisely a form of kernel-based value estimation, with the similarity function 

corresponding to a kernel and the cases corresponding to episodes.

The similarity function posited by CBDT effectively determines what memories are 

available. For simplicity, we can imagine that the similarity is 0 for some memories, so that 

these memories are not retrieved into the available subset, and a constant value for all the 

retrieved memories. In the most basic form of CBDT, the utility assigned to an act is then 

proportional to the summed utilities of outcomes stored in the subset of retrieved memories 

for which a was chosen. This model has interesting implications for the role played by 
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memory in determining reference points, since acts will only be judged with respect to 

available memories (Simonson, & Tversky, 1992). For example, Simonsohn and 

Loewenstein (2006) reported that a household moving to a new city will exhibit dramatically 

different spending on rent depending on the distribution of rents in their city of origin. In 

related theoretical work, Bordalo et al. (2015) formulated a memory-based model of 

decision making that allows retrieved memories to influence the decision maker’s reference 

points.

Stewart et al. (2006) took this logic a step further in their “decision by sampling” theory by 

arguing that all decision-theoretic quantities (utility, probability, temporal duration, etc.) are 

based on samples from memory. They demonstrated that the descriptive parameterization of 

these quantities in Prospect Theory (Kahneman & Tversky, 1979) can be empirically derived 

from their ecological distribution (a proxy for their availability in memory). For example, 

Stewart et al. found that the distribution of credits to bank accounts (a measure of the 

ecological distribution of gains) is approximately power-law distributed, implying a power-

law revealed utility function under the assumption that the utility function reflects the 

relative rank of gains. This analysis reproduces the curvature of the utility function proposed 

by Kahneman and Tversky (1979) on purely descriptive grounds to explain risk aversion, 

while analogous considerations about the relative distribution of debits explain loss aversion.

The idea that subjective utility is computed relative to a memory-based sample has profound 

implications for models of decision making. It suggests that there is no stable valuation 

mechanism that consistently obeys the axioms of rational choice. This idea is grounded in a 

set of psychological principles that extend far beyond economic decisions. Essentially all 

judgments, ranging from the psychophysics of magnitude, duration and pain to causal 

reasoning and person perception, are relative: the same object can be perceived as 

dramatically different depending on contextual factors that determine a comparison set 

(Kahneman & Miller, 1986; Stewart et al., 2005). This point has not been lost on marketing 

researchers, who have long recognized the importance of comparison (or “consideration”) 

set composition in consumer choice (Bettman, 1979; Lynch & Srull, 1982; Nedundgadi, 

1990).

Contingent sampling models and instance-based learning

While most economic models have been developed to explain “decisions from description” 

(e.g., explicitly described lotteries), RL paradigms typically involve “decisions from 

experience” (where the lottery structure must be learned). Behavioral economists have also 

studied experiential learning in bandit-like problems, in a largely separate literature from the 

study of RL. The key finding stressed here is that experiential learning often produces 

striking divergences from description-based decisions (Hertwig & Erev, 2009). For example, 

the classic description-based experiments of Kahneman and Tversky (1979) demonstrated 

apparent overweighting of rare events, but experience-based experiments have found the 

opposite phenomenon: underweighting of rare events (e.g., Barron & Erev, 2003; Hau et al., 

2008). As already discussed, Erev and colleagues have argued that this underweighting is the 

result of contingent sampling from memory, where “contingent” refers to the fact that 

samples are drawn based on similarity to the current situation. Because rare events are less 
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likely to appear in the sampled set, these events will be relatively neglected. This model can 

also explain a number of other puzzling behaviors, such as overconfidence (due to a biased 

estimate of variance from small samples; Dougherty et al., 1999) and inertia (tendency to 

repeat previous choices; Biele et al., 2009). Closely related “instance-based learning” 

models have been developed by Gonzalez and colleagues (Gonzalez et al., 2003; Gonzalez 

& Dutt, 2011). The important point for the present discussion is that the samples themselves 

resemble episodes, and the sampling process itself effectively implements a form of kernel 

smoothing, and hence fits into our general framework.

If decisions from experience depend on some form of contingent sampling, then we should 

expect that memory biases will influence decisions. Ludvig, Madan and colleagues have 

shown that the bias to recall extremely positive or negative events is systematically related to 

risk preferences. In one set of experiments (Madan et al., 2014), individual differences in the 

tendency to recall extreme events was positively correlated with preference for risky gains 

and negatively correlated with preference for risky losses. Another experiment (Ludvig et 

al., 2015) manipulated memory using a priming cue, and showed that priming past wins 

promotes risk seeking. On the theoretical side, Lieder et al. (2014) have shown how a 

sampling strategy that overweights extreme events is rational when the goal is to minimize 

the variance of the expected utility estimate from a limited number of samples.

Conclusions

We have reviewed the current cognitive neuroscience picture of RL, in which model-based 

and model-free systems compete (and sometimes cooperate) for control of behavior. This 

dual-system architecture is motivated computationally by the need to balance speed and 

flexibility, but we have argued that neither system (at least as traditionally conceived) is 

designed to perform well in high-dimensional, continuous and partially observable state 

spaces when data are sparse and observations have dependencies over long temporal 

distances. Unhappily, this situation may be characteristic of many real-world learning 

problems. A third system—episodic RL—may offer a partial solution to these problems by 

implementing a form of nonparametric value function approximation. As we have shown, 

this notion can tie together many disparate observations about the role of episodic memory 

in RL. Nonetheless, our theory is still largely speculative. We framed it abstractly in order to 

highlight the generality of the ideas, but to make progress the theory must first be more 

precisely formalized so that it can make quantitative predictions. We expect this to be an 

exciting frontier for research, both theoretical and experimental, in the near future.
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Figure 1. Schematic of different approaches to value computation
(A) In model-free reinforcement learning, individual experiences are integrated into a 

cached value, which is then used to compute action values in a new state. Only cached 

values are stored in memory; individual experiences are discarded. Green triangle indicates 

the agent’s state, red crosses indicate rewards, and blue arrows indicate paths through the 

state space. (B) In episodic reinforcement learning, individual experiences, along with their 

associated returns, are retained in memory and retrieved at choice time. Each episodic trace 

is weighted by its similarity to the current state according to a kernel function. This kernel-

weighted average implements a nonparametric value estimate.
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Figure 2. Comparison of the successor representation in different environments
Each graph shows the successor representation for the state indicated by the green triangle. 

The rewarded state is indicated by a red cross. (Left) An open field. (Right) Field with a 

barrier, indicated by the blue line. The top row shows the successor representation for an 

undirected or “random” walk induced by a policy that moves through the state space 

randomly. The bottom row shows the results for a directed policy that moves 

deterministically along the shortest path to the reward.
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