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Summary

Publication bias is a serious problem in systematic reviews and meta-analyses, which can affect 

the validity and generalization of conclusions. Currently, approaches to dealing with publication 

bias can be distinguished into two classes: selection models and funnel-plot-based methods. 

Selection models use weight functions to adjust the overall effect size estimate and are usually 

employed as sensitivity analyses to assess the potential impact of publication bias. Funnel-plot-

based methods include visual examination of a funnel plot, regression and rank tests, and the 

nonparametric trim and fill method. Although these approaches have been widely used in 

applications, measures for quantifying publication bias are seldom studied in the literature. Such 

measures can be used as a characteristic of a meta-analysis; also, they permit comparisons of 

publication biases between different meta-analyses. Egger’s regression intercept may be 

considered as a candidate measure, but it lacks an intuitive interpretation. This article introduces a 

new measure, the skewness of the standardized deviates, to quantify publication bias. This 

measure describes the asymmetry of the collected studies’ distribution. In addition, a new test for 

publication bias is derived based on the skewness. Large sample properties of the new measure are 

studied, and its performance is illustrated using simulations and three case studies.
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1. Introduction

Meta-analysis has become a powerful and widely-used tool to integrate findings from 

different studies and inform decision making in evidence-based medicine (Sutton and 

Higgins, 2008). However, the chance of a study being published by a scientific journal is 

frequently associated with the statistical significance of its results: more significant findings 

are more likely to be published, causing publication bias in meta-analysis of published 

studies (Begg and Berlin, 1988; Stern and Simes, 1997; Kicinski et al., 2015). Detecting 

publication bias is a critical problem because such bias may lead to incorrect conclusions of 

systematic reviews (Sutton et al., 2000).
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One class of approaches to detecting publication bias is based on selection models. These 

approaches typically use the weighted distribution theory to model the selection (i.e., 

publication) process and develop estimation procedures that account for the selection 

process; see, e.g., Dear and Begg (1992), Hedges (1992), and Silliman (1997a,b). Sutton et 

al. (2000) provide a comprehensive review. The selection models are usually complicated, 

limiting their applicability. Moreover, they incorporate weight functions in an effort to 

correct publication bias, but strong and largely untestable assumptions are often made 

(Sutton et al., 2000). Therefore, the validity of their adjusted results may be doubtful, and 

these methods are usually employed as sensitivity analyses.

Another class of methods for publication bias is based on a funnel plot, which usually 

presents effect sizes plotted against their standard errors or precisions (the inverse of 

standard errors) (Light and Pillemer, 1984; Sterne and Egger, 2001). In the presence of 

publication bias, the funnel plot is expected to be skewed; see the illustrative example in 

Figure 1. One may intuitively assess publication bias by examining the asymmetry of the 

funnel plot; however, the visual examination is usually subjective. Various statistical tests 

have been proposed for publication bias in the funnel plot, such as Begg’s rank test (Begg 

and Mazumdar, 1994) and Egger’s regression test (Egger et al., 1997) and its extensions 

(e.g., Macaskill et al., 2001; Rothstein et al., 2005; Harbord et al., 2006; Peters et al., 2006). 

The rank test examines the correlation between the effect sizes and their corresponding 

sampling variances; a strong correlation implies publication bias. Egger’s test regresses the 

standardized effect sizes on their precisions; in the absence of publication bias, the 

regression intercept is expected to be zero. Note that this regression is equivalent to a 

weighted regression of the effect sizes on their standard errors, weighted by the inverse of 

their variances; the weighted regression’s slope, instead of the intercept, is expected to be 

zero in the absence of publication bias (Rothstein et al., 2005). The weighted regression 

version of the test is popular among meta-analysts, probably because it directly links the 

effect sizes to their standard errors without the standardization process. However, this article 

considers only the original version of regression as in Egger et al. (1997), since it is closely 

related to commonly-used meta-analysis models; see Section 2 for details. In addition, 

another attractive method is the trim and fill method, which not only tests for publication 

bias but also adjusts the estimated overall effect size (Duval and Tweedie, 2000a,b). 

Although these publication bias tests have been widely used in meta-analysis applications, 

they may suffer from inflated type I error rate or poor power in certain simulation settings 

(Sterne et al., 2000; Terrin et al., 2003; Peters et al., 2006, 2007; Rücker et al., 2008).

