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Abstract
Cardiovascular disease remains a significant global health burden, and development of cardiovascular drugs in the current

regulatory environment often demands large and expensive cardiovascular outcome trials. Thus, the use of quantitative

pharmacometric approaches which can help enable early Go/No Go decision making, ensure appropriate dose selection,

and increase the likelihood of successful clinical trials, have become increasingly important to help reduce the risk of failed

cardiovascular outcomes studies. In addition, cardiovascular safety is an important consideration for many drug devel-

opment programs, whether or not the drug is designed to treat cardiovascular disease; modeling and simulation approaches

also have utility in assessing risk in this area. Herein, examples of modeling and simulation applied at various stages of

drug development, spanning from the discovery stage through late-stage clinical development, for cardiovascular programs

are presented. Examples of how modeling approaches have been utilized in early development programs across various

therapeutic areas to help inform strategies to mitigate the risk of cardiovascular-related adverse events, such as QTc

prolongation and changes in blood pressure, are also presented. These examples demonstrate how more informed drug

development decisions can be enabled by modeling and simulation approaches in the cardiovascular area.

Keywords Cardiovascular � Pharmacokinetic/pharmacodynamic modeling � Exposure–response � Drug development �
Clinical trial simulation

Introduction

Cardiovascular disease represents a significant global

health burden. It remains the primary global cause of death,

leading to approximately 17.3 million deaths in 2013, and

estimated direct and indirect costs of over $316 billion in

2012–2013, continuing to rise [1]. Development of drugs to

treat cardiovascular disease is challenging, and in the

current regulatory environment often requires the conduct

of large and expensive outcomes trials. Increasing attention

has been given in recent years to the role of quantitative

modeling and simulation tools to enable early Go/No Go

decision making, ensure appropriate dose selection, and

increase the likelihood of successful clinical trials [2].

Consistent use of model-informed drug discovery and

development approaches will ideally shift discontinuation

of non-viable compounds earlier in development, resulting

in more time- and resource-efficient drug development

paths and reducing the risk of failed cardiovascular out-

comes studies. Furthermore, for compounds that do pro-

ceed to outcome trials, it is likely that only one dose can be

studied given the high cost of such trials, and modeling and

simulation approaches can be utilized to select the optimal

Phase 3 dose. Cardiovascular safety is an important con-

sideration for many drug development programs, whether

or not the drug is designed to treat cardiovascular disease;

modeling and simulation approaches also have utility in

assessing risk in this area. Herein, examples of modeling

and simulation applied at various stages of drug develop-

ment for cardiovascular programs are described. The

examples discussed span from the discovery stage through

late-stage clinical development and demonstrate how

pharmacometric model-based approaches can be applied
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throughout drug development to enable more informed

development decisions for cardiovascular programs.

Additional examples of how modeling and simulation

approaches can be used in early phase development across

therapeutic areas in order to inform strategies to mitigate

the risk of cardiovascular-related adverse events are also

presented.

Cardiovascular drug discovery

In the discovery phase of drug development, compounds

are screened in various in vitro and animal studies. At this

stage, quantitative and translational approaches may be

applied to help prioritize compounds and targets that are

differentiated from currently available treatments. Quanti-

tative tools applied at this stage can be used to project

pharmacokinetic behavior in humans, to characterize dose-

and/or exposure–response (ER) relationships in preclinical

systems and translate to the likely therapeutic window in

humans, and to predict drug–drug interactions [3–5]. Fur-

thermore, assessment of the competitive landscape and

benchmarking to other therapies through the use of com-

parator modeling can be a valuable tool to help identify

appropriate targets for safety and efficacy for new therapies

prior to first-in-human studies. Together, these quantitative

approaches allow selection of improved candidates for

clinical assessment and design of a rational and efficient

clinical development program. An example of how trans-

lational pharmacokinetic/pharmacodynamic (PK/PD)

modeling approaches were used in a cardiovascular dis-

covery program in order to define the possible therapeutic

window for compounds with a new mechanism of action

(Factor IXa [f1Xa] inhibition) relative to approved thera-

pies is presented to illustrate some of these principles.

Example: Informing therapeutic window
in the discovery phase

Novel oral anticoagulants that block coagulation factor Xa

(fXa), such as apixaban, have been used for the prevention

of stroke and systemic embolism in patients with atrial

fibrillation (SPAF); however, despite their effectiveness,

these therapies have high incidences of major and non-

major clinically relevant bleeding (* 15% for atrial fib-

rillation patients) [6–8]. Genetic evidence suggests that

reduced fIXa activity can confer protection against

thrombosis [9, 10], and it was hypothesized that since fIXa

lies upstream of fXa in the coagulation cascade, fIXa

inhibition may have decreased risk of bleeding as com-

pared to fXa inhibitors. Therefore, Ankrom et al. [11]

evaluated whether fIXa inhibitors could provide an

improved therapeutic window vs. fXa inhibitors in the

preclinical/discovery phase of fIXa inhibitor drug devel-

opment. They studied the efficacy and safety of a fIXa

inhibitor, CPD1, relative to the fXa inhibitor, apixaban, in

rats, and used translational PK/PD model-based approaches

to evaluate these data and support drug development

decisions for the discovery program.

In their analysis, clot weight inhibition in a rat arteri-

ovenous shunt model and cuticle bleeding times were

measured across a range of exposures for both compounds;

regression models were used to quantify the shape of these

exposure–response relationships (Fig. 1) [11]. Clinically

relevant concentrations of apixaban in rats were defined as

the concentration range expected to yield the same levels

of fXa enzyme occupancy as achieved by trough concen-

trations (Ctrough) of a 5 mg BID dose of apixaban (ap-

proved for SPAF), after accounting for experimental

uncertainty in potency and protein binding across species.

The range of clot weight and cuticle bleeding time levels

achieved by clinically relevant concentrations of apixaban

in rats was used to establish preclinical efficacy and safety

targets for CPD1 to achieve equivalent/superior therapeutic

index to apixaban.

It was demonstrated that there existed a narrow range of

CPD1 concentrations ([ 9.8 and\ 19.5 lM), corre-

sponding to 65–79% fIXa enzyme occupancy levels, where

CPD1 could exceed the level of clot weight inhibition

achieved by the 5th percentile of clinically relevant rat

exposure of apixaban and still have less bleeding. How-

ever, concentrations of CPD1 that achieved efficacy greater

than that achieved by the median clinically relevant rat

exposure of apixaban and also maintained bleeding risk

below that of apixaban’s could not be identified in this

analysis. The results of this analysis helped define the

anticipated therapeutic window of CPD1 in humans rela-

tive to a comparator based on preclinical data and informed

strategic discussion on the viability of fIXa as an

antithrombotic target.

Cardiovascular drug clinical development

In clinical development, quantitative approaches can be

leveraged in a multitude of ways, including to assess

therapeutic window, support trial design and dose/regimen

selection, support formulation bridging, and benchmark

response to marketed therapies. Approaches used in this

space can range from population pharmacokinetics (PK)

and empirical ER models to more complex disease and

quantitative systems pharmacology models to model-based

meta-analysis [2].

The impact of model-informed decision making can also

extend into the post-approval stage, where the continued

development of therapies may occur in order to extend
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product value, provide patients with more convenient

dosing options (e.g., fixed-dose combinations [FDC]), and/

or reduce product cost (e.g., manufacturing changes). At

this stage of development, the impact of modeling and

simulation can even lead to clinical trial avoidance in some

cases. For example, developing in vitro-in vivo correlation

(IVIVC) models that predict in vivo PK performance based

on in vitro dissolution data can provide a streamlined path

towards regulatory approval of post-marketing manufac-

turing changes without the need to conduct additional

clinical studies [12, 13].

Presented below are three examples of how modeling

and simulation approaches have been applied at various

stages of development for cardiovascular programs in order

to inform dose selection for late phase studies (anacetrapib

example), inform the possible need for dose adjustment

based on intrinsic and extrinsic factors and support label

claims (vorapaxar example), and inform drug development

for an FDC of two already marketed therapies (ezetim-

ibe ? atorvastatin FDC example).

Example: Informing dose selection for late phase
trials

Anacetrapib is a novel cholesteryl ester transfer protein

(CETP) inhibitor designed for cardiovascular risk reduction

and the treatment of hypercholesterolemia and mixed

dyslipidemia. A large outcome trial of anacetrapib has

recently been completed [14]. Quantitative strategies were

leveraged throughout the development of anacetrapib, and

the example discussed here relates to dose selection for

anacetrapib Phase 3 studies, where Krishna et al. [15] used

model-based approaches to support justification for study-

ing a formulation and dose in Phase 3 that had previously

not been studied in patients.

After the completion of the Phase 2b study, population

PK and PK/PD modeling were performed in order to

inform the Phase 3 dose. The population PK model was

developed utilizing data from several Phase 1 studies as

well as the Phase 2b trial. Most of the Phase 1 studies, as

well as the Phase 2b study, had been conducted using the

liquid-filled capsule (LFC) formulation. Two Phase 1

studies had explored the new hot-melt extruded (HME)

tablet formulation. The population PK model accounted for

differences between the LFC formulations and final market
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Fig. 1 Translational pharmacokinetics/pharmacodynamics (PK/PD)

analysis of the efficacy/bleeding study. PK/PD model fits (solid line:

median; dotted lines: 5th and 95th percentiles incorporating uncer-

tainty of parameter estimates) are overlaid with observed (circles) clot

weight (top panels) and bleed time (bottom panels) as a function of

apixaban (left panels) and compound 1 (CPD1) (right panels) rat

plasma concentrations. The vertical lines on the apixaban figures rep-

resent the median (solid) and 90% CI (dotted) range of clinically

relevant apixaban Ctrough concentrations. Vertical lines on the right

panels correspond to the concentrations of CPD1 that achieve clot

weight and bleed times equivalent to apixaban. Adapted with

permission from Ankrom et al. [11]
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formulation (HME tablet) allowing bridging of the two

formulations.

To characterize the relationship between PK and phar-

macodynamics (PD) low-density lipoprotein cholesterol

(LDL-C) and high-density lipoprotein cholesterol (HDL-

C), nonlinear mixed effects PK/PD models were developed

based on data obtained from multiple Phase 1 studies as

well as the Phase 2b study. Proportional Emax models

quantified the relationships between anacetrapib Ctrough and

lipoprotein effects (LDL-C and HDL-C), with covariate

effects of study population (normal volunteers vs. patients)

and coadministration with HMG-CoA reductase inhibitors

(statins).

Clinical trial simulations were used to examine the

predicted LDL-C and HDL-C effects as a function of

various anacetrapib and atorvastatin doses (Fig. 2) [15], the

effect of covariates and model uncertainty on the expected

response, and the robustness of the effects to random

dietary indiscretion. The results suggested that a 100 mg

dose would result in lipid-altering effects at or near the

pharmacodynamic plateau and that the predicted lipid

effects were robust as long as patients generally adhered to

taking their dose with a meal. Thus, a 100 mg once-daily

dose with a meal using the HME formulation was selected

as the Phase 3 dose. This was one of the early examples of

cases at Merck & Co., Inc. (Kenilworth, NJ, USA) where

modeling results facilitated the selection of a Phase 3 dose

not previously studied in patient studies. This dose even-

tually demonstrated efficacy in six Phase 3 lipid efficacy

trials as well as the cardiovascular outcome trial [14].

Example: Informing product label

Vorapaxar is an approved protease-activated receptor-1

(PAR-1) antagonist indicated for the reduction of throm-

botic cardiovascular events in patients with a history of

myocardial infarction or with peripheral arterial disease.

During the clinical development of vorapaxar, two of the

key program questions were: (1) what is the optimal dose

of vorapaxar for the majority of patients?, and (2) are there

any subpopulations for which dose adjustments are

needed? Population PK and PK/PD models were developed

by Gheyas et al. [16] to address these questions and support

regulatory submission. Vorapaxar inhibits thrombin-in-

duced and thrombin receptor agonist peptide (TRAP)-in-

duced platelet aggregation in in vitro studies, and

vorapaxar TRAP-induced platelet aggregation (TIPA) was

used as a target engagement biomarker during development

200
a

150

100

50

0
0 100 200

Anacetrapib Dose (mg)

H
D

L 
%

 In
cr

ea
se

300 400

Hi Fat

Lo Fat
Fasted

Pt. Selected

80
b

60

40

20

0
0 100 200

Anacetrapib Dose (mg)

LD
L 

%
 D

ec
re

as
e

300 400

Hi Fat

Lo Fat

Fasted

Pt. Selected

90
c

70

80

60

50

40

30
0 100 200

Anacetrapib Dose (mg)

LD
L 

%
 D

ec
re

as
e

300 400

Hi Fat

Lo Fat

Fasted

Pt. Selected

90
d

70

80

60

40

50

30
0 100 200

Anacetrapib Dose (mg)

Atorvastatin

LD
L 

%
 D

ec
re

as
e

300 400

80 mg
40 mg
20 mg
10 mg

Fig. 2 Population mean predicted HDL-C and LDL-C effects. The

population mean predicted effect of fed state and meal type on HDL-

C in patients treated with anacetrapib monotherapy (a top left). The

population mean predicted effect of fed state and meal type on LDL-C

in patients treated with anacetrapib monotherapy (b top right) or in

combination with 20 mg atorvastatin (c bottom left). The population

mean predicted effect of atorvastatin dose on LDL-C in patients

treated with anacetrapib in combination with atorvastatin (d bottom

right). Hi Fat standard high fat meal, Pt. selected patient-selected

meal, Lo Fat standard low fat meal. Adapted with permission from

Krishna et al. [15]

358 Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:355–364

123



and was measured in a subset of studies. A population PK/

PD model was developed using TIPA as the PD endpoint

and predicted concentrations from a population PK model

as the PK endpoint.

The population PK model was developed using con-

centration–time data from dense PK sampling in 12 healthy

volunteer (HV) studies and sparse PK sampling from 4

patient studies. The final population PK model was a

2-compartment model with first-order absorption. Body

weight, race, gender, and creatinine clearance had mild to

modest effects on vorapaxar exposure (20–40%) and were

included as covariates in the population PK model. The

PK/PD model to describe TIPA as a function of vorapaxar

concentration was a sigmoid Emax model with an effect

compartment. No significant covariate effects were found,

except for a slight age effect (not clinically relevant, e.g., a

95-year-old patient is expected to have 9% higher EC50

compared to a 45-year-old patient) and a substantial study

effect on EC50. EC50 was * 5-fold higher for two HV

studies compared to that for the patient studies and the

other HV studies. This difference could not be explained by

demographic or study design/execution factors and was

considered to be indicative of uncertainty in the PK/PD

relationship. Therefore, PK/PD simulations were con-

ducted with both values of EC50. The clinical pharmaco-

dynamic target for the prevention of thrombotic events was

considered to be C 80% inhibition in TIPA response.

Simulations based on PK and PK/PD models demonstrated

that a vorapaxar sulfate dose of 2.5 mg once daily achieves

C 80% TIPA inhibition in most patients (Fig. 3) [16].

Simulation results also suggested that no dose adjustment

based on intrinsic factors is needed. Thus, a daily dose of

2.5 mg vorapaxar sulfate was recommended in the product

label for all patients who are eligible to take vorapaxar.

These modeling and simulation results were included in the

regulatory filing to support justification of the recom-

mended dose and rationale for no dose adjustment for

intrinsic factors.

Example: Informing FDC development

During the development of the FDC of ezetimibe and

atorvastatin, bioequivalence trials were conducted across a

range of dose combinations (10/10, 10/20, 10/40 and

10/80 mg of ezetimibe/atorvastatin). In these studies, the

plasma exposure (area under the curve [AUC]) and peak

plasma concentration (Cmax) of atorvastatin and unconju-

gated ezetimibe for the FDC were compared to those from

coadministration of the marketed drugs. The results

demonstrated that traditional bioequivalence bounds (90%

confidence interval within [0.8, 1.25]) were met for

unconjugated ezetimibe and atorvastatin AUC and Cmax for

all dose combinations except for atorvastatin Cmax at two

intermediate doses (10/20 and 10/40 mg ezetimibe/ator-

vastatin), for which the true geometric mean ratio of the

FDC/coadministration atorvastatin Cmax fell below 0.8.

Vargo et al. [17] used a model-based meta-analysis

(MBMA) to assess the clinical significance of this reduc-

tion in atorvastatin Cmax for the ezetimibe ? atorvastatin

FDC as compared to ezetimibe and atorvastatin

coadministration.

In this analysis, an MBMA of LDL-C-lowering for

statin reducing drugs was updated from a previous dose–

response model by Mandema et al. [18] using published

clinical data from 245 statin trials in 106,808 patients.

Additionally, linear regression models were developed to

describe atorvastatin AUC and Cmax as a function of dose,

using data from the coadministration arms of the bioe-

quivalence trials. To translate the exposure differences

between marketed atorvastatin tablets coadministered with

marketed ezetimibe tablets and atorvastatin in the FDC, an

effective dose value was calculated, which reflected a

reduced dose associated with the observed reduced expo-

sure in the bioequivalence (BE) trial. This reduced dose

was then used to predict the reduced LDL-C lowering for

the FDC via the dose–response model.

Combining the dose–response model with the dose-ex-

posure model predicted that the observed difference in

atorvastatin Cmax between an ezetimibe ? atorvastatin

FDC and coadministration of the individual components

would not translate to clinically significant changes in
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from the modeling analysis. Reproduced with permission from
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LDL-C (\ 1.2% absolute difference in the percentage

lowering of LDL-C were predicted) (Fig. 4) [17]. These

analysis results were leveraged in regulatory interactions to

support approval of the ezetimibe ? atorvastatin FDC.

Additionally, the results were used to optimally design

subsequent clinical equivalence trials for the doses that did

not meet BE (10/20 and 10/40 mg ezetimibe/atorvastatin)

with the appropriate number of subjects based on the pre-

dicted effect size and variability across trials. The model-

ing and simulation analysis accurately predicted the

outcome of the clinical equivalence trials, and clinical

equivalence of both FDCs studied was demonstrated. This

example demonstrates how modeling approaches can be

leveraged in late stage clinical development space to suc-

cessfully predict the effectiveness of new dosage formu-

lations. Furthermore, such an approach could potentially

eliminate the need for dedicated clinical efficacy trials after

near-miss BE results in the future, which could lead to

reductions in time to market and enable more rapid patient

access to more convenient dosing options.

Cardiovascular safety de-risking

Model-based analyses can be used to de-risk and better

understand possible cardiovascular safety concerns for

investigational drugs early in development. For example,

the QTc interval is routinely investigated in Phase 1

development as a means to determine the propensity to

cause cardiac arrhythmias through delayed repolarization.

Following the release of the International Conference on

Harmonization (ICH) E14 guideline in 2005, regulators

required a ‘‘thorough QTc’’ (TQT) study to evaluate

whether investigational drugs prolong the QTc interval

[19, 20]; however, in 2015, Darpo et al. [21] reported the

results of a study that paved the way for ER modeling of

Phase 1 data to evaluate the effect of investigational drugs

on the QTc interval as a potential alternative to TQT

studies. The published study utilized ER methods to eval-

uate and correctly classify QTc prolongation risk of six

drugs, five of which had a known QTc effect and one of

which was known not to have a QTc effect, thus validating

the use of an ER approach in Phase 1 to inform propensity

of investigational drugs to prolong the QTc interval.
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Furthermore, ICH released a document in December 2015

(‘‘E14 Q&A’s (R3)’’) that supported the use of concen-

tration-QTc (C-QTc) modeling for regulatory decisions

[22].

Prior to Darpo et al. [21] carrying out a formal study and

presenting the results in a joint regulatory-public forum,

various sponsors and academic groups used ER or con-

centration-QT (C-QT) analyses to de-risk compounds early

on in their development, prior to investing in a TQT trial.

One such case (for omarigliptin) is presented below,

demonstrating the utility of data collected in early phase

development to assess the risk of arrhythmogenicity ahead

of a TQT trial with comparable conclusions. In the current

regulatory environment, robust electrocardiogram (ECG)

sampling in early phase studies coupled with ER analyses

such as the one presented below, along with extensive pre-

clinical assessments of the compounds under the Com-

prehensive in vitro Proarrhythmia Assay (CiPA) paradigm

[23], may be sufficient to be used in place of a TQT study

to assess the propensity of novel therapies to cause

arrhythmias and could be the basis of discussions with

Regulators for a TQT waiver.

Example: Informing QTc risk early
in development

Omarigliptin is a dipeptidyl peptidase-4 inhibitor approved

in Japan as a once-weekly treatment for type 2 diabetes.

Early in clinical development, an exploratory C-QTc

analysis was conducted by Krishna et al. [24] using

omarigliptin plasma concentrations and time-matched

triplicate 12-lead ECG data from the first-in-human single

rising dose study in healthy male subjects. The C-QTc

analysis results indicated a linear relationship between

omarigliptin concentration and Fridericia-corrected QT

(QTcF) interval, with a non-significant slope of 0.2797 ms/

lM (95% CI = - 0.2523 to 0.8117 ms/lM). The point

estimate of the slope predicted an approximate 2.8 ms

prolongation at omarigliptin exposures up to 10 lM
(* 17-fold above the typical clinical maximum concen-

tration [Cmax] of 600 nM in patients), which was well

below the threshold of regulatory concern of 10 ms.

Therefore, these results suggested a low likelihood of

clinically significant QTc prolongation at therapeutic or

supratherapeutic doses of omarigliptin and informed risk of

drug-induced arrhythmogenicity early in clinical

development.

Based on requirement in the ICH E14 Guidance at the

time, a definitive TQT trial was later conducted [25]. The

results of the TQT study confirmed the first-in-human

modeling that a supratherapeutic dose of 175 mg (7 9 the

clinical dose) did not prolong the QTc interval. This

example illustrates how model-based approaches and first-

in-human data can be leveraged early in development to

inform the risk of drug-induced cardiovascular safety

events.

In addition to routine QTc assessments, hemodynamic

responses, such as blood pressure (BP) are often monitored

in early phase trials. In cases where an unintended effect on

hemodynamics (or other safety signal) is observed, ER

analyses may be conducted to help inform the therapeutic

window and possible development strategies to mitigate

the unintended effects. One such example is presented

below, in which an elevation in blood pressure was

observed in Phase 1 for a compound (compound A) in

development for Parkinson’s disease. ER modeling and

simulations were used to help guide formulation strategies

to ameliorate the BP elevation.

Example: Informing development
for a compound with unexpected blood pressure
effects

In a first-in-human trial of compound A, which was in

development for Parkinson’s disease, an undesirable tran-

sient elevation in BP was observed. This transient elevation

was more apparent with increasing dose and was on the

order of a few hours at the maximum dose studied. In order

to better characterize the BP response, Stroh et al. [26]

developed a PK/PD model that incorporated important

aspects of mechanisms of BP homeostasis based on the

first-in-human trial data. The BP PD model included four

main components to characterize the BP response: a sinu-

soidal BP set point, an effect compartment, a linear effect

model, and a system response.

The PD model was coupled with a minimal PK model in

order to explore approaches for minimizing the undesirable

BP increase, including development of oral controlled-re-

lease (CR) formulations. The PK/PD model was used to

simulate BP responses for theoretical formulation release

rate profiles, and the results suggested some amelioration

of the peak BP response with CR formulations. These

results supported triggering subsequent CR formulation

development, after which actual dissolution data from

candidate CR formulations were used in the PK/PD model

to confirm a predicted potential benefit in the peak BP

response prior to testing in the clinic. Thus, the model-

based approach applied for this program to characterize an

undesirable cardiovascular adverse event supported deci-

sions on next steps in advancing the program.
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Discussion

In this manuscript, examples of how modeling and simu-

lation approaches have been applied in the development of

cardiovascular drugs at various stages of development have

been presented. These model-based analyses greatly

impacted and informed development decisions and strate-

gies and highlight the utility of applying modeling and

simulation strategies throughout development. The exam-

ples presented illustrated how such analyses can inform

success of a discovery phase program (fIX inhibitor [11]),

inform dose selection for Phase 3 trials (anacetrapib [15]),

evaluate whether dose adjustments are needed based on

intrinsic and extrinsic factors (vorapaxar [16]), and evalu-

ate the clinical relevance of not achieving bioequivalence

for an FDC relative to coadministration of individual

component drugs (ezetimibe ? atorvastatin FDC [17]).

Also discussed were examples of how using modeling and

simulation approaches in early phase development helped

inform strategies to mitigate an unintended cardiovascular-

related side effect (BP elevations in the compound A

example [26]) as well as informed the propensity of novel

therapies to cause cardiac arrhythmias (using QTc as an

early indicator in the omarigliptin example [24, 25]). These

examples illustrate how modeling and simulation approa-

ches can be leveraged to achieve more informed drug

development in the cardiovascular space.

The presented examples leveraged various quantitative

approaches, including model-based meta-analysis, popula-

tion PK and PK/PD modeling, translational modeling, and

PK/QTc and PK/AE modeling, all of which were empirical

in nature. However, there has been a recent trend in the

pharmaceutical industry toward development of quantita-

tive systems pharmacology (QSP) models. QSP models are

mechanistic models that describe in detail important factors

of the pathophysiology of disease and provide opportuni-

ties to explore how drugs can impact this. They provide a

framework for integration, extrapolation, and visualization

of data, and represent a promising future path for model-

informed drug discovery and development for cardiovas-

cular targets, with applications already developed to

explore lipoprotein metabolism and kinetics [27, 28], with

a focus on HDL modulation [29], and to explore the

pathophysiological mechanisms of hypertension and

response to antihypertensive therapies, including in salt-

sensitive and salt-resistant hypertensive populations

[30, 31].

In order for model-based approaches to have a high

degree of impact on drug development decisions and

strategies, proactive engagement of the project teams

before model development begins and continuing engage-

ment throughout the modeling process is critical. In all the

examples presented, there was agreement by the project

teams to use modeling and simulation approaches to inform

decision-making, as well as engagement from the teams in

aligning on modeling assumptions and approaches. The

models and associated results were ultimately well

received by the drug discovery/development teams.

Of the examples presented, in cases where the models

were submitted to regulatory agencies, there were varying

responses from the agencies. In the case of the vorapaxar

submission, the modeling results were well received by

regulatory agencies. However, in the case of the ezetim-

ibe ? atorvastatin FDC, the model-based translation of the

BE results to efficacy results was not deemed to be suffi-

cient to replace dedicated clