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Abstract

Tissue-resident memory (TRM) CD8+ T-cells are non-recirculating, long-lived cells housed in 

tissues that can confer protection against mucosal pathogens. HIV-1 is a mucosal pathogen and the 

gastrointestinal tract is an important site of viral pathogenesis and transmission. Thus, CD8+ TRM 

cells may be an important effector subset for controlling HIV-1 in mucosal tissues. This study 

sought to determine the abundance, phenotype, and functionality of CD8+ TRM cells in the context 

of chronic HIV-1 infection. We found that the majority of rectosigmoid CD8+ T-cells were 

CD69+CD103+S1PR1− and T-betLowEomesoderminNeg, indicative of a tissue-residency phenotype 

similar to that described in murine models. HIV-1-specific CD8+ TRM responses appeared 

strongest in individuals naturally controlling HIV-1 infection. Two CD8+ TRM subsets, 

distinguished by CD103 expression intensity, were identified. CD103Low CD8+ TRM primarily 

displayed a transitional memory phenotype and contained HIV-1-specific cells and cells 

expressing high levels of Eomesodermin, whereas CD103High CD8+ TRM primarily displayed an 
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effector memory phenotype and were EomesoderminNeg. These findings suggest a large fraction 

of CD8+ T-cells housed in the human rectosigmoid mucosa are tissue-resident and that TRM 

contribute to the anti-HIV-1 immune response. Further exploration of CD8+ TRM will inform 

development of anti-HIV-1 immune-based therapies and vaccines targeted to the mucosa.

INTRODUCTION

The gastrointestinal mucosa is an important site of HIV-1 pathogenesis, as it serves both as a 

portal of entry and site of HIV-1 persistence throughout chronic infection1. Accordingly, 

immune-based strategies to prevent and/or eradicate HIV-1 infection will likely require 

durable and robust HIV-1-specific immune responses in the rectosigmoid mucosa and other 

vulnerable tissues2, 3, 4, 5. Characterized as long-lived, non-recirculating effector memory T-

cells localized to tissues including the gastrointestinal tract, tissue-resident memory T-cells 

(TRM) represent a potential immunotherapeutic target for combating mucosal pathogens 

such as HIV-16, 7, 8, 9.

First described in the murine model, TRM are thought to develop from killer cell lectin like 

receptor G1 (KLRG1)-negative precursor effector T-cells following migration into 

peripheral tissues10. Here, exposure to tissue-specific cytokine mixtures involving TGF-β 
drives expression of early activation marker CD69 and integrin αE(CD103)β7, which 

promote tissue accumulation and retention and are considered hallmarks of the TRM 

phenotype6, 11, 12, 13, 14. Interestingly, although T-box transcription factors Eomesodermin 

and T-bet regulate CD8+ T-cell development and effector function, a feature of CD103+ 

CD8+ TRM conserved across models of infection is strong down-regulation of 

Eomesodermin (Eomes)12, 15. Recently, using a murine Herpes simplex virus-1 model, skin 

CD8+ TRM were shown to display low T-bet and negligible Eomes expression16. Unlike 

circulating effector memory CD8+ T-cells, TRM in the gastrointestinal tract appear to be 

maintained independently of cognate antigen for long periods7, 11, 17, 18. Positioned at sites 

of pathogen exposure, TRM initiate rapid and robust defenses upon reinfection, notably 

cytokine production, mobilizing both innate and adaptive arms of the immune system10. 

Studies of lung, skin, genital mucosa, and small intestine have all demonstrated the 

protective capacity of TRM against a range of pathogens after secondary infection and during 

reactivation of latent viral infection17, 19, 20, 21, 22, 23, 24. Together, these data suggest TRM 

may be beneficial in controlling HIV-1 infection in peripheral, non-lymphoid tissues like the 

gastrointestinal mucosa.

Although the protective attributes of TRM have been characterized extensively in murine 

models, a knowledge gap exists regarding their role in HIV-1 infection. Previous 

characterization of mucosal CD8+ T-cells in chronic HIV-1 infection revealed them to be 

phenotypically and functionally different from CD8+ T-cells circulating in blood. 

Rectosigmoid CD8+ T-cells displayed weak perforin-mediated cytotoxicity and diminished 

expression of T-bet and Eomesodermin compared to their blood counterparts25, 26, 27. 

Rather, rectosigmoid CD8+ T-cells were primarily T-betLowEomesoderminNeg and displayed 

robust cytokine/chemokine polyfunctionality characteristic of TRM. Strong polyfunctional 

HIV-1-specific CD8+ T-cell responses in rectosigmoid mucosa have been identified as a 

Kiniry et al. Page 2

Mucosal Immunol. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlate of immune control as they are particularly robust in individuals who naturally 

control HIV-1 (i.e. “controllers”)26. Whether these observations reflect an abundance of 

canonical ‘tissue-resident’ CD8+ T-cells in human gastrointestinal mucosa and participation 

of TRM in controlling HIV-1-infection is unknown.

The goal of this study was to determine whether gastrointestinal HIV-1-specific CD8+ T-

cells in chronically HIV-1-infected and healthy participants share the characteristics of tissue 

resident T-cells as described in murine models of infectious disease, and to better understand 

the implications of this understudied population for HIV-1 pathogenesis, immune control, 

and vaccine design.

RESULTS

Most CD8+ T-cells in human rectosigmoid mucosa display a tissue-resident phenotype

TRM can be distinguished from recirculating populations via expression of tissue-specific 

markers and the absence of recirculation markers8, 19. Co-expression of CD69 and αE 

integrin (CD103) in the absence of sphingosine-1-phosphate receptor (S1PR1) and C–C 

motif chemokine receptor 7 (CCR7) are commonly used to identify tissue-resident CD8+ T-

cells in a range of tissues6, 13, 14, 28. To determine whether this strategy also identifies tissue-

resident CD8+ T-cells in human rectosigmoid mucosa, we used flow cytometry to analyze 

cells for expression of CD103, CD69, and S1PR1 in chronically HIV-1-infected and 

seronegative participants.

