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Abstract

Objective—To find and validate generalizable sepsis subtypes using data-driven clustering.

Design—We used advanced informatics techniques to pool data from 14 bacterial sepsis 

transcriptomic datasets from 8 different countries (N=700).

Setting—Retrospective analysis.

Subjects—Persons admitted to the hospital with bacterial sepsis.

Interventions—None.

Measurements and Main Results—A unified clustering analysis across 14 discovery datasets 

revealed three subtypes, which, based on functional analysis, we termed Inflammopathic, 

Adaptive, and Coagulopathic. We then validated these subtypes in 9 independent datasets from 5 

different countries (N=600). In both discovery and validation data, the Adaptive subtype is 

associated with a lower clinical severity and lower mortality rate, and the Coagulopathic subtype is 

associated with higher mortality and clinical coagulopathy. Further, these clusters are statistically 

associated with clusters derived by others in independent single sepsis cohorts.

Conclusions—The three sepsis subtypes may represent a unifying framework for understanding 

the molecular heterogeneity of the sepsis syndrome. Further study could potentially enable a 

precision-medicine approach of matching novel immunomodulatory therapies with septic patients 

most likely to benefit.
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Introduction

Sepsis is defined as life-threatening organ dysfunction resulting from a dysregulated immune 

response to infection (1). Despite its association with nearly half of all in-hospital deaths, 

there are still no approved therapies specific for sepsis (2, 3). In part, this is because the 

clinical syndrome of sepsis includes substantial heterogeneity and may in fact encompass 

many different subtypes, analogous to what is well established among patients with cancer 

(4, 5). Current sepsis groupings are based on clinical criteria such as the presence of shock, 

infection source, or organ failure, but such groupings may not represent the driving biology 

of the host response. They have also failed to adequately match patients for novel 

interventions. If the heterogeneity of sepsis truly reflects heterogeneity in the host response, 

characterization of these underlying host response types will be fundamental to enabling 

precision sepsis therapeutics(6).

In unsupervised analysis, data is sorted into subgroups (‘clusters’) that are defined only 

internally and without reference to external ‘supervisory’ outcomes, such as mortality or 

severity. Instead, the structure inherent within the data is used to define the subgroups. Such 

data-driven analyses have been successful in defining validated, clinically relevant disease 

subtypes in multiple diseases(4, 5, 7, 8). Since whole-blood gene expression reflects the 

temporal state of the circulating leukocytes, at least two academic groups have applied 

unsupervised clustering to whole-blood transcriptomic profiles in patients with sepsis to 

study the ‘host response’ in a data-driven framework(9–13). Their results have identified 

higher-mortality subtypes with evidence of immune exhaustion and diminished 

glucocorticoid receptor signaling, as well as lower-mortality subtypes with conventional pro-

inflammatory signaling(9–13).

Clustering analyses often yield non-reproducible results for one of two reasons: either 

multiple arbitrary choices in methodology are used such that minor changes in analysis yield 

new results, or the clustered dataset is too small and not representative of the broad 

heterogeneity of a disease. However, recent advances in meta-clustering and data pooling 

can help solve both problems(14–16). Coupled with an unprecedented amount of publicly 

available transcriptomic data in sepsis(17, 18), here we tested the hypothesis that there exist 

robust, reproducible sepsis host-response subtypes (clusters) across the broad, heterogeneous 

spectrum of clinical sepsis.

Methods

Systematic search and dataset criteria

We performed a systematic search of GEO and ArrayExpress for gene expression studies of 

clinical studies in sepsis, as previously described (16). Individual datasets were renormalized 

as previously described (18). Datasets were only included if they studied whole blood gene 
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expression at hospital or ICU admission (i.e., primary admission for sepsis). Since the host 

response differs substantially between bacterial and viral infections(15, 19), an unsupervised 

analysis would likely lead to groupings primarily based on infection type. We thus removed 

all samples with microbiologically confirmed viral infection unless a microbiologically 

confirmed bacterial infection was also present (only 3 confirmed co-infections were 

included). Studies that did not supply sample-level microbiological data but were identified 

in their manuscript as being drawn from patients with primarily bacterial sepsis were treated 

as all bacterial. We further removed patients that were sampled more than 48 hours after 

sepsis diagnosis given the potential impact of treatment on the host response(20, 21). All 

data used herein were de-identified and publicly available and so exempt from IRB review.

