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Abstract

At concentrated electrolytes, the ion-ion electrostatic correlations effect is considered an important 

factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment 

for a spherical particle (charged, dielectric) under the action of an alternating electric field using 

the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. (Phys. Rev. Lett. 

106, 2011).1 We investigate the dependency of the dipole moment in terms of the frequency and its 

variation with such quantities like zeta potential, electrostatic correlation length, and double layer 

thickness. With thin electric double layers, we develop simple models through performing an 

asymptotic analysis to the modified PNP model. We also present numerical results for an arbitrary 

Debye screening length and electrostatic correlation length. From the results, we find a 

complicated impact of electrostatic correlations on the dipole moment. For instance, with 

increasing the electrostatic correlation length, the dipole moment decreases and reaches a 

minimum, and then it goes up. This is because of initially decreasing of surface conduction and its 

finally increasing due to the impact of ion-ion electrostatic correlations on ion’s convection and 

migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can 

qualitatively explain the data from the experimental results in multivalent electrolytes.
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Introduction

Dielectrophoresis (DEP) becomes a promising technique for managing and manipulating 

particles in particle separation, particle assembly, and characterizing biomolecules.2–6 DEP 

can also be used to measure the magnitude and direction of particles’ forces.7,8 The DEP 

device cost is low, making it convenient for lab-on-a-chip systems. DEP finds important 

applications in different areas of the medical field or water managment.9–15

When a nonuniform electric field exists, a polarized particle tends to move so that it reaches 

to the base of the extreme electric field, which defines the DEP.7,8 The dipole moment can 

specify the direction and magnitude of the motion. When the ratio between the particle size 

and the characteristic length of the electric field is small, the dipole moment can estimate the 

DEP force. In electrolyte, the charged surface of the particle results in an electric double 

layer (EDL) with excess counterions. The external electric field in the electrolyte can affect 

the counterions as well, 16,17 causing them to migrate and induce an electro-osmotic flow. 

The double layer can be polarized with two kinds of mechanisms: migration and convection. 

This polarization can, in turn, redistribute the charge along the particle, resulting in the high-

frequency dispersion. This charge redistribution inside the double layer can be approximated 

by a dipole moment. The migration and convection also create a bulk concentration gradient 

by repelling ions from the double layer and attracting ions into the double layer at various 

sides of the particle. At a frequency lower than the diffusion frequency, ions diffuse back in 

a direction opposite to the migration and/or convection. The dipole moment can be modified 

by the bulk diffusion as well, which leads to the low-frequency dispersion.

Basically, the dipole moment can be obtained from the classical Poisson-Nernst-Planck 

(PNP) equations. These equations deal with migration, convection, and diffusion and the 

dipole moment has been calculated for spherical,18–29 cylindrical,30, 31 soft,32 and porous 

particles.33 The standard PNP model can capture different frequency dispersions. A 

favorable agreement of the experimental results on the double-strand DNA molecules 

polarization in dilute solutions with the theoretical results from the PNP model has been 

obtained.31,33

In addition, under the thin EDL assumption, the surface conduction approximates the 

migration and convection. The PNP model can be reduced to a simple Maxwell-Wagner-

O’konski (MWO) model.34 In this model diffusion does not take into consideration. Hence, 

it can only predict the high-frequency dispersion. To account for the diffusion, within the 

thin quasi-equilibrium EDL assumption, another simple theory named the Dukhin-Shilov 

(DS) model can be deduced from the PNP model and successfully captured the low-

frequency dispersion.35, 36 In general, when the EDL is assumed to be thin, the combination 

of the MWO and DS models can adequately describe the polarization process.