Irrespective of HIV-1 disease status, large fractions of rectosigmoid CD8+ T-cells were 

CD103+CD69+S1PR1−; in contrast, this subset was negligible in blood (Figure 1a–b). In 

tissues, effector memory CD8+ T-cells often display a tissue-residency phenotype 
6, 28, 29, 30, 31; however, the extent to which other memory subsets display such a phenotype 

is not known. We next analyzed expression of CD103, CD69, and S1PR1 within 

rectosigmoid CD8+ T-cell memory subsets in HIV-1+ and seronegative participants. Memory 

subsets were defined as follows: naïve (CD45RO−CD27+CCR7+), central memory 

(CD45RO+CD27+CCR7+), transitional memory (CD45RO+CD27+CCR7−), effector 

memory (CD45RO+CD27−CCR7−), and effector (CD45RO−CD27−CCR7−)(Supplementary 

Figure 1a–b)32, 33. Although the abundance of naïve (Tnaive) and central memory (TCM) 

CD8+ T-cells in mucosa was low compared to effector (TEFF) and effector memory (TEM) T-

cells, all memory subsets contained some CD103+CD69+S1PR1− CD8+ T-cells, the 

proportion of which increased with memory differentiation. Only a small fraction of Tnaive 

and TCM CD8+ T-cells were CD103+CD69+S1PR1− (medians 2.16% and 19.5%, 

respectively); in contrast, large proportions of TEFF and TEM were CD103+CD69+S1PR1− 

(medians 64.7% and 74.9%, respectively)(Figure 1c–d). We also observed CD103 expressed 

at high and low median fluorescence intensities (MFI) on rectosigmoid CD8+ T-cells. While 

the majority of rectosigmoid tissue-resident CD8+ T-cells were CD103High, a small 

percentage was CD103Low; this percentage varied with memory differentiation. The 

proportion of CD103Low CD69+S1PR1− putative tissue-resident CD8+ T-cells was highest 

among TTM and TCM, and lowest among Tnaive (Figure 1c–e).
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CD103 binds β7 to form the heterodimeric integrin αEβ7, which interacts with E-cadherin 

on epithelial cells, facilitating accumulation of tissue-resident T-cells in close proximity to 

the epithelium34, 35, 36. We used immunohistochemistry and quantitative image analysis to 

confirm the distribution of CD103Neg, CD103Low, and CD103High CD8+ T cells. Cells were 

quantified in three anatomical compartments within rectosigmoid mucosa: intraepithelial 

lymphocytes (IE), lamina propria (LP), and areas bordering (B) the IE and LP 

(Supplementary Figure 2a). CD103Neg CD8+ T cells were located primarily in the LP, in 

contrast, greater than 60% of CD103High CD8+ T cells and approximately 50% of 

CD103Low CD8+ T cells were intraepithelial (Supplementary Figure 2a–c). These findings 

corroborate previous observations concerning the localization of CD103-expressing CD8+ T-

cells in human intestine34, 35 and reveal that a large proportion of rectosigmoid CD8+ T-cells 

resemble tissue-resident cells described previously. In human rectosigmoid mucosa, this 

population is composed mainly of CD103High effector and effector memory cells.

CD103High and CD103Low tissue-resident CD8+ T-cells differ in abundance across HIV-1 
disease status, association with rectosigmoid CD4+ T-cells, and expression of memory 
markers

Disruption of the gut epithelial barrier and dramatic depletion of gut CD4+ T-cells are 

hallmarks of HIV-1 infection5, 37. CD4+ T-cells have been shown to aid development of lung 

CD103High CD8+ TRM during influenza infection10, 38. Accordingly, we hypothesized that 

the abundance of CD103High tissue-resident CD8+ T-cells might be lower in chronically 

HIV-1-infected compared to seronegative participants. To test this, we evaluated expression 

of tissue-resident markers on unstimulated rectosigmoid CD8+ T-cells in the following 

groups: HIV-1+ controllers (C); HIV-1+ viremic individuals not on antiretroviral therapy (V); 

HIV-1+ individuals on antiretroviral therapy (Tx); and seronegative controls (SN) (Table 1). 

As CD8+ T-cells displaying a tissue-resident phenotype were primarily observed in effector 

memory and effector subsets, we investigated both CD45RO+ and CD45RONeg populations; 

referring to CD45RO+ CD103+CD69+S1PR1− cells as tissue-resident memory cells (TRM) 

and CD45RONeg CD103+CD69+S1PR1− cells as tissue-resident effector cells, abbreviated 

rTEFF.

As expected, HIV-1+ participants not on antiretroviral therapy (ART) displayed lower 

proportions of CD103High CD8+ TRM and rTEFF compared to HIV-1+ participants on ART 

and seronegatives, reaching statistical significance for ART-treated compared to controllers 

and viremic untreated individuals for TRM, and between viremic untreated and seronegatives 

for rTEFF (Figure 2a–b). No differences between subject groups were observed in the 

proportions of CD103Low TRM and rTEFF (data not shown). When all participant groups 

were combined, a strong positive correlation was observed between the percentage of 

rectosigmoid CD4+ T-cells and that of CD103High but not CD103Low TRM (Figure 2c). A 

similar correlation was seen when all HIV-1+ participants were considered together 

(P=0.0048, R2=0.44); however, when each subgroup (including seronegatives) was 

examined individually, no significant differences or trends were observed (not shown). No 

correlations were observed between rectosigmoid CD4+ T-cells and the percentages of 

CD103High or CD103Low rTEFF cells (Supplementary Figure 3a).
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CD103High and CD103Low tissue-resident CD8+ T-cells also differed in memory phenotype. 

The majority of CD103High TRM displayed an effector memory phenotype (TEM median 

67.7%, TTM median 32.2%, TCM median 0.225%); in contrast, CD103Low TRM cells mainly 

displayed a transitional memory phenotype characterized by expression of CD27 (TTM 

median 77.6%, TEM median 20.6%, TCM median 1.05%)(Figure 2d–e). Among rTEFF, 

CD103High cells primarily displayed the canonical effector phenotype (CD45RO
−CD27−CCR7−, median 73.5%), whereas a substantial fraction of CD103Low rTEFF 

expressed CD27 (CD45RO−CD27+CCR7− median 55.4%) (Supplementary Figure 3b–c). 

Collectively, these data reveal lower proportions of highly differentiated TEM/TEFF 

CD103High tissue-resident CD8+ T-cells in HIV-1+ individuals not on ART compared to 

ART-treated and seronegative groups, and a strong association between CD103High CD8+ 

TRM cells and rectosigmoid CD4+ T-cells.