Besides detecting publication bias using selection models and funnel-plot-based methods, it 

is also important to quantify publication bias using measures that permit comparisons 

between different meta-analyses. A candidate measure is the intercept of the regression test 

(Egger et al., 1997). However, as a measure of asymmetry of the collected study results, the 

regression intercept lacks a clear interpretation; for example, it is difficult to provide a range 

guideline to determine mild, moderate, or substantial publication bias based on the 

regression intercept. Due to this limitation, meta-analysts usually report the p-value of 

Egger’s regression test, but not the magnitude of the intercept. We will show that the 

regression intercept basically estimates the average of study-specific standardized deviates; 
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it does not account for the shape of the deviates, which is skewed in the presence of 

publication bias. This may limit the statistical power of Egger’s regression test.

This article introduces an alternative measure to quantify publication bias, the skewness of 

the standardized deviates. The new measure not only has an intuitive interpretation as the 

asymmetry of the collected study results but also can serve as a test statistic. The large 

sample properties of the new measure are studied. We also evaluate its performance using 

simulations and three actual meta-analyses published in the Cochrane Database of 
Systematic Reviews.

2. Notation and the regression test

Suppose a meta-analysis collects n studies; each study reports an effect size yi (e.g., log odds 

ratio for binary outcomes) and its within-study variance si
2, due to sampling error (i = 1, …, 

n). If the collected studies are deemed homogeneous, sharing a common underlying true 

effect size μ, then the fixed-effect model is customarily used, specified by yi N(μ, si
2). The 

studies are heterogeneous if they have different underlying effect sizes μi; the corresponding 

random-effects model assumes yi N(μ, si
2) and μi ~ N(μ, τ2), where τ2 is the between-study 

variance and μ is interpreted as the overall mean effect size (Borenstein et al., 2010). The 

random-effects model reduces to the fixed-effect model by setting τ2 = 0.

To detect publication bias, Egger et al. (1997) proposed a regression test, regressing the 

standardized effect sizes (yi/si) on the corresponding precisions (1/si); that is,

yi/si = α + μ · 1/si + εi, εi ∼iid N(0, σ2) .

Egger’s regression test transforms the original null hypothesis, H0: no publication bias, to 

testing H0′ : the regression intercept is zero. Alternatively, in the presence of noticeable 

heterogeneity between studies, we may slightly modify Egger’s test by using the marginal 

standard deviations to produce the regression predictors and responses under the random-

effects model. Note that the random-effects model can be written marginally as yi = μ+δi+ξi, 

where δi ∼iid N(0, τ2) is the random effect and ξi N(0, si
2) is the sampling error in study i. 

Dividing by the marginal standard deviation (si
2 + τ2)1/2

, we have the following modified 

regression test:

yi(si
2 + τ2)−1/2 = α + μ(si

2 + τ2)−1/2 + εi, εi ∼iid N(0, σ2) . (1)

Like Egger’s test, the intercept α is zero under the true model; in the presence of publication 

bias, it departs from zero. The overall mean effect size μ becomes the regression slope. Also, 

σ2 allows potential under- or over-dispersion of the errors. In practice, heterogeneity is 

routinely assessed using the Q or I2 statistic (Whitehead and Whitehead, 1991; Higgins and 
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Thompson, 2002; Higgins et al., 2003; Borenstein et al., 2010), and the between-study 

variance can be estimated as τ̂2 using the method of moments or the maximum restricted 

likelihood method (DerSimonian and Laird, 1986; Normand, 1999). If heterogeneity is not 

significant, then setting τ2 = 0 reduces Equation (1) to Egger’s original test. Since the 

heterogeneity frequently appears in meta-analyses (Higgins, 2008), this article will introduce 

publication bias measures based on the modified regression test.

Let the least squares estimates of the regression coefficients in model (1) be α̂ and μ̂. The 

estimated regression intercept is essential in the regression test; we denote this statistic as

TI = α .

Under the null hypothesis, TI divided by its standard error follows the t-distribution with 

degrees of freedom n − 2, which gives the p-value of the regression test, denoted as PI. Since 

the standardized effect sizes are unit-free, the estimated regression intercept TI is also unit-

free. Therefore, TI can serve as a measure for quantifying publication bias (Egger et al., 

1997). However, the regression intercept TI lacks an intuitive interpretation for the 

asymmetry of the collected study results. Meta-analysts usually report only the p-value of 

the regression test, not the magnitude of TI, to describe the severity of publication bias.