Although the estimations from the standard PNP model are in fairly agreements with 

experiments, often, they underestimated the dipole moment amplitude.37–40 For example, 

recent experiments on estimating the tension inside actin filaments induced by the DEP 

suggest that this tension force is higher than the one obtained by the PNP model in a 

condensed electrolyte.6 In addition, in the existence of multivalent ions, the standard PNP 
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model even cannot qualitatively predict the experimental results. For example, with divalent 

counterions (Mg2+), experiments showed that λ-DNA experienced negative DEP instead of 

positive DEP as with monovalent ions as estimated by the standard PNP model.41 In another 

set of experiments, in the presence of Ca2+, the DNA orientation anisotropy under the 

operation of the electric field, related to the polarizability, increased and then decreased as 

the concentration of Ca2+ increases.42 Again, this nonmonotonic relationship cannot be 

achieved through the standard PNP model. Similarly, experiments on electrophoresis of 

colloidal particles also observed mobility reversal at high salts and in multivalent 

electrolytes that again cannot be even qualitatively captured by the standard model.43–46

It is recognized that a phenomenon called overscreening exists in concentrated electrolytes 

and is prominent in the existence of multivalent ions.47 For overscreening, the first layer 

with excess counterions close the charged surface excessively compensates the charge of 

surface and results in a new layer with excess coions, which leads to one more separate layer 

of charge. This process continues until the charge is totally neutralized. This charge 

oscillation inside EDL is attributed to Coulomb short-range electrostatic correlations.48,49 

Recently, to capture the electrostatic correlations, Bazant et al proposed a simple continuum 

model, Landau-Ginzburg-type. 1 The impact of the electrostatic correlations is included into 

the free energy using Cahn-Hilliard-gradient set expansions. By letting the free energy being 

minimal, a fourth-order modified Poisson equation was derived that can capture 

overscreening. Due to the simplicity of this model, it can be implemented numerically for 

electrokinetics. Indeed, this model was able to predict the electro-osmotic flow reversal near 

a flat surface50 and electrophoretic mobility reversal.51

Consider the significant discrepancies of the dipole moment between the predictions and 

experimental results in concentrated multivalent electrolytes and highly charged particles, 

where overscreening is most likely to happen. It is worthwhile to investigate the impact of 

electrostatic correlations on the dipole moment. Besides, if we assume a thin double layer 

thickness, we can also extend the standard MWO and DS models to account for the 

electrostatic correlations. These models can provide a simpler theoretical tool to understand 

and design experiments.

The outline of this article is mentioned here. The modified PNP model considering for 

electrostatic correlations as well as a perturbation theory are introduced first, respectively. 

Then the dipole moments for both high-frequency and low-frequency regimes, assuming that 

the double layer thickness is small, are derived, followed by the results and discussion. 

Finally, we conclude the paper.

The Modified Poisson-Nernst-Planck Model

Fig. 1 depicts a spherical particle that is submerged into an electrolyte surrounded by a 

uniform AC electric field. The particle is dielectric and it is charged uniformly. a* is the 

radius of particle. ε2
∗ is the particle’s dielectric permittivity. ε1

∗ is the electrolyte’s dielectric 

permittivity. The particle undergoes an electrophoretic motion with a velocity U⃗(t) = U0eiωt. 

We will obtain the velocity of particle, U⃗ as a part of the solution process. To solve this 

problem, as shown in Fig. 1, we consider spherical coordinates (r, θ, ϕ) where the origin of 
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the coordinates is in the center of the particle and the angle between two vectors er and ez is 

defined as θ.

The counterions within the EDL react with the applied electric field to induce the electro-

osmotic flow. Moreover, the electrophoretic motion of particle causes neighboring fluid to 

move as well. To characterize the fluid’s motion, due to the small Reynolds number, one can 

use the Stokes equation:

− ∇ p − 1
2λD

2 z+C+ + z−C− ∇φ1 + ∇2 u = 0. (1)

For the incompressible condition we have

∇ • u = 0, (2)

where p and C± are the pressure, cation and anion concentration; E⃗ = −∇φ defines the 

electric field; subscript 1 defines the liquid and subscript 2 denotes the particle; and for the 

dimensionless Debye screening length λD = 1
a∗

ε1
∗R∗T∗

2F ∗ 2C0
∗ , a* denotes the particle’s radius; C0

∗

denotes the solute’s cation bulk concentration; R* is related to the ideal gas constant; F* is 

related to the Faraday constant; T* defines the temperature. Variables with the superscript * 

show the dimensional form and those without the superscript * denote the dimensionless 

form. Here, length scale equals to a*; electric potential scale equals to R∗T∗

F∗ ; velocity scale 

equals to 
ε1
∗R ∗ 2T ∗ 2

μ∗F ∗ 2a∗ ; concentration scale equals to C0
∗; time scale is a ∗ 2/D+

∗ ; pressure scale 

equals to 
ε1
∗R ∗ 2T ∗ 2

F ∗ 2a ∗ 2 ; and electric charge scale equals to 
ε1
∗R∗T∗

F∗a∗ . The dimensionless 

molecular diffusivities define as D± =
D±

∗

D+
∗  (i.e., D+ = 1). To make the calculations simple, 

let’s apply the condition of D+ = D−.

To describe the ion-ion electrostatic correlations, we consider the modified Poisson equation 

for φ inside the electrolyte as presented by Bazant et al.:1

lc
2∇4φ1 − ∇2φ1 = 1

2λD
2 z+C+ + z−C− , (3)
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where lc denotes the electrostatic correlation length. To facilitate the simulations, Eq. (3) can 

be split into two second-order equations:

lc
2∇2g − g = 1

2λD
2 z+C+ + z−C− , (4)

and

∇2φ1 = g . (5)

The electric potential φ in the particle’s interior can be modeled by the Laplace equation:

∇2φ2 = 0. (6)

The ions’ fluxes

N ± = − D±∇C± − z±D±C±∇φ1 + mC± u (7)

obeys the Nernst-Planck equations:

∂C±
∂t + ∇ • N ± = 0. (8)

Here m =
ε1
∗R ∗ 2T ∗ 2

μ∗D+
∗ F ∗ 2  is the mobility and μ* denotes the dynamic viscosity of solvent.

In a long distance from the particle,

ϕ1 = − δφ∞r cos θ, g = 0, C± = z+/z± , and u = − U0eiωtez r ∞ , (9)

where δ defines the correlation between the external electric field’s magnitude and the 

equilibrium EDL.

On the particle’s surface,
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∂φ1
∂n − εr

∂φ2
∂n = σ, ∂g

∂n = 0, φ1 − φ2 = 0, and n • N ± = 0 (r = 1) . (10)

In the above, the relative permittivity is defined as εr = ε2
∗ ε1

∗, and n is defined as the outer 

normal to the surface.

Perturbation Expansion

This study is considering a non-conducting particle with a spherical shape that is surrounded 

by an applied low-intensity electric field. We assume that ε2
∗ ≪ ε1

∗, so that the electric field of 

the equilibrium EDL is slightly perturbed by the external electric field. Considering these 

assumptions, the variables can be expressed via a regular perturbation expansion:

φ
C±

u

=
φ1

(0)

C±
(0)

0

+ δ Re (

φ1
(1)

C±
(1)

u (1)

eiωt) + O(δ2) . (11)

Here Re shows the complex variable’s real part and i denotes the unit complex value. To 

compute the particle’s mobility, we need the zero net force related to the particle.

The Zeroth Order Approach

The zeroth order concentrations C±
(0) can be obtained from the Boltzmann distribution as,

C±
(0) = z+/z± e

−z±φ1
(0)

. (12)

The zeroth order electric potential ϕ1
(0) obeys the modified Poisson-Boltzmann equation, 

which is axisymmetric, only as a function of radial coordinate (r):

lc
2 d2g(0)

dr2 + 2
r

dg(0)

dr − g(0) =
z+C+

(0) + z−C−
(0)

2λD
2 , (13)

and
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d2φ1
(0)

dr2 + 2
r

dφ1
(0)

dr = g(0) . (14)

The corresponding boundary conditions are:

φ1
(0)(1) = ς, φ1

(0)( ∞ ) = 0, g(0)( ∞ ) = 0 and dg(0)(1)
dr = 0. (15)

The First Order Equation

The imposed electric field just affects a little the EDL at equilibrium. The linearity of the 

first order equations of the imposed quantities makes the variables proportional to the 

forcing frequency.