HIV-1 gag-specific tissue-resident CD8+ T-cell responses originate from CD103Low cells 
and appear strongest in controllers

Although tissue-resident T-cells represent a potential immunotherapeutic target for HIV-1 

eradication, little is known about the contribution these cells to the HIV-1-specific immune 

response during chronic infection. This and previous work have revealed the presence of 

HIV-1 Gag-specific, MHC class I tetramer-binding CD8+ T-cells expressing αEβ7 in human 

rectosigmoid mucosa30 (Supplementary Figure 2d), and studies in rhesus macaques 

demonstrated vaccine-inducible long-lasting mucosal T-cell responses, suggesting TRM 

contribute to the HIV-1-specific immune response18, 39. We investigated Gag-specific tissue-

resident CD8+ T-cell responses and their contribution to the total rectosigmoid Gag-specific 

CD8+ T-cell response across HIV-1-disease status using an ex vivo 6h stimulation assay 

followed by intracellular staining for effector molecules.

Degranulation (CD107a) and cytokine production in response to Gag-peptide stimulation 

were detected in rectosigmoid CD8+ TRM and rTEFF, with TRM displaying significantly 

higher percentages of Gag and SEB-responding cells compared to rTEFF (Figure 3a–b). Both 

controllers and viremic participants not on ART displayed significantly greater total and 

polyfunctional Gag-specific tissue-resident CD8+ T-cell responses compared to ART-treated 

participants (Figure 3c–e). This parallels earlier cross-sectional studies, in which we found 

low percentages of total and polyfunctional Gag-specific T-cells in mucosal tissues of 

participants on ART, particularly those with viral suppression25, 26, 27. Although the total 

HIV-1 Gag-specific response did not differ significantly in magnitude between controllers 

and viremic untreated participants, the highest median polyfunctional responses (3- and 4-

function) were detected in controllers (Figure 3d–e). This was true for both TRM (Figure 3d) 

and rTEFF (Figure 3e). The strongest polyfunctional responses elicited by both TRM and 

rTEFF involved CD107a, MIP-1β, and IFN-γ, with all notable polyfunctional responses 

involving CD107a (Figure 3d–e). With the exception of IL-2-producing cells, Gag-

responding CD8+ TRM were primarily CD103Low, reaching statistical significance for 

CD107a- and IFN-γ-producing TRM; in contrast, SEB-responding TRM were primarily 

CD103High (Supplementary Figure 4a–b). Similar trends were observed for Gag-responding 

CD8+ rTEFF (Supplementary Figure 4c).
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Previous work has demonstrated robust polyfunctional HIV-1-specific CD8+ T-cell 

responses in rectosigmoid mucosa of controllers26; however, it is unknown whether these 

responses originate from resident and/or circulating populations. To understand the extent to 

which tissue-resident cells contribute to the total HIV-1 Gag-specific CD8+ T-cell response 

in rectosigmoid mucosa, we analyzed expression of CD69, CD103, and S1PR1 on Gag-

specific polyfunctional CD8+ T-cells, focusing on the CD107a+MIP-1β+IFN-γ+ (7+M+F+) 

response as it had the highest median frequency (Supplementary Figure 5). Rectosigmoid 

Gag-specific 7+M+F+ CD8+ T-cells displayed three main patterns: the canonical tissue-

resident phenotype (CD103+CD69+S1PR1−), CD69 single positive 

(CD103−CD69+S1PR1−), and absence of all three markers (CD103−CD69−S1PR1−); the 

proportions differed between viremic individuals not on ART and controllers. In viremic 

individuals, rectosigmoid Gag-specific 7+M+F+ CD8+ T-cells were primarily tissue-resident 

(median 35.9%) or CD69 single positive (median 38.7%) with a smaller fraction lacking all 

three markers (median 11.6%). In controllers, the majority of 7+M+F+ CD8+ T-cells were 

CD69 single positive (median 52.2%) with much smaller proportions exhibiting tissue-

residency (median 16.0%) or absence of all three markers (median 16.7%)(Supplementary 

Figure 5a–c). These trends were conserved across all polyfunctional responses (data not 

shown). The results presented here, in conjunction with previous work, demonstrate that 

HIV-1-specific tissue-resident CD8+ T-cells are present in rectosigmoid mucosa and capable 

of polyfunctional responses. In the context of chronic HIV-1 infection, Gag-specific tissue-

resident CD8+ T-cells appear to be mainly CD103Low. Notably, although tissue-resident 

Gag-specific CD8+ T-cell responses appeared strongest in controllers, the tissue-resident 

population constituted a smaller proportion of the total rectosigmoid Gag-specific CD8+ T-

cell response in controllers compared to viremic participants not on ART.

Eomesodermin expression in tissue-resident CD8+ T-cells is associated with low CD103 
fluorescence intensity and is greatest in HIV-1+ participants not on ART

Previous work demonstrated that although human rectosigmoid CD8+ T-cells typically had a 

T-betLowEomesoderminNeg phenotype characteristic of TRM, HIV-1+ individuals not on ART 

displayed greater Eomes expression compared to ART-treated and healthy participants27. 

Whether this reflects up-regulation of Eomes by tissue-resident CD8+ T-cells or an influx of 

EomesHigh CD8+ T-cells from circulation is unknown. To elucidate the origin of EomesHigh 

CD8+ T-cells in rectosigmoid mucosa and understand modulations in T-bet and Eomes 

expression during chronic HIV-1 infection, we used flow cytometry to detect intracellular T-

bet and Eomes, in conjunction with tissue-resident markers, in unstimulated rectosigmoid 

CD8+ T-cells from HIV-1+ individuals and healthy controls (Figure 4; Supplementary Figure 

6).