Pooling data with COCONUT to enable clustering

The recent development of the COmbat CO-Normalization Using conTrols method 

(COCONUT)(15) allows for bias-free correction of batch effects between multiple 

microarray datasets, enabling pooled analysis, provided that healthy controls are present. 

The core assumption is that healthy controls across datasets come from the same statistical 

distribution. This assumption allows for the calculation of correction factors that remove 

technical differences across pooled datasets without bias to the number or type of diseased 

samples present.

We split the datasets into ‘discovery’ and ‘validation’ groups based on whether healthy 

controls were present in the dataset, specifically so that we could use the COCONUT 

method. Since the inclusion of healthy controls in any given dataset is essentially random, 

the discovery/validation split was not expected to introduce bias. We used the COCONUT 

method to co-normalize the discovery datasets into a single pool, and then removed all 

healthy controls from further analysis.

Clustering the discovery data using COMMUNAL

In order to determine how many clusters were present in the COCONUT-conormalized 

discovery data, we used the COmbined Mapping of Multiple clUsteriNg ALgorithms 

(COMMUNAL) method, which integrates data from multiple clustering algorithms and 

validity metrics across a range of included variables to identify the most robust number of 

clusters present in the data (see Supplementary Digital Content) (14). We ranked the top 

5,000 genes across the discovery datasets using an algorithm that accounts for both within-

dataset variance and between-dataset variance (16). We ran COMMUNAL using consensus-

clustering versions of two algorithms, K-means clustering and Partitioning Around Medioids 

(PAM), due to their robustness in large, noisy datasets. Both methods were run across a 

range of variables from 100 genes up to 5,000 genes (in ranked order). COMMUNAL then 

integrated these data (at its default parameters) to produce an optimality map of clustering. 

In the resulting map, the most stable optima were taken as indicating the most robust 

clustering.

Having chosen an optimal clustering using COMMUNAL, we integrated the sample 

assignments between clustering algorithms (i.e., the clusters into which the PAM and K-

means algorithms assigned samples). The COMMUNAL method assigned all samples for 
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which the clustering algorithms agreed to discovery clusters, and removed all samples for 

which there was disagreement between the PAM and K-means methods as ‘unclustered’. 

The hypothesis is that not every sample may be perfectly assigned to a given cluster (e.g., 

some samples may exhibit biology suggestive of two clusters). Since classifiers trained on 

data with fewer errors are more robust, removing these uncertain samples improves the 

classifier accuracy. Note that the classifier built for validation does not produce ‘unclustered’ 

assignments (see Supplementary Digital Content).

To check whether the discovery clusters appeared to be separated in gene expression space, 

we visualized them using both heat maps and principal component analyses. We further used 

pooled sample-level demographic and phenotypic data to investigate clinical differences 

between discovery clusters.

Biological and clinical investigations

The details of our treatment of complex clinical variables including illness severity, 

immunosuppression, and coagulopathy are explained in the Supplemental Digital Content. 

Gene ontology analysis (22), the construction of a cluster classifier (23), and testing of the 

validation datasets are described in the Supplementary Digital Content.

Jargon-free summary

In recognition of the highly technical nature of the paper, we have prepared a ‘jargon-free 

summary’ of the methods and results. This is available in the Supplementary Digital 

Content.

Results

Included studies, COCONUT conormalization, and COMMUNAL cluster selection

We first hypothesized that robust molecular subgroups exist in patients with bacterial sepsis. 

We thus performed a unified clustering across 14 bacterial sepsis discovery datasets from 8 

different countries (N=700, Table 1a) using COCONUT co-normalization (24–37). We 

identified 9 validation datasets from 5 different countries that matched inclusion criteria but 

did not include healthy controls (N=600, Table 1b and Figure 1)(12, 38–43). We first co-

normalized the 14 discovery datasets into a single pooled cohort using the COCONUT 

method (15), providing batch-corrected, pooled sepsis data across a wide variety of clinical 

conditions (Supplemental Figure 1). There were 8,946 genes that were measured in all 14 

pooled discovery datasets. The pooled data were then clustered using the COMMUNAL 

algorithm across 11 test points ranging from the top 100 to 5,000 genes using consensus K-

means and consensus PAM clustering (individual clustering algorithm results shown in 

Supplemental Figure 2) (14). Visual inspection of the COMMUNAL optimality map showed 

clear, stable optima at K=3 clusters from 500 genes to 5,000 genes (Supplemental Figure 3). 

Further, we chose the clustering at 500 genes as the optimal clustering assignment under the 

assumption that using the fewest number of genes had the least amount of noise or 

redundant signal. Based on gene ontology analysis described below, and to facilitate their 

easier understanding, we have named the three clusters “Inflammopathic”, “Adaptive”, and 

“Coagulopathic”.
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To visualize their general separability, we performed principal components analysis on the 

discovery clusters using all genes both with and without the ‘unclustered’ sample (Figure 2). 

Details on the assignment of clusters in the Discovery datasets are available in the 

Supplemental Results, Supplemental Tables 1–2, and Supplemental Figures 4–5.

Gene ontology across the different clusters

To better understand the biology represented by the clusters, we used gene ontology over-

representation analysis. We assigned each of the 500 genes to one of the three discovery 

clusters based on absolute effect size (i.e., each gene was assigned to the cluster in which it 

was most different from the remaining two clusters). We then tested each of the resulting 

three gene lists for significance in gene ontology (GO) terms (Supplemental Table 3). The 

Inflammopathic cluster was significant for canonical pro-inflammatory signaling pathways 

such as IL-1 receptor, pattern recognition receptor activity, and complement activation. The 

Adaptive cluster was significant for several pathways related to adaptive immunity and 

interferon signaling. The third cluster was named Coagulopathic as it was significant for 

terms related to clotting and coagulation, such as platelet degranulation, glycosaminoglycan 

binding, and coagulation cascade.

Clinical findings across the different clusters

We investigated the differences between the discovery clusters in the demographic and 

clinical variables for which we had subject-level data (Table 2). We found significant 

differences in age (both the overall distribution, and the percent of patients >70 years of 

age), severity (as measured by percent of patients with clinical severity scores above the 

dataset mean, and/or in septic shock), and 30-day mortality. We also found that the 

Inflammopathic cohort had greater bandemia and a lower lymphocyte percentage on white 

blood cell differential; however, differential was only available in a single cohort. This 

suggests that the Adaptive cluster is comprised of less sick patients with fewer elderly 

patients, while the Inflammopathic and Coagulopathic clusters separate the sicker patients 

into a younger and an older group. Addition of the ‘unclustered’ patients showed they have a 

balanced phenotype with respect to age and shock; their addition did not substantially 

change the demographic or clinical findings (Supplemental Table 4). Since the unsupervised 

clustering did not take into account any clinical data whatsoever, finding a significant 

difference in mortality suggests that the clusters may represent distinct pathophysiological 

states of clinical relevance.

We ran regression models on cluster membership (in a ‘1-vs-all’ format) to assess the joint 

ability of age, shock, severity, and their interaction to predict cluster membership. In each 

case, the percent of variance explained by age, shock and severity was 9.7%, 6.4%, and 

0.7% for the Inflammopathic, Adaptive, and Coagulopathic groups, respectively, in 

discovery (total N=251, Supplemental Table 5). A sensitivity analysis showed that these 

results could only be explained away by an unmeasured confounding variable with a 

substantially greater effect size than the included variables (Supplemental Table 5). Thus, 

while age, shock, and severity are significantly different across the groups, cluster 

assignment is much more complex than these three factors alone.
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Validation of cluster classifier in independent datasets