By plugging series (11) into Eqs. (1)–(8) and using iω to substitute the time derivative, we 

get:

− ∇ p(1) − 1
2λD

2 z+C+
(0) + z−C−

(0) ∇φ1
(1) + z+C+

(1) + z−C−
(1) ∇φ1

(0) + ∇2 u (1) = 0, (16)

∇ • u (1) = 0, (17)

lc
2∇2g(1) − g(1) = 1

2λD
2 z+C+

(1) + z−C−
(1) , (18)

∇2φ1
(1) = g(1), (19)

∇2φ2
(1) = 0, (20)

and

iωC±
(1) + ∇ • − ∇C±

(1) − z± C±
(0)∇φ1

(1) + C±
(1)∇φ1

(0) + mC±
(0) u (1) = 0. (21)
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It is possible to further reduce Eqs. (16)–(21) to ordinary differential equations due to 

axisymmetry, which then is solvable by the commercial finite element software COSMOL 

5.2® (Comsol is a product of Comsol™, Boston). The computing geometry contains an 

interval between R = 0 and R = 104 (Figure S1 in on-line supporting information). We 

increased R and found out that there is little variation in the results, indicating that R is large 

enough to lead to R-independent computational results. To capture the details of the EDL, an 

uneven mesh was selected and more condensed meshes were implemented close to the 

particle surface and inside the EDL. The mesh was refined to make sure to get the mesh-

independent results (Figure S2 in on-line supporting information). The detailed solution 

procedures are similar to the one in [26], except that we add two new Eq. (13) and Eq. (18) 

which are the second-order equations with the standard boundary condition and readily 

implemented into Comsol.

The electric field is slightly perturbed by the particle and the EDL. Going away from the 

particle, the generated field behaves the same as the one caused by a dipole, which can be 

expressed as δφ∞( − r + f

r2 ) cos θ. The dipole moment coefficient is determined by the real 

part of f. This means that the dipole coefficient can be obtained by the electric potential from 

the first-order equations in the far field.

When lc = 0, Eq. (18) becomes the standard PNP model. Here we let lc ≪ 1 and estimated 

the dipole coefficient f for a variety of double layer thicknesses and zeta potentials. The 

comparisons between our modified model and the standard model are excellent (Figure S3 

in on-line supporting information). In addition, dipole moments calculated this way agree 

with those from the simple models under the thin double layer assumption (see below), 

which again validated the computational algorithm.

The Maxwell-Wagner-O’Konski (MWO) Model

Under the thin double layer, the spherical particle’s dipole coefficient is obtained from the 

following equation introduced by O’Konski:34

f =
ε2

∗ − ε1
∗

ε2
∗ + 2ε1

∗ . (22)

Here εi
∗ = εi

∗ − i
κi
∗

ω∗ , where ε1
∗ defines the complex permittivity of the electrolyte and ε2

∗ is the 

one for the particle. The conductivity of electrolyte is obtained from16 

k1
∗ = (1 +

z+
z−

)
Fa

∗ 2D+
∗ C0

∗

R∗T∗  and the particle’s effective conductivity is κ2
∗ = κ2

(i)∗ + 2
σs

(DL)∗

a∗  where 

κ2
(i)∗ is the intrinsic conductivity of the particle and σs

(DL)∗ is the surface conductivity of the 

EDL.
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For thin EDL (λD ≪ 1), we have,16

σs
(DL)∗ = λD

∗ ∫
1

∞
z+C+

(0) − z−C−
(0) − 2 + m z+C+

(0) + z−C−
(0) φ(0) − ζ dr κ1

∗ . (23)

When ω → 0, Eq. (22) becomes f =
κ2
∗ − κ1

∗

κ2
∗ + 2κ1

∗ = 2Du − 1
2Du + 2 . Here Du = σs

(DL)∗/(a∗κ1
∗) is the 

Dukhin number.16

The Dukhin-Shilov (DS) Model

When the frequency is high, migration and convection dominate the diffusion. The MWO 

model is able to adequately estimate the dipole moment. At frequencies around D+
∗ /a ∗ 2, the 

surface conduction can create concentration polarization, inducing the diffusion process. The 

diffusion can impact both the electric current and dipole coefficient. Since the diffusion is 

performed through the opposite direction to the migration and convection, it reduces the 

dipole moment, resulting in low-frequency dispersion. We notice that since the diffusion 

doesn’t play a role in the MWO model, it cannot yield the dipole moment at low-frequency 

ranges.