Rectosigmoid EomesHigh CD8+ T-cells were primarily single positive for CD69 

(CD103−CD69+S1PR1− median 47.4%); however, a notable fraction displayed the canonical 

tissue-resident phenotype (CD103+CD69+S1PR1−, median 26.6%)(Supplementary Figure 

6b–c). To determine whether high Eomes expression observed in the CD103+CD69+S1PR1− 

subset was associated with chronic HIV-1 infection, we compared Eomes expression in 

CD8+ TRM and rTEFF cells across HIV-1 disease status (Figure 4a–b). Similar to the total 

rectosigmoid CD8+ T-cell population, tissue-resident CD8+ T-cells were primarily T-
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betLow/NegEomesNeg; however, HIV-1+ participants not on ART had higher percentages of 

EomesHigh tissue-resident CD8+ T-cells compared to ART-treated and seronegative 

participants. Unlike Eomes, no differences in T-bet expression were observed between 

groups (Figure 4). Within the TRM subset, viremic individuals not on ART displayed the 

highest median frequency of EomesHigh cells; however within rTEFF, only HIV-1 controllers 

displayed significantly greater Eomes expression compared to ART-treated and seronegative 

groups (Figure 4a–b, Supplementary Figure 7a). The majority of EomesHigh tissue-resident 

CD8+ T-cells were CD103Low; in contrast, EomesNeg cells were primarily CD103High 

(Figure 4c–d, Supplementary Figure 7b). Together, these data demonstrate that rectosigmoid 

tissue-resident CD8+ T-cells are primarily CD103High T-betLow/NegEomesNeg; however, in 

untreated HIV-1 infection, a substantial population of CD103Low EomesHigh tissue-resident 

CD8+ T-cells emerges.

DISCUSSION

Several studies have demonstrated the disparity in phenotype and function between CD8+ T-

cells isolated from gastrointestinal mucosa and peripheral blood25, 26, 27. As the gut is an 

important site of HIV-1 pathogenesis, these findings highlight the importance of 

understanding the distinct properties of mucosal immune responses to HIV-15. With the 

discovery of tissue-resident CD8+ T-cells, numerous studies have eloquently described the 

tissue-specific mechanisms that shape the tissue-resident population as well as the capacity 

of tissue-resident CD8+ T-cells to protect the host against mucosal pathogens9, 10. Missing 

from this body of knowledge, however, is an understanding of the role of tissue-resident 

CD8+ T-cells in fighting HIV-1 infection in the gastrointestinal mucosa, a site of viral 

transmission and pathogenesis5, 37. Thus, the aim of this study was to investigate the 

abundance of tissue-resident CD8+ T-cells in human rectosigmoid mucosa and the 

contribution of tissue-resident CD8+ T-cells to the HIV-1-specific immune response during 

chronic infection.

The majority of CD8+ T-cells in human rectosigmoid mucosa were CD103+CD69+S1PR1−, 

with a T-betLowEomesNeg transcriptional profile reminiscent of tissue-resident CD8+ T-cells 

described in the literature10. This subset was negligible in blood, further evidence of the 

tissue-resident nature of these cells. As effector memory cells predominate in mucosal 

tissues and play an important role in secondary immune responses, most tissue-resident 

work has focused on memory T-cells31. Indeed, the majority of rectosigmoid effector 

memory CD8+ T-cells were CD103+CD69+S1PR1−, expanding on previous work 

demonstrating an abundance of effector memory CD8+ T-cells expressing CD69 and CD103 

in jejunum, ileum, and colon of human cadavers28, 31. Additionally, the majority of effector 

CD8+ T-cells in rectosigmoid mucosa also displayed tissue-residency. Although the origin of 

this putative resident effector population, termed rTEFF, could not be definitively 

determined, one interpretation is that rTEFF are memory precursor effector cells (MPEC) 

transitioning into TRM. In murine skin and intestine, TRM develop from KRLG1Neg 

MPECs12, 36. In an oral Listeria monocytogenes murine model, intestinal intraepithelial 

KLRG1Neg MPECs were CD103+CD69+ and formed rapidly compared to spleen or lung 

MPECs in a TGF-β-dependent manner36. Interestingly, we observed that although 

expression of KLRG1 was relatively low on rectosigmoid rTEFF and TRM compared to blood 

Kiniry et al. Page 7

Mucosal Immunol. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD8+ T-cells, rTEFF displayed significantly lower expression of KLRG1 compared to TRM 

cells (these authors, unpublished data). Alternatively, rTEFF may represent a mature tissue-

resident population distinct from TRM. Longitudinal studies designed to track the appearance 

and longevity of pathogen-specific rTEFF may help elucidate the origin and role of rTEFF in 

mucosal immunity.

Previous studies reported robust polyfunctional Gag-specific CD8+ T-cells in rectosigmoid 

mucosa of controllers, identifying these cells as a possible correlate of immune 

control25, 26, 40. However, it remains unclear whether recent emigrants from blood or 

resident populations mediate these responses. We detected Gag-specific responses in both 

TRM and rTEFF populations, demonstrating that tissue-resident T-cells contribute to the 

HIV-1-specific immune response. Although this study did not have the statistical power to 

discern differences between controllers and viremic untreated individuals, the strongest 

median polyfunctional TRM and rTEFF responses were detected in controllers, suggesting 

tissue-resident CD8+ T-cells might play a role in controlling HIV-1 in rectosigmoid mucosa. 

Paradoxically, although controllers displayed the highest median percentages of 

polyfunctional Gag-specific tissue-resident CD8+ T-cell responses, these responses 

constituted a smaller proportion of the total rectosigmoid Gag-specific CD8+ T-cell response 

in controllers compared to viremic participants not on ART. Instead, in controllers, the 

majority of rectosigmoid Gag-specific polyfunctional CD8+ T-cells were single positive for 

CD69. CD69 is an early activation marker up-regulated on tissue-resident precursor cells 

after entering the tissue. Expression of CD69 occurs early in tissue-resident development, 

preceding CD103 expression, and aids in tissue-retention by repressing expression of the 

tissue egress receptor S1PR112, 13, 14, 41. Tissue-resident CD8+ T-cells have been shown to 

initiate immune responses, mediated through cytokine and chemokine secretion, leading to 

recruitment of circulating immune cells to the site of infection22, 23. Accordingly, one 

interpretation of these data is that individuals with more robust Gag-specific tissue-resident 

CD8+ T-cell responses (i.e., HIV-1 controllers) might in turn experience greater recruitment 

of HIV-1-specific CD8+ T-cells from circulation compared to individuals with weaker CD8+ 

tissue-resident responses. This enhanced recruitment of cells lacking the tissue-resident 

phenotype would dilute the proportion of Gag-specific cells in rectosigmoid mucosa with a 

tissue-resident phenotype, consistent with our observations. Clearly, further studies, likely 

involving nonhuman primate models, will be required to fully elucidate the role of tissue-

resident CD8+ T-cells in the total mucosal anti-HIV-1 immune response.

Within both TRM and rTEFF populations, we observed two subsets of tissue-resident CD8+ 

T-cells that could be differentiated by CD103 fluorescence intensity. The CD103High subset 

resembled canonical tissue-resident CD8+ T-cells, consisting mainly of TEM/TEFF cells with 

a T-betLowEomesNeg profile. CD103High cells were enriched in epithelia and revealed a 

strong positive correlation with the percentage of rectosigmoid CD4+ T-cells. In contrast, the 

CD103Low subset was mainly composed of less-differentiated CD8+ T-cells expressing 

CD27, and was more abundant in lamina propria compared to CD103High cells. HIV-1+ 

individuals not on ART had lower percentages of CD103High but higher percentages of 

EomesHigh tissue-resident CD8+ T-cells compared to ART-treated participants and 

seronegative controls. Interestingly, both Gag-specific and EomesHigh tissue-resident CD8+ 

T-cells were primarily CD103Low. Collectively, these observations reveal heterogeneity in 
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the tissue-resident CD8+ T-cell population that may be exacerbated during chronic untreated 

HIV-1 infection.

Three main interpretations, not mutually exclusive, emerged to explain the observed HIV-1-

associated alterations in the tissue-resident CD8+ T-cell population. First, gut epithelial cells 

express E-cadherin and are a constitutive source of TGF-β, a prominent driver of tissue-

resident development6, 7, 12, 16, 36, 42, 43. Certain subsets of CD4+ T-cells also produce TGF-

β and CD4+ T-cells have been shown to aid development of TRM in the lung38, 44. 

Accordingly, loss of epithelial barrier function and/or CD4+ T-cells during HIV-1 infection 

may result in a reduction of gut TGF-β and E-cadherin, ultimately leading to a reduction in 

an accumulation and/or development of CD103High tissue-resident CD8+ T-cells. Second, 

chronic antigen exposure can affect CD103 expression. In murine lymphocytic 

choriomeningitis virus (LCMV) infection, chronic in vivo exposure to antigen in 

combination with TGF-β reduced CD103 expression on antigen-specific CD8+ T-cells, 

leading the authors to propose CD103 as a marker for resting versus recently stimulated 

TRM
7. Consistent with this finding, we observed Gag-specific tissue-resident CD8+ T-cells 

to be primarily CD103Low whereas tissue-resident CD8+ T-cells responding to SEB were 

primarily CD103High. It seems unlikely that the significant reduction in the percentage of 

CD103High tissue-resident CD8+ T-cells observed in HIV-1+ individuals not on ART would 

be due solely to CD103 down-regulation on HIV-1-specific cells. However, the pool of 

rectosigmoid tissue-resident CD8+ T-cells undergoing activation-induced CD103 down-

regulation might be broadened in individuals not on ART due to ‘bystander’ activation as a 

result of HIV-1-associated inflammation37. Third, the HIV-1-associated inflammatory state 

in individuals not on ART might lead to greater recruitment of CD8+ T-cells from 

circulation. An influx of blood CD8+ T-cells into rectosigmoid mucosa would reduce the 

proportion of CD103High cells in the total rectosigmoid CD8+ T-cell population and increase 

proportions of CD103Low/Neg cells as recent immigrants mature into CD103High tissue-

residents. In support of this interpretation, a large fraction of CD103Low tissue-resident 

CD8+ T-cells displayed a less differentiated memory phenotype characterized by CD27 

expression.

Again, these interpretations are likely not mutually exclusive. The CD103Low tissue-resident 

CD8+ T-cell subset may be heterogeneous, composed both of recent immigrants developing 

into tissue-resident CD8+ T-cells and activated, mature tissue-resident CD8+ T-cells. 

Interestingly, within the CD103Low subset, we observed heterogeneity in Eomes expression. 

Unlike CD103High cells, which displayed a homogenous T-betLowEomesNeg phenotype, the 

CD103Low subset contained cells expressing high, low, or no Eomes. Notably, although 

CD103Low cells were primarily EomesNeg, EomesHigh tissue-resident CD8+ T-cells were 

almost exclusively CD103Low. Murine skin and brain tissue-resident CD8+ T-cells severely 

down-regulate Eomes; thus, detecting high Eomes expression within this population was 

surprising12, 15, 16. However, high Eomes expression has been associated with a ‘terminally 

exhausted’ phenotype when co-expressed with the inhibitory receptor programmed cell 

death-1 (PD-1)45. As the frequency of EomesHigh tissue-resident CD8+ T-cells was greatest 

in HIV-1+ individuals not on ART, we surmised that the high Eomes expression in 

rectosigmoid tissue-resident CD8+ T-cells likely represents activated and/or exhausted cells. 

The data presented here do not contradict previous findings, but rather suggest that Eomes 
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expression may vary during chronic infection and that tissue-resident CD8+ T-cells may be 

susceptible to exhaustion.

To our knowledge, this is the first report examining the characteristics and functionality of 

tissue-resident CD8+ T-cells in rectosigmoid mucosa during HIV-1 infection. As the 

gastrointestinal mucosa is an important site of HIV-1 transmission and pathogenesis1, the 

long-lived tissue resident T-cell population can potentially be exploited in the development 

of vaccines and immunotherapies designed to prevent and/or eradicate HIV-1 infection. 

Recent successes in HIV-1 vaccine development have lent support to the concept that 

antigen-specific CD8+ T-cells, positioned near the sites of mucosal viral entry, can play 

critical roles in preventing and/or clearing infection4, 18, 39. However, more work will be 

required to fully elucidate the pathways driving induction and maintenance of these 

populations, and to understand the relative contributions of both tissue-resident and 

recirculating memory T-cell subsets to host immunity.

METHODS

Participants and Sample Collection

HIV-1 positive and seronegative participants were enrolled through the SCOPE study at San 

Francisco General Hospital. Participants were categorized by plasma viral load (VL) and 

antiretroviral therapy (ART): Controllers (C) with VL consistently <2,000 copies/mL 

without ART; Viremic (V) subjects with VL ≥ 2,000 copies/mL without ART; ART treated 

(Tx) participants with VL < 40 copies/mL; and HIV-1 seronegatives (SN). Seronegative 

participants were healthy volunteers from whom samples were collected for research 

purposes only. Written informed consent for phlebotomy and rectosigmoid biopsy was 

obtained through protocols approved by the Committee on Human Subjects Research, 

University of California, San Francisco [Protocols #10-01218, 10-00263 and 10-01330]. 

Exclusion criteria included active sexually transmitted infections other than HIV-1; 

inflammatory bowel disease or other known inflammatory conditions affecting the 

gastrointestinal tract; colorectal cancer or other malignancies; and severe anemia or blood 

clotting disorders.

Twenty to 40 ml of blood was collected by sterile venipuncture into tubes containing EDTA. 

Twenty-four to 30 rectosigmoid biopsies were obtained by flexible sigmoidoscopy at 10–

30cm from the anal verge2. Biopsies were immediately stored in R-15 [RPMI-1640 

supplemented with fetal calf serum (15%), penicillin (100U/mL), streptomycin (100 mg/

mL), and glutamine (2 mM)]. Samples were transported at room temperature to Davis, CA 

and processed immediately upon arrival.

Blood and Tissue Processing

Peripheral blood mononuclear cells (PBMCs) were isolated from blood using Ficoll-Paque™ 

(Pfizer-Pharmacia, New York, NY) and rested overnight in R-15 at 37°C, 5% CO2. 

Rectosigmoid mononuclear cells were isolated from biopsies as described46, 47. Briefly, 

biopsies were washed in R-15 and subjected to shaking incubation in 25mg/mL Liberase® 

DL (Roche, Indianapolis, IN) at 37°C for 30 minutes, then passed through a 16-gauge blunt 
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end needle to mechanically disrupt tissue. Disrupted tissue was passed through a sterile 

70μm cell strainer to collect cells. Undigested tissue was again incubated in Liberase and the 

process repeated until all tissue was digested. Isolated cells were washed three times in R-15 

and rested overnight at 37°C, 5% CO2 in R-15 with 200x Zozyn (Pfizer-Pharmacia).

Antibodies and Peptide Pools

The following monoclonal antibodies were used in flow cytometry: CD8 (SK1: APC-H7), 

CCR7 (3D12: PE-Cy7), CD69 (L78: PE), IFN-γ (B27: PE-Cy7), MIP-1β (D21-1351: 

PerCP-Cy5.5), from BD Biosciences (San Jose, CA); CD103 (Ber-ACT8: Ax488), TNF-α 
(MAb11: BV605), IL-2 (MQ1-17H12: BV650), CD107a (H4A3: BV711), CD4 (RPA-TA: 

BV570, BV605), CD45RO (UCHL1: BV785), CD27 (O323: BV650), CD3 (UCHT-1: 

Ax700), and T-bet (4B10: BV711) from Biolegend (San Diego, CA). Unlabeled CD28 

(L293), and CD49d (L25) were from BD Pharmingen (San Diego, CA). Eomesodermin 

(WD1928: PE-eFluor610) and S1PR1 (SW4GYPP: eFluor660) were from ThermoFisher 

(Waltham, MA). The HIV-1 Gag peptide pool (p55, HXB2 sequence) consisted of 15-mers 

with an 11 amino acid overlap (BD Biosciences). Staphylococcal enterotoxin B (SEB) was 

from Sigma Aldrich.

Antigen Stimulation and Intracellular Cytokine Staining (ICS)

Surface and intracellular staining was performed as described25 on freshly isolated blood 

and rectosigmoid mononuclear cells rested overnight at 37°C, 5% CO2. For stimulation 

assays, cells were incubated at 2×106 cells per 200μL R-15 for 6h in the presence of CD28 

(1μg/mL) and CD49d (1μg/mL), anti-CD107a, 1μM GolgiStop™ (BD Biosciences), 

brefeldin A (5μg/mL, Sigma Aldrich) and the appropriate antigens: Gag-peptide pool (3.5μg/

mL), Staphylococcal enterotoxin B (5μg/mL), or media containing DMSO (peptide solvent) 

as negative control. Cells were incubated for 10 minutes in PBS with 0.5mM EDTA prior to 

staining for surface markers and viability (Aqua Dead cell stain kit, Invitrogen) for 20 

minutes at room temperature. Cells were fixed in 4% paraformaldehyde (PFA) and 

permeabilized using FACS Perm 2 (BD Biosciences) prior to intracellular staining for CD3, 

IFN-γ, MIP-1β, TNF-α, and IL-2. The Transcription Factor Buffer Set (BD Biosciences) 

was substituted for 4% PFA and FACS Perm 2 when staining for transcription factors. In 

such cases, cells were fixed with Transcription Factor Fix/Perm Buffer for 40 minutes at 

4°C, washed twice in Transcription Factor Perm/Wash Buffer, and stained with antibodies 

for 40 minutes at 4°C in Transcription Factor Perm/Wash. For all protocols, after staining, 

cells were re-suspended in 1% PFA and stored at 4°C in the dark until analysis within 24h.

Data Acquisition and Analysis

Flow cytometry data were acquired with an LSR II cytometer and FACSDiva™ software 

(Becton Dickinson Immuno-cytometry Systems). Analysis was performed using Flowjo 

software (Flowjo LLC, Ashland, OR). Fluorescence minus one (FMO) samples and known 

negative populations were used to aid in gating (Supplementary Figures 1a, 6b, 8). The 

distinction between CD103 negative, low and high populations was made visually as shown 

in Supplementary Figure 8. Tissue resident responses were identified using Boolean gating 

within the live, CD3+, CD8+, CD45RO+, CD103+CD69+S1PR1− subset for TRM or live, 

CD3+, CD8+, CD45RO−, CD103+CD69+S1PR1− subset for rTEFF. An in-house statistical 
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algorithm was used to determine whether antigen-specific responses differed significantly 

from the negative control25. For responses deemed statistically significant, net responses 

were then calculated by subtracting negative control values from antigen-specific responses. 

SPICE software was used to visualize multifunctional T-cell populations48. Statistical 

analyses were performed with GraphPad Prism V.6 (Graphpad Software, San Diego, CA) or 

SPICE. Non-parametric statistical tests included Wilcoxon matched-pairs signed rank test 

for paired samples, Mann-Whitney test for unpaired samples, Spearman correlation and 

linear regression analysis.

In Situ Tetramer Staining and Immunohistochemistry

Fresh biopsy specimens were shipped in complete media on ice overnight to the University 

of Minnesota. Biopsies were cut into 2 to 4 sections using a scalpel and stained with MHC-

tetramers, CD103, and CD8 antibodies as previously described49, 50. Red background from 

MHC tetramer staining was used for morphological identification of intestinal crypts. 

Biotinylated MHC-class I monomers were loaded with peptides (National Institute of Health 

Tetramer Core Facility, Emory University, Atlanta GA) and converted to MHC-class I 

tetramers. HLA-B*57 molecules were loaded with HIV-1 Gag IW9 (ISPRTLNAW) or QW9 

(QASQEVKNW) peptides. HLA-B*07 molecules were loaded with Nef TL10 

(TPNGSIFTTL) peptides. An irrelevant peptide MART (ELAGIGILTV) from melanoma 

protein was used as negative control. Fresh tissue sections were incubated with MHC-class I 

tetramers (0.5 μg/ml), mouse-anti-human CD103 Abs (2.5 μg/ml, Biolegend), and rat-anti-

human CD8 Abs (2 μg/ml, Acris). For secondary incubations, sections were incubated with 

rabbit-anti-FITC Abs (0.5 μg/mL, BioDesign, Saco, ME). For tertiary incubations, sections 

were incubated with Cy3-conjugated goat-anti-rabbit Abs (0.3 μg/mL, Jackson 

ImmunoResearch Laboratories), Alexa 488-conjugated goat-anti-mouse Abs (0.75 μg/mL, 

Molecular Probes), and Cy5-conjugated goat-anti-rat Abs (0.3 μg/mL, Jackson 

ImmunoResearch Laboratories). Sections stained with secondary antibodies alone were used 

as negative controls for CD103 and CD8 staining. Sections were imaged using an Olympus 

FluoView 1000 microscope. Confocal z-series were collected from ~3 μm from the surface 

of the section to 30–45 μm into the tissue. Montage images of multiple 800 × 800 pixels 

were created and used for analysis.

Quantitative Image Analysis

Anatomical compartments of rectosigmoid mucosa, crypts and intraepithelial lymphocytes 

were identified morphologically by increasing the red background from MHC tetramers to 

allow identification of goblet cells. The ~10 μm area directly adjacent was defined as the 

border. Surrounding areas with abundant CD8+ T cells and diffuse red background were 

identified as lamina propria. Areas that were ambiguous in structure were not included. To 

determine levels of CD103 expression, CD8+ T cells with no detectable CD103 staining 

above background were scored as CD103 negative, cells with CD103 staining 2–5× greater 

than background were scored as CD103low, cells with CD103 staining 6× or greater than 

background were scored as CD103high.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Characterization and distribution of tissue-resident CD8+ T-cells in the rectosigmoid mucosa 

of chronically HIV-1-infected and seronegative participants. (a) Representative flow 

cytometry plot displaying surface staining of tissue-resident markers and gating strategy 

used to identify live, CD3+, tissue resident CD8+ T-cells as CD103+CD69+S1PR1− in blood 

(red) and rectosigmoid mucosa (blue). (b) Differences in the frequency of 

CD103+CD69+S1PR1− CD8+ T-cells between blood and rectosigmoid mucosa across HIV-1 

disease status. (c) Representative flow cytometry plot demonstrating the difference in 

CD103 fluorescence intensity and CD69 expression in rectosigmoid naïve (Tnaive, aqua), 

central memory (TCM, orange), transitional memory (TTM, green), effector memory (TEM, 

purple), and effector (TEFF, red) CD8+ T-cells. Numbers in parentheses indicate the 

percentage of the memory subset in the total rectosigmoid CD8+ T-cell population; colored 

numbers indicate frequency of the memory subset in each quadrant. Memory/effector 
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subsets were first identified by differential expression of CD45RO, CD27, and CCR7 as 

described in the text. (d) Comparison of the frequencies of rectosigmoid CD103High and 

CD103Low CD69+S1PR1− CD8+ T-cells within each memory subset, or (e) between 

memory subsets in a combined group of chronically HIV-1-infected and seronegative 

participants. Horizontal bars represent median, whiskers indicate interquartile ranges with 

the level of significance shown with asterisks as follows: * P <0.05, ** P <0.01, *** P 

<0.001, **** P <0.0001.
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Figure 2. 
Distribution, association with rectosigmoid CD4+ T-cells, and maturation status of 

CD103High and CD103Low tissue-resident CD8+ T-cells. (a) Representative flow cytometry 

plot showing differences in the proportion of CD103High (blue) and CD103Low (orange) 

CD45RO+ and CD45RONeg CD8+ T-cells between a chronically HIV-1-infected individual 

on ART (top panel) and a chronically HIV-1-infected individual not on ART (bottom panel). 

(b) Differences in the frequency of rectosigmoid CD103High CD8+ TRM and rTEFF cells 

across HIV-1-disease status. (c) Association between the frequency of rectosigmoid CD4+ T-

cells and the frequency of rectosigmoid CD103High and CD103Low TRM CD8+ T-cells in all 

study participants. (d) Representative flow cytometry plot showing differences in the 

expression of memory markers CD27 and CCR7 between CD103High and CD103Low 

rectosigmoid CD8+ TRM cells. (e) Distribution of central memory (TCM), transitional 

memory (TTM), and effector memory (TEM) subsets within CD103High and CD103Low 
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rectosigmoid CD8+ TRM in a combined group of all study participants. Associations 

calculated using non-parametric Spearman correlation and linear regression analyses. 

Horizontal bars represent median, whiskers indicate interquartile range with the level of 

significance indicated with asterisks as follows: * P <0.05, ** P <0.01, *** P <0.001, **** 

P <0.0001.

Kiniry et al. Page 19

Mucosal Immunol. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Responses of rectosigmoid CD8+ TRM cells to antigenic stimulation. (a) Representative flow 

cytometry plot demonstrating degranulation (CD107a) and IFN-γ-production following 

stimulation with an HIV-1 Gag-peptide pool or medium containing DMSO (negative 

control) by rectosigmoid CD8+ TRM (top) and rTEFF (bottom) from an HIV-1+ controller. (b) 
Difference in the frequency of CD8+ TRM and rTEFF cells responding to Gag-peptide and 

SEB stimulation. (c) Total percentage of rectosigmoid CD8+ TRM and rTEFF responding in 

any way (TNF-α, IFN-γ, IL-2, CD107a, and/or MIP-1β) to HIV-1 Gag stimulation. For 

each subject, the total HIV-1 Gag-specific response shown in (c) was calculated by 

combining all non-overlapping Boolean categories that are displayed individually in panels 

(d), for TRM, and (e), or rTEFF. (d) Difference in percentages of poly- and monofunctional 

Gag-specific rectosigmoid CD8+ TRM cells across HIV-1 disease status. (e) Difference in 

percentages of poly-and monofunctional Gag-specific rectosigmoid CD8+ rTEFF cells across 
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HIV disease status. Response data were analyzed using Boolean gating of responding 

populations within live, CD3+, CD8+, CD45RO+ or CD45RONeg, CD103+CD69+S1PR1− 

gates. Co-expression analyses were generated using SPICE software. Poly- and 

monofunctional combinations with negligible responses were omitted. Horizontal bars 

represent medians, whiskers indicate interquartile ranges with the level of significance 

shown with asterisks as follows: * P <0.05, ** P <0.01, *** P <0.001, **** P <0.0001.
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Figure 4. 
Expression of T-bet and Eomesodermin in tissue-resident CD8+ T-cells varies with HIV-1-

disease status and CD103 fluorescence intensity. (a) Representative flow cytometry plot 

displaying differences in expression of T-bet and Eomesodermin (Eomes) in rectosigmoid 

CD8+ TRM between a chronically HIV-1-infected participant not on ART (far left), a 

chronically HIV-1-infected participant on ART (second from left), and a seronegative 

participant (second from right). T-bet FMO control is displayed for comparison (far right). 

(b) Differences in the frequency of EomesHigh and EomesNeg rectosigmoid CD8+ TRM 

across HIV-1-disease status. Horizontal bars represent medians, whiskers represent 
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interquartile ranges. (c) Representative flow cytometry plot displaying differences in CD103 

fluorescence intensity between EomesHigh and EomesNeg rectosigmoid CD8+ TRM. (d) 
Difference in Eomes expression between CD103High and CD103Low rectosigmoid CD8+ 

TRM cells in a combined group of all study participants. Vertical bars represent interquartile 

ranges, horizontal bars represent medians, whiskers represent standard error of the mean. 

Co-expression analysis was generated using SPICE software. Level of significance is 

indicated with asterisks as follows: * P <0.05, ** P <0.01, *** P <0.001, **** P <0.0001.

Kiniry et al. Page 23

Mucosal Immunol. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kiniry et al. Page 24

Ta
b

le
 1

Pa
rt

ic
ip

an
t C

ha
ra

ct
er

is
tic

s G
en

de
r

R
ac

e
P

la
sm

a 
vi

ra
l l

oa
d,

 R
N

A
 c

op
ie

s/
m

L
*

[M
ed

ia
n]

[R
an

ge
]

C
D

4 
co

un
t,

 C
el

ls
/m

m
3

[M
ed

ia
n]

[R
an

ge
]

T
im

e 
P

os
t 

H
IV

+ 
D

ia
gn

os
is

, y
ea

rs
[M

ed
ia

n]
[R

an
ge

]

A
ge

, Y
ea

rs
[M

ed
ia

n]
[R

an
ge

]

C
on

tr
ol

le
rs

 (
n 

= 
4)

M
, 2

A
A

, 3
94

3
76

9
14

59

F,
 1

C
, 1

<
40

 –
 1

,4
97

43
1 

– 
1,

12
8

7 
– 

31
50

 –
 6

3

T
**

, 1

V
ir

em
ic

 U
nt

re
at

ed
 (

n 
= 

6)
M

, 6
A

A
, 4

57
,9

95
32

4
14

48

C
, 2

9,
43

6 
– 

30
8,

38
3

19
8 

– 
51

6
3 

– 
31

33
 –

 5
4

A
R

T-
T

re
at

ed
 (

n 
= 

8)
M

, 6
A

A
, 4

<
40

77
0

9
48

F,
 2

C
, 4

N
A

56
4 

– 
2,

65
8

6 
– 

30
28

 –
 6

7

Se
ro

ne
ga

ti
ve

s 
(n

 =
 8

)
M

, 7
A

A
, 5

N
A

76
4

N
A

49

F,
 1

C
, 3

N
A

40
6 

– 
2,

26
9

N
A

26
 –

 6
0

M
, M

al
e;

 F
, F

em
al

e;
 T

, T
ra

ns
ge

nd
er

;

**
m

al
e-

to
-f

em
al

e.

A
A

, A
fr

ic
an

 A
m

er
ic

an
; C

, C
au

ca
si

an
; N

A
, N

ot
 a

pp
lic

ab
le

.

* M
ed

ia
n 

de
te

rm
in

ed
 u

si
ng

 o
nl

y 
de

te
ct

ab
le

 v
ir

al
 lo

ad
 d

at
a 

po
in

ts
.

Mucosal Immunol. Author manuscript; available in PMC 2018 May 31.


	Abstract
	INTRODUCTION
	RESULTS
	Most CD8+ T-cells in human rectosigmoid mucosa display a tissue-resident phenotype
	CD103High and CD103Low tissue-resident CD8+ T-cells differ in abundance across HIV-1 disease status, association with rectosigmoid CD4+ T-cells, and expression of memory markers
	HIV-1 gag-specific tissue-resident CD8+ T-cell responses originate from CD103Low cells and appear strongest in controllers
	Eomesodermin expression in tissue-resident CD8+ T-cells is associated with low CD103 fluorescence intensity and is greatest in HIV-1+ participants not on ART

	DISCUSSION
	METHODS
	Participants and Sample Collection
	Blood and Tissue Processing
	Antibodies and Peptide Pools
	Antigen Stimulation and Intracellular Cytokine Staining (ICS)
	Data Acquisition and Analysis
	In Situ Tetramer Staining and Immunohistochemistry
	Quantitative Image Analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