Having characterized the sepsis clusters in the discovery datasets, we next hypothesized that 

these same clusters could be recovered in independent validation datasets using a discrete 

classifier. We next built a gene-expression-based classifier for cluster assignment so that the 

cluster hypothesis could be tested and applied in external validation datasets. Briefly, the 

classifier assigns each sample three scores (one for each cluster type) and then applies 

multiclass regression to output a final cluster assignment (Supplemental Table 6A–B). The 

classifier used a total of 33 genes, and yielded an overall 83% accuracy in leave-one-out re-

assignment of the samples on which it was trained (Supplemental Table 6C). The greatest 

classifier inaccuracy is in distinguishing Inflammopathic patients from Coagulopathic 

patients (Supplemental Figure 6). We applied the classifier to the 9 bacterial sepsis 

validation datasets (Supplemental Table 7)(12, 38–44), and judged the classifier’s accuracy 

by its ability to recover clusters with similar molecular and clinical phenotypes to the 

discovery clusters. Since the 9 validation datasets are independent from one another, we 

examined the same demographic and clinical variables as in the discovery clusters in both a 

pooled fashion (Table 3) and treating each dataset independently (Supplemental Table 8). As 

the individual datasets may be underpowered to detect differences, we ran statistical tests in 

the pooled data; compared to the discovery clusters, we observed the same patterns of 

significance. The Coagulopathic cluster had significantly more patients older than 70 years 

(P<0.05), whereas the Adaptive cluster had fewer patients with shock (P<0.01), fewer 

patients with high clinical severity (P<0.05) and a lower mortality (P=0.01).

The Coagulopathic cluster also was associated with clinical coagulopathy, including 

disseminated intravascular coagulation (P<0.05, Table 4, Supplemental Tables 9–10 and 

Supplemental Results).

Molecular similarity between clusters identified in discovery and validation

Since the validation clusters were assigned with information from only 33 genes, we 

investigated whether similar biology was present in the full gene expression profiles across 

discovery and validation clusters. First, we calculated the mean gene expression profiles for 

all 500 clustering genes, and tested for correlation between the clusters. Significant 

correlation would indicate that the classifier was capturing most of the information from the 

original clustering; the 33 genes used in the classifier were thus excluded from this analysis 

to avoid bias. Pearson correlations in mean gene expression profiles within the assigned 

clusters were high (Inflammopathic cluster, 0.59±0.18; Adaptive cluster, 0.67±0.19; 

Coagulopathic cluster, 0.20±0.21, Figure 3A). These correlations were significant (P<0.01) 

between the discovery and validation clusters for all datasets for Inflammopathic, all datasets 

for Adaptive, and five out of nine datasets for Coagulopathic. As a comparison, 1000 

random samples of 500 genes yielded mean correlations of 0.01 – 0.02.

We next tested whether the same Gene Ontology (GO) codes were overrepresented between 

validation clusters, as compared to the discovery clusters (Figure 3B). On average, 68%, 

87%, and 61% of the codes found significant at p<0.01 in the discovery clusters 

(Inflammopathic, Adaptive, and Coagulopathic, respectively) were identified as significant 

at p<0.05 in the same clusters in validation. In addition, a block structure is seen within 

Sweeney et al. Page 7

Crit Care Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clusters of the same type, indicating generally shared pathway enrichment within cluster 

types.

Comparison to previously established sepsis endotypes

Two groups have previously performed clustering using sepsis transcriptomic profiles. Wong 

et al. (9–11) and Davenport et al. (12, 13). We compared our cluster assignments to the 

previously published assignments and showed significant overlaps with the Inflammopathic 

and Adaptive clusters (Supplemental Results and Supplemental Table 10).

Discussion

We here performed an unsupervised clustering analysis on pooled transcriptomic profiles 

(N=700) from 14 datasets from a broad range of subjects with bacterial sepsis, 

demonstrating that there are three robust sepsis clusters (or ‘endotypes’). We have named 

these clusters Inflammopathic (higher mortality, innate immune activation), Adaptive (lower 

mortality, adaptive immune activation), and Coagulopathic (higher mortality, older, and with 

clinical and molecular evidence of coagulopathy), based on their molecular and clinical 

profiles. Next, we showed that a 33-gene classifier that assigns subjects to these three 

clusters is able to recover the clinical and molecular phenotypes in 9 independent validation 

datasets (N=600). Finally, we showed that these clusters can significantly explain the 

clusters derived by independent groups using different methods (9, 12). Taken together, 

these results demonstrate that the host response in the sepsis syndrome can be broadly 

defined by these three robust clusters.

Notably, each of the validation datasets had separate inclusion/exclusion criteria, providing a 

sort of sensitivity analysis that the identified clusters appear in both pooled settings (as in 

discovery) but also in more uniform, carefully phenotyped cohorts. For instance, we pooled 

samples from pediatric and adult datasets in discovery, but our methods did not simply 

cluster patients by age; then in validation, two datasets were pediatric and seven were adult, 

but all datasets contained a mix of all three sepsis clusters. The fact that we redemonstrate 

the same broad phenotypic and molecular differences in these independent applications of 

the cluster classifier is strong evidence that cluster membership is present across 

populations.

Despite the outcome differences across our three clusters, their clinical utility is not merely 

the ability to risk-stratify in terms of mortality. Mortality prediction is better achieved 

through purpose-built classifiers, which have been demonstrated with these same data(18). 

Instead, the hypothesis that underlies the search for sepsis clusters is that ‘sepsis’ represents 

multiple different disease states and manifests in many different ways(3, 6, 45). The aim of 

our study was thus to uncover these subclinical clusters using a very large pool of sepsis 

patients across a wide range of clinical conditions. Uncovering and defining this 

heterogeneity may allow for greater success in the discovery and validation of therapies that 

are beneficial only to one sepsis cluster, but may be neutral or even harmful to other 

clusters(11). For instance, both the molecular and clinical data suggest that the 

Coagulopathic cluster may be associated with functional coagulopathy. Given the 

association of sepsis with clinical coagulopathies, and despite (or perhaps because of) the 
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failure of most therapeutic interventions for coagulopathy in sepsis (3, 46, 47), further study 

of the Coagulopathic cluster is warranted. Similarly, drugs being tested in sepsis that are 

known to modulate the innate or adapative immune systems (such as anti-IL-1 or anti-PD-L1 

treatments (48, 49)) may potentially find efficacy in the Inflammopathic or Adaptive 

clusters, respectively.

We inferred pathobiology for the clusters by assigning each gene to the cluster in which it 

showed the greatest differential change from the other clusters. For instance, the association 

of innate immune pathways in the Inflammopathic cluster is indicative not of ‘normal’ 

innate immune activation, but rather of overactivation of the innate immune system, or of a 

relative lack of activation of adaptive immune genes, in Inflammopathic patients as 

compared to other septic patients. Similarly, the relatively higher adaptive immune gene 

activation in the Adaptive cluster may be linked to its lower mortality. Seen through this 

lens, the three sepsis clusters show biological insights that, to some degree, reflect clinical 

intuitions. The early overactivation of the innate immune system or coagulation cascade in 

sepsis is linked to higher mortality, while the relative lack of these changes and the 

expansion of the adaptive immune response may be linked to better outcome(50). 

Furthermore, since genes were selected based on absolute effect size, similarity in gene 

ontology pathway analysis between Inflammopathic and Adaptive clusters could be 

reflective of opposite modulation of similar pathways; this is further suggested by the strong 

inverse correlation between the Inflammopathic and Adaptive clusters in Figure 2. As above, 

these biological insights might allow for hypotheses about guided treatments for different 

subtypes. Still, we only included subjects at admission for sepsis; whether and how these 

profiles might change depending on time since initial infection onset, longitudinally during 

treatment, or whether patients might move between subtypes over time, is unknown.

Two independent research groups have identified sepsis subgroups similar to those described 

here: one focused on pediatric sepsis in a US-based cohort (9, 10); the other focused on adult 

sepsis in UK-based cohorts (12, 13). Notably, the two subgroupings do not broadly overlap. 

Comparison of our three clusters with the prior clusterings yielded several interesting 

findings. First, using subject-level comparisons, patients assigned to the Inflammopathic 

cluster were mostly assigned to Endotype B (11) or SRS 1 (12). However, Endotype B 

conferred a lower mortality in children compared to Endotype A, while SRS 1 conferred a 

higher mortality in adults compared to SRS2. Still, we are reassured that these independent 

studies identified the same grouping of patients using completely separate techniques. 

Similarly, patients assigned to the Adaptive cluster were primarily assigned to SRS 2; both 

studies identified this as a low mortality group associated with interferon signaling. We also 

identified a third (Coagulopathic) cluster. It is possible that the substantially larger sample 

size and greater heterogeneity of our discovery cohorts compared to prior work allowed us 

to detect this third Coagulopathic cluster.

Our study has some limitations. First, we provided validation only in historical independent 

datasets, not in a prospectively collected cohort. This limited us to only non-targeted gene 

expression profiling (microarrays and RNAseq). Second, we examined only datasets of 

patients with bacterial sepsis at admission, because the clustering algorithms may otherwise 

have been overwhelmed by the differing host responses to different types of infections (15, 
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19). The coming availability of rapid host-response diagnostics to distinguish between 

bacterial and viral infections (15, 40, 51) suggests that the cluster classifier could be applied 

to patients after diagnosis with bacterial infections. However, it is unknown whether these 

subtypes exist in patients with viral or fungal sepsis, or in non-infected critically ill patients. 

Third, one of the validation datasets (GSE74224) re-used 21 samples (20% of its total) from 

one of the discovery datasets (GSE28750), although they were re-profiled using a different 

technology (29, 42). Exactly which samples are duplicates are unknown, so they could not 

be removed; however, this makes up less than 4% of the total validation samples, suggesting 

that results are unlikely to be affected. Finally, we have presented analyses for all clinical 

variables that were available in more than one study at the sample level. This led to the 

inclusion of some analyses that were individually underpowered. In addition, variables may 

not be missing at random; it is thus possible that missingness biases the outcome (for 

instance, by not reporting mortality in less-severe cohorts). The various weaknesses make 

clear that a prospective clinical study of the clusters will be necessary to confirm and extend 

our results.

Overall, we used state-of-the-art methods in bioinformatics and data analysis to create the 

largest known unbiased pool of sepsis transcriptomic profiles, and to then show that three 

robust, distinguishable clusters exist across the sepsis spectrum. These sepsis clusters could 

feature prominently in the clinical trials domain, where they may serve as an enrichment tool 

or a companion diagnostic. The confirmation that multiple subtypes exist within the host 

response will hopefully enable more research into a precision medicine approach for sepsis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall study schematic.
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Figure 2. 
The first two principal components (PCs) of the discovery clustering results (both with (A) 

and without (B) the 16% of samples that went unclustered in the final analysis, in gold) 

using all 8,946 genes present in the COCONUT conormalized data. Here we show that the 

cluster assignments that we recovered in an unsupervised manner are clearly separated in 

high-dimensional space, as demonstrated by the first two principal components.
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Figure 3. 
(A) Correlations of average 500-gene expression vectors between clusters assigned in the 

discovery and validation datasets; correlation coefficient is shown by color (legend at figure 

right). Notably, samples from Inflammopathic clusters are positively correlated with 

Inflammopathic samples from other datasets, and negatively correlated with Adaptive 

samples from other datasets (and vice-versa). The Coagulopathic clusters show less cohesion 

but are positively correlated with one another. (B) Heatmap of Gene Ontology (GO) codes 

found to be overrepresented in the different clusters, colored by significance levels. In both 

(A) and (B), the pooled ‘Core’ discovery datasets are represented by a single column for 

each cluster, while each cluster in each validation dataset is represented by a separate 

column. Both sub-figures show a block structure indicative of molecular similarity across 

datasets between clusters of the same type.
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