For the case of thin EDL, to investigate the influence of the diffusion on the dipole 

coefficient, an asymptotic analysis was presented by Dukhin and Shilov.28,30,35,36 In short, 

outside the double layer, the respective φ and the bulk concentration satisfy the Laplace and 

diffusion equations. In terms of boundary conditions, one can assume that the chemical 

potential is not dependent on the (r) coordinate (the EDL is in local equilibrium). Selecting 

the proper effective boundary conditions, one can find the resulted dipole moment obtained 

from the electric potential in the far field as,

f =
1 + W j 1 + W 2R+ + 2R− − 2 + 1 + W + W j U− 2R+ − 1 + U+ 2R− − 1
2 1 + W j 1 + W R+ + R− + 2 + 1 + W + W j U− R+ + 1 + U+ R− + 1 . (24)

In the above,

R± = G± ± m∫
1

∞
ζ − φ(0) z+/z± − C±

(0) dr, (25)

U± = G± + m∫
1

∞
r∫

r

∞
g(s)ds + ∫

0

r
g(s)sds z+/z± − C±

(0) dr, (26)
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and

W = ω/2 . (27)

Here, G±
(0) = ∫ 1

∞(C±
(0) − z+/z± )dr and g(s) = coshφ(0). The detailed derivation can be found in 

reference [28].

At high frequencies (ω ≫ 1), another form of Eq. (24) is,

f = f ∞ = 2Du − 1
2Du + 2 . (28)

In the above, to simplify the equation, we use the identify R+ + R− = 2Du. Hence, the high-

frequency limit of the DS model converges to the low-frequency limit of the MWO model.

6. Results and Discussion

For typical dimensional units, the thickness of the double layer varies from nm to hundred 

nm. The electrostatic correlation length is in order of nm. The zeta potential is around 

hundred mV. Fig. 2 plots the dipole moment coefficient Re(f) with respect to frequency 

when ξ = −7 and δC = lc/λD = 0.1 for various λD. Here δC characterizes the relative 

importance of the electrostatic correlations. The solid lines represent MWO model. The 

dash-dotted lines represent the DS model. The symbols represent the modified PNP model. 

As anticipated, the MWO model is not able to recognize the dipole moment’s characteristics 

at low frequencies in which the diffusion is important. Also the DS model cannot predict the 

high-frequency dispersion where the EDL is not in local equilibrium. Moreover, the dipole 

coefficients obtained by these two simple models are in good agreements with the results 

from the modified PNP model at high and low frequencies. In addition, with increasing λD, 

the predictions from the simple models deviate from those by the modified PNP model since 

the simple models are derived under the thin double layer assumption.

Fig. 3 plots the dipole moment Re(f) with respect to the frequency for various ζ when λD = 

0.01 and δc = 1. For large zeta potentials, the estimations from the DS model do not match 

the ones predicted by the modified PNP model. Interestingly, the MWO model goes along 

with the modified PNP model at higher zeta potentials. The cause for this disagreement 

remains in the fact that the derivation of the DS model is under the local chemical 

equilibrium assumption for the double layer. This local equilibrium assumption was justified 

using the rigorous singular perturbation analysis, if λD
2 e ∣ ζ ∣ /2 ≪ 1.52 Clearly, the DS model 

does not work at higher zeta potentials which break the justification.

Fig. 2 and Fig. 3 are consistent with those from the standard MWO, DS, and PNP models 

though there are quantitative differences. The discussions on the frequency dependence have 

been documented in our previous works in details.27 Here, we do not repeat them. Instead, 
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we focus on electrostatic correlations. In order to study the performance of electrostatic 

correlations in the particle polarization, Fig. 4 generates the dipole moment Re(f) with 

respect to the frequency for various δC when ξ = −5 and λD = 0.01. Interestingly, by 

increasing the correlation length, a non-monotonous relationship happens and causes a 

decrease in the dipole moment and an increase after that.

Fig. 4 suggests a complicated influence of electrostatic correlations on the dipole moment. 

Inside the double layer, charge oscillation may decrease migration and convection due to the 

cancellation from different charges. On the other hand, electrostatic correlations can 

effectively extend the double layer thickness beyond the Debye screening length λD. In 

particular, at large δC, the double layer thickness is characterized by δcλD instead of λD.53 

The increase of the double layer thickness can, in turn, increase the migration and 

convection. Indeed, studies show that the electro-osmotic mobility decreases, changes the 

sign (charge inversion), and then monotonously increases as the correlation length δC 

increases. 50

To quantitatively characterize the importance of electrostatic correlations on the surface 

conduction, Fig. 5 plots the Dukhin number as a function of δC when ξ = −5 and λD = 0.01. 

Here,

Du = ∫
1

∞
r2 z+C+

(0) − z−C−
(0) − 2 + mr2 z+C+

(0) + z−C−
(0) φ(0) − ζ dr . (29)

The surface conduction has both migration and convection component. The first term in Eq. 

(29) refers to ions’ migration contribution (Dum). The second term is the input from the 

convection (Duc). In Fig. 5 The solid line represents the Du number, the dashed line 

represents the contribution from the convection (Duc), and the dash-dotted line represents 

the contribution from the migration (Dum). Initially, the surface conduction decreases due to 

charge oscillation. Also the migration is dominant over convection. When δC increases, 

charge inversion occurs and the surface conduction begins to increase. Interestingly, 

convection contribution becomes larger than migration contribution. Eventually, the surface 

conduction is determined by the convection. The electro-osmotic mobility is proportional to 

δC when δC ≫ 1.50 Hence, it is not surprising that the surface conduction linearly increases 

at large δC as shown in Fig. 5.

For an arbitrary double layer thickness and correlation length, we can solve them 

numerically. Fig. 6 is showing various δC for the dipole coefficient Re(f) in terms of the 

frequency for the condition of ς = −7 and λD = 0.3. Similar to Fig. 4, the dipole moment 

decreases and then rises when the correlation length δC increases. If the double layer’s 

thickness increases, the trend of the impact of electrostatic correlations on the dipole 

moment qualitatively remains the same: the charge oscillation initially reduces the surface 

conduction inside the double layer until the occurrence of charge inversion. Once charge 

inversion is initiated, a further increase of electrostatic correlations begins to enhance 

convection prominently, leading to an increase of the dipole moment.
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Next, we examine whether the modified PNP model accounting for electrostatic correlations 

can adequately explain experimental observations which are unable to be estimated by the 

standard PNP model. Recently, Gan41 measured the polarizability of λ-DNA using the 

insulated-based dielectrophoresis and found out that in the divalent buffer (Mg2+) (5 mM), at 

low frequencies (hundreds Hz), the λ-DNA experienced negative DEP. In contrast, in the 

monovalent buffer, the λ-DNA only showed positive DEP. Fig. 7 is showing the dipole 

moment coefficient as a function of the frequency when the surface charge density −0.16 

mC/m2 (the DNA surface charge density), the particle radius is 20 nm, and the bulk 

concentration is 5 mM, the same as the experimental results. In Fig. 7, the solid line 

corresponds to the dipole moment with monovalent ions, the dash line corresponds the one 

with divalent ions in the absence of electrostatic correlations (lc = 0), and the dash-dotted 

line represents divalent ions when electrostatic correlations exist (lc = 1 nm). A constant 

surface charge is specified as ∂φ1
(0)/ ∂n = σ in equation (15). The rest of equations and the 

boundary conditions do not change. Clearly, it is not possible to estimate the negative dipole 

moment of low frequencies when using the standard PNP model. In contrast, the modified 

model with electrostatic correlations can successfully predict the negative DEP, suggesting 

the importance of the electrostatic correlations in multivalent electrolytes.

Finally, we fix the electrostatic correlation length lc and change the double layer thickness. 

Fig. 8 is plotting the dipole moment coefficient in terms of frequency for various λD when ξ 
= −7 and lc = 0.2. Fig. 8 suggests that the dipole moment increases, and then decreases by 

increasing EDL as a result of the electrostatic correlations. Interestingly, recent experiments 

on the DNA orientation anisotropy in the presence of divalent electrolytes showed a similar 

trend,42 which again cannot be captured by the standard PNP model. Interestingly, our 

modified PNP model accounting for electrostatic correlations is in qualitative agreements.

7. Conclusion

Under the action of an external AC electric field, the impact of electrostatic correlations on 

the EDL polarization for a spherical particle was thoroughly investigated numerically by 

using a modified Poisson-Nernst-Planck equation unfolded by Bazant et al.1 In the condition 

of thin double layer thickness and small electrostatic correlation lengths, we derived the 

modified Maxwell-Wagner-O’Konski model for high frequency as well as the Dukhin-

Shilov model for low frequency to account for electrostatic correlations. The computed 

dipole moments from these simple models were in favorable agreements with the numerical 

predictions obtained by the modified PNP model. Consistent with the standard DS model, at 

higher zeta potentials, the modified DS model deviated from the full modified PNP model, 

limiting its application to moderately charged particles.

The dipole moment’s frequency dependence was computed with respect to the zeta 

potential, the thickness of EDL, and electrostatic correlation length. The impacts of zeta 

potential and EDL thickness on the dipole moment under the influence of electrostatic 

correlations are similar to those without considering ion-ion electrostatic correlations. 

Electrostatic correlations are more prominent in concentrated multivalent electrolytes or near 

highly charged surfaces. Electrostatic correlations generally induce charge oscillation. The 

Alidoosti and Zhao Page 12

Langmuir. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase of the electrostatic correlation length can eventually lead to charge inversion. This 

phenomenon makes the dependence on electrostatic correlations complicated. Initially, due 

to charge oscillation, the surface conduction decreases as both migration and convection are 

reduced. However, once charge inversion occurs, the electro-osmotic mobility reverses and 

starts to increase as the electrostatic correlation length increases. Eventually, the contribution 

from convection to the surface conduction becomes dominant, which continuously increases 

with δC. Such enhancement leads to a high-level dipole coefficient over a broad spectrum of 

frequency.

Comparisons performed with the experimental data in multivalent electrolytes show that the 

modified PNP model accounting for electrostatic correlations can qualitatively explain the 

experimental results that the standard PNP model fails to predict, suggesting the importance 

of electrostatic correlations in multivalent electrolytes.

The electrostatic correlation length is around nanometers. For an electrolyte with a 

concentration larger than mM, δC is above 0.1 and the impact of electrostatic correlations 

becomes important. When the salt concentration further increases, the influence of 

electrostatic correlations is more prominent. However, when the salt concentration increases 

to a point that the double layer thickness is below the ion hydration, corresponding to the 

larger δC, i.e. δC = 10, ion steric effects (finite ion size) need to be taken into consideration. 

Additional improvement by including steric effects by the Bikerman’s model28 may further 

extend the applicability of the modified PNP model to even more highly concentrated 

electrolytes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The schematics of the coordinates for a submerged particle in an electrolyte.
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Figure 2. 
The dipole moment Re(f) with respect to frequency for ξ = −7 and δC = 0.1 for various λD. 

The solid lines represent MWO model; the dash-dotted lines represent the DS model; and 

the circles, squares, and triangles represent the modified PNP model.
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Figure 3. 
The dipole moment Re(f) with respect to frequency for different zeta potentials when λD = 

0.01, and δc = 1. The solid lines represent MWO model; the dash-dotted lines represent the 

DS model; and the circles, squares, and triangles represent the modified PNP model.
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Figure 4. 
The dipole moment Re(f) with respect to frequency for different δc when ξ = −5, λD = 0.01, 

and The solid lines represent MWO model; the dash-dotted lines represent the DS model; 

and the circles, squares, and triangles represent the modified PNP model.
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Figure 5. 
The Dukhin Number with respect to the correlation length: The solid line represents the Du 
number, the dashed line represents the contribution from the convection (Duc), and the dash-

dotted line represents the contribution from the migration (Dum) when ξ = −5 and λD = 

0.01.
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Figure 6. 
The dipole moment Re(f) versus frequency for different δc when ξ = −7 and λD = 0.3.
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Figure 7. 
The dipole moment Re(f) with respect to frequency with the surface charge density −0.16 

mC/m2, a = 20 nm, and C0 = 5 mM. The solid line represents the dipole moment with 

monovalent ions, the dash line represents the dipole moment with divalent ions (lc = 0), and 

the dash-dotted line represents the dipole moment with divalent ions (lc = 1 nm).
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Figure 8. 
The dipole moment Re(f) with respect to frequency for various λD when ξ = −7 and lc = 0.2.
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