3. Skewness and skewness-based test

The regression test does not fully describe the asymmetry of the collected study results. By 

linear regression theory, the estimated intercept can be expressed as TI = n−1∑i = 1
n d i, where

di =
yi − μ

si
2 + τ2

is an estimate of the study-specific standardized deviate di = (yi − μ)(si
2 + τ2)−1/2

. Therefore, 

the regression intercept TI only reflects the average of the standardized deviates. To better 

test and quantify publication bias, we further consider the shape of the di’s.

Note that di = α+εi, so the standardized deviates di are distributed with the same shape as the 

errors εi. To test the original H0, we may alternatively test H0″:α = 0 and εi ∼iid N(0, σ2)vs. 

H1″:α ≠ 0 or εi’s are iid from a skewed distribution with mean zero. Clearly, H0″ is stronger 

than the null hypothesis H0′  of Egger’s test, but it is still a necessary condition if the original 

null hypothesis H0 holds. Hence, the statistical power should be enhanced by testing H0″

compared to testing H0′ .

In the statistical literature, skewness has long been used as a descriptive quantity for the 

asymmetry of a distribution (MacGillivray, 1986), but it is fairly novel in the literature of 
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meta-analysis. To assess publication bias in meta-analysis, we may quantify the asymmetry 

of ε = (ε1, …, εn)T by the skewness, calculated as Skew(ε) = m3/s3, where 

s = {(n − 1)−1∑i = 1
n (εi − ε)2}1/2

 is the sample standard deviation, m3 = n−1∑i = 1
n (εi − ε)3 is 

the sample third central moment, and ε = n−1∑i = 1
n εi. In practice, we may replace the 

unknown errors ε with the regression residuals ε̂ = (ε̂1, …, ε̂n)T, where ε̂i = d̂i − TI. Denote 

the sample skewness of the errors as

TS = Skew ε ,

which we propose as an alternative measure of publication bias. We will show that TS is a 

consistent estimate of the true skewness.

The sample skewness TS can take any real value. A symmetric distribution (i.e., publication 

bias is not present) has zero skewness. A noticeably large positive skewness indicates that 

the right tail of standardized deviates’ distribution is longer than its left tail. Therefore, some 

studies on the left side in the funnel plot (i.e., those with negative effect sizes) might be 

missing due to publication bias. In this situation, the regression intercept TI is also expected 

to be positive. On the other hand, a large negative skewness implies that some studies may 

be missing on the right side. A common but rough rule of interpreting skewness is as 

follows. If the skewness is less than 0.5 in absolute magnitude, the distribution of the 

standardized deviates is approximately symmetric; the skewness is deemed considerable if it 

is between 0.5 and 1 in absolute magnitude, and it may be substantial if its absolute value is 

greater than 1. To interpret the skewness more rigorously, we study its large sample 

properties.

Denote βk = E(ε1 − β)k as the kth central moment of the errors εi, where β = E(ε1) = 0, and 

the sample kth central moment is mk = n−1∑i = 1
n εi − ε k. Then the true skewness of the 

errors is γ = β3/β2
3/2. In addition, let mk = n−1∑i = 1

n ε i − ε k be the sample kth central 

moment after plugging in the known residuals ε̂i; note that ε = n−1∑i = 1
n ε i = 0. Denote →D  as 

the convergence in distribution. We have the following proposition regarding the asymptotic 

distribution of the sample skewness TS.

Proposition 1

Assume that the study-specific errors εi have finite sixth central moment (i.e., β6 < ∞) and 

the marginal precisions (si
2 + τ2)−1/2

 have finite third moment. Then, n(TS − γ)/ v →D N(0, 1)

as n → ∞, where

v = 9 + 35
4 m2

−3m3
2 − 6m2

−2m4 + m2
−3m6 + 9

4m2
−5m3

2m4 − 3m2
−4m3m5 .
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Proposition 1 provides an approximate 95% confidence interval (CI) of the sample skewness 

TS. Consequently, TS not only quantifies publication bias but also serves as a test statistic. 

Under H0″, we can simplify the asymptotic distribution of TS as follows.

Corollary 1

Under the null hypothesis H0″, n/6TS →D N(0, 1) as n → ∞.

The Supplementary Material provides the proofs. The p-value of the skewness-based test is 

calculated using Corollary 1:

PS = 2 1 − Φ n/6 ∣ TS ∣ .

The regression intercept TI quantifies the departure of the average standardized deviate from 

zero; the skewness TS quantifies the departure of the standardized deviates’ distribution from 

symmetry. The regression test and the skewness-based test may differ in power in different 

situations. Therefore, we may combine the test results of TI and TS so that the combined test 

maintains high power across various settings. Under H0″, note that TI is the least squares 

estimate of the intercept and TS depends only on the residuals ε̂i. Because the least squares 

estimates of regression coefficients are independent of the residuals if the errors εi are 

normally distributed, we immediately have the following proposition.

Proposition 2

Under the null hypothesis H0″, TI and TS are independent.

Due to the independence of TI and TS, the adjusted p-value for combining TI and TS can be 

calculated as PC = 1 − (1 − Pmin)2, where Pmin = min{PI, PS} (Wright, 1992). The 

performance of the skewness-based test and the combined test will be studied using 

simulations and actual meta-analyses.

In practice, many meta-analyses only collect a small number of studies, and the large sample 

properties may apply poorly for them. Alternatively, a nonparametric bootstrap can be used 

to derive the 95% CI of the skewness: take samples of size n with replacement from the 

original data {(yi, si
2)}

i = 1
n

 for B (say 1000) iterations and calculate 2.5% and 97.5% quantiles 

of the skewness over the B bootstrap samples. A parametric resampling method can also be 

used to produce a p-value for the skewness-based test. Specifically, first, estimate the overall 

mean effect size μ̄ under the null hypothesis that there is no publication bias. Second, draw n 

samples under the null hypothesis, i.e., yi
★ N(μ, si

2 + τ2), and repeat this for B iterations. 

Third, based on the B sets of bootstrap samples, calculate the skewness as TS
(b) for b = 1, …, 

B. Finally, the p-value of the skewness-based test is 

PS = ∑b = 1
B 𝕀 ( ∣ TS

(b) ∣ ≥ ∣ TS ∣ ) + 1 /(B + 1), where (·) is the indicator function. Similar 

procedures can also be used for the regression intercept TI.
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The proposed methods can be implemented by the functions in the Supplementary Materials, 

which will be included in our R (R Core Team, 2016) package “altmeta”, available on the 

Comprehensive R Archive Network (CRAN).

4. Simulations

We performed simulations to evaluate the type I error rate and power of the modified 

regression test TI, the proposed skewness-based test TS, and the combined test based on the 

adjusted p-value PC. The commonly-used Egger’s regression test, Begg’s rank test, and the 

trim and fill method (T & F) were also considered. In addition, we calculated the p-values of 

TI and TS using both their theoretical null distributions and the resampling methods. As 

suggested by many other authors (e.g., Macaskill et al., 2001), the nominal significance level 

was set to 10% for publication bias tests because the tests usually have low power. For each 

simulated meta-analysis, the true overall effect size was μ = 1, the within-study standard 

errors were drawn from si ~ U(1, 4), and the between-study standard deviation was set to τ = 

0 (I2 = 0%), 1 (6% ≤ I2 ≤ 50%), and 4 (50% ≤ I2 ≤ 94%). The study-specific effect sizes 

were then generated as yi N(μi, si
2) and μi ~ N(μ, τ2). The number of studies collected in each 

meta-analysis was set to n = 10, 30, and 50. We considered the following three scenarios to 

induce publication bias.

I. (Suppressing non-significant findings) We used the above parameters to generate 

artificial studies, and suppose that they aimed at testing H0 : μ = 0 vs. H1 : μ ≠ 0. 

We assumed that studies with significant findings (i.e., p-value < 0.05 for 

treatment effect size) were published with probability 1. Also, studies with non-

significant findings were published with probability π; the publication rate was 

set to π = 0, 0.02, 0.05, and 1. Note that π = 1 implies no publication bias. 

Studies were generated iteratively until we obtained n published studies to form a 

simulated meta-analysis.

II. (Suppressing small studies with non-significant findings) In many cases, small 

studies with non-significant findings are more likely to be suppressed than large 

studies; hence, some authors prefer to treat the funnel-plot-based methods as 

approaches to checking for “small-study effects” (Harbord et al., 2006). We also 

simulated meta-analyses following this scenario. Studies with significant 

findings were published with probability 1. Large studies with non-significant 

findings and standard errors si < 1.5 were also published with probability 1; 

however, small studies with non-significant findings and standard errors si ≥ 1.5 

were published with probability π, where π = 0, 0.1, 0.2, and 1. Again, π = 1 

implies no publication bias. The studies were generated iteratively until we 

obtained n published studies to form a simulated meta-analysis.

III. (Suppressing negative effect sizes) Publication bias can be also induced on the 

basis of study effect size (Duval and Tweedie, 2000a,b; Peters et al., 2006). For 

each simulated meta-analysis, n + m studies were generated, and the m studies 

with the most negative effect sizes were suppressed. We set m = 0, ⌊n/3⌋, and 

⌊2n/3⌋, where ⌊x⌋ denotes the largest integer not greater than x. Note that m = 0 

implies no publication bias.
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For each setting, 10,000 meta-analyses were simulated. The Monte Carlo standard errors of 

all type I error rates and powers reported below were less than 1%.

Table 1 presents the type I error rates and powers for Scenario I. Type I error rates of most 

tests are controlled well, while that of Egger’s test is a little inflated when the heterogeneity 

is substantial (τ = 4). For weak or moderate heterogeneity (τ = 0 or 1), Egger’s regression 

test and the modified regression test TI have similar power, and Begg’s rank test seems to be 

more powerful than the regression test. Also, the trim and fill method performs poorly. Note 

that its power drops as π decreases from 0.05 to 0 when n = 50 and τ = 0 or 1. Indeed, the 

trim and fill method is based on the assumption in Scenario III; that is, studies are 

suppressed if they have most negative (or positive) effect sizes, not according to their p-

values. In Scenario I, the two-sided hypothesis testing for treatment effects H0 : μ = 0 vs. 

H1 : μ ≠ 0 can produce significant findings with both negative and positive effect sizes, so 

the simulated meta-analyses can seriously violate the assumption of the trim and fill method.

For small meta-analysis with n = 10, using the asymptotic property in Corollary 1, the 

skewness-based test TS is less powerful than the regression test and Begg’s rank test when π 
= 0.02 or 0.05, and its type I error rate is much smaller than the nominal significance level 

10%. This is possibly because TS’s asymptotic property is a poor approximation for small n. 

However, using the resampling method, the power of TS is dramatically higher than the other 

tests when τ = 0 and 1. Moreover, as the number of studies n increases to 30 and 50, the 

skewness-based test using either the asymptotic property or the resampling method still 

outperforms the other tests, and its power remains high as the heterogeneity becomes 

substantial (τ = 4).

Table 2 shows the results for Scenario II. The regression test and Begg’s rank test are more 

powerful than TS when τ = 0 and 1, while they are outperformed by TS when τ = 4. In this 

scenario, TS seems to be less powerful than in Scenario I. For each simulated meta-analysis, 

because only small studies with non-significant findings were suppressed, large studies are 

still symmetric in the funnel plot. Consequently, the distribution of the n studies may have 

two modes: the large studies are centered around the true overall effect size μ, and the small 

studies have an overestimated mean due to the suppression. Since the interpretation of 

skewness is obscure for multi-modal distributions, TS may lose power in this scenario.

Table 3 presents the type I error rates and powers for Scenario III. Since the trim and fill 

method’s assumption is perfectly satisfied in this scenario, this method is generally more 

powerful than the other tests. In the absence of heterogeneity (τ = 0), both the regression test 

and Begg’s rank test are more powerful than the skewness-based test TS; as the 

heterogeneity increases, they are outperformed by TS, especially when n is large.

In summary, the skewness-based test TS can be much more powerful than the existing tests 

in some settings, while no test can uniformly outperform the others. Although TS suffers 

from low power when the heterogeneity is weak or moderate in Scenarios II and III, the 

combined test of TI and TS maintains high power in most settings by borrowing strengths 

from each of the separate test.
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5. Case studies

We illustrate the performance of the skewness measure and test by three actual meta-

analyses published in the Cochrane Database of Systematic Reviews. The first meta-analysis 

was performed by Stead et al. (2012) to investigate the effect of nicotine gum for smoking 

cessation; it contains 56 studies and the effect size is the log risk ratio. The second meta-

analysis, performed by Hróbjartsson and Gøtzsche (2010), investigates the effect of placebo 

interventions for all clinical conditions regarding patient-reported outcomes; it contains 109 

studies and the effect size is standardized mean difference. The third meta-analysis reported 

in Liu and Latham (2009) compares the effect of the progressive resistance strength training 

exercise versus control; it contains 33 studies and the effect size is also standardized mean 

difference. Figure 2 presents their contour-enhanced funnel plots; the shaded regions 

represent different significance levels (Peters et al., 2008).

The proposed methods and the commonly-used tests were applied to the three meta-

analyses, and both the theoretical null distributions and the resampling methods were used to 

calculate the 95% CIs and p-values for TI and TS. We also calculated the p-values for the 

combined test. Table 4 presents the results. Since the size of each example n is large (for 

meta-analyses), the 95% CIs and p-values based on the theoretical null distributions are 

similar to those based on the resampling methods.

For the meta-analysis in Stead et al. (2012), the three commonly-used tests yield p-values 

greater than 0.10, indicating non-significant publication bias; the p-value of the modified 

regression test TI is also large. However, the proposed skewness TS is 0.91 with 95% CI 

(0.14, 1.68) and p-value 0.005 using the resampling methods; it implies substantial 

publication bias. Since TS is significantly greater than zero, some studies with negative 

effect sizes may be missing. Indeed, the funnel plot in Figure 2(a) shows that most studies 

are massed on the right side, tending to have significant positive results; some studies are 

potentially missing on the left side. Moreover, benefiting from the high power of the 

skewness-based test, the combined test also indicates significant publication bias.

For the meta-analysis in Hróbjartsson and Gøtzsche (2010), all tests imply significant 

publication bias; the p-values of Begg’s rank test, the trim and fill method, and the 

skewness-based test are fairly small (< 0.01). Both the regression intercept TI and the 

skewness TS are significantly negative, indicating that some studies are missing on the right 

side in the funnel plot; Figure 2(b) confirms this. For the meta-analyses in Liu and Latham 

(2009), Figure 2(c) shows that its funnel plot is approximately symmetric, so there appears 

to be no publication bias. Indeed, all tests yield p-values much greater than 0.1, and the 

publication bias measures TI and TS are close to zero.

6. Discussion

This article proposed a new measure, the skewness of the standardized deviates, for 

quantifying potential publication bias in meta-analysis. The intuitive interpretation of the 

asymmetry of the collected study results makes this measure appealing; its performance was 

illustrated by three actual meta-analyses. Also, the skewness can serve as a test statistic and 
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its large sample properties have been studied. The simulations showed that the skewness-

based test has high power in many cases. The large-sample properties of the skewness did 

not perform well for small n, but this can be remedied by using resampling methods. In 

addition, we proposed a combined test that depends on the p-values of both the regression 

and skewness-based tests; it is shown to be powerful in most simulation settings.

The proposed skewness has some limitations. First, for small meta-analyses, the variation of 

the sample skewness can be large. Researchers should always use skewness along with its 

95% confidence interval. Second, although a symmetric distribution has zero skewness, zero 

skewness does not necessarily imply a symmetric distribution; for example, an asymmetric 

distribution may have zero skewness if it has a long but thin tail on one side and a short but 

fat tail on the other side. Also, the skewness generally describes publication bias well when 

the effect sizes are unimodal, but its interpretation for multi-modal distributions is obscure. 

Therefore, the regression intercept is preferred when the studies appear to have multiple 

modes, which may be identified by visual examining the funnel plot. Third, like many other 

approaches to assessing publication bias, the skewness is based on checking the funnel plot’s 

asymmetry. However, such asymmetry can be caused by sources other than publication bias 

(Sterne et al., 2001), such as reference bias (Gøtzsche, 1987; Jannot et al., 2013), studies 

with poor quality in design (Chalmers et al., 1983; Altman, 2002), the existence of multiple 

subgroups (Sterne et al., 2011), etc. When applying the methods in this article to detect or 

quantify the asymmetry of study results, researchers may need to examine carefully whether 

the asymmetry is caused by publication bias or other sources of bias. In addition, in the 

simulations and actual meta-analyses, different methods for publication bias can lead to 

fairly different conclusions. Therefore, we are allowed to use a wealth of methods to detect 

any potential publication bias.

Like the routinely-used I2 statistic for assessing heterogeneity, the skewness may be a good 

characteristic of meta-analysis for quantifying publication bias. In the statistical literature, 

the skewness is a conventional descriptive quantity for asymmetry, but it may not be optimal 

to serve as a test statistic; more sophisticated tests for a continuous distribution have been 

extensively discussed (e.g., Hill and Rao, 1977; Antille et al., 1982; McWilliams, 1990). 

Exploring more powerful tests based on the standardized deviates warrants future study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The funnel plot of a simulated meta-analysis containing 60 studies. The 10 studies with the 

most negative effect sizes were suppressed due to publication bias, and the remaining 50 

studies were “published”.
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Figure 2. 
Contour-enhanced funnel plots of the three actual meta-analyses. The vertical and diagonal 

dashed lines represent the overall estimated effect size and its 95% confidence limits, 

respectively, based on the fixed-effect model. The shaded regions represent different 

significance levels for the effect size.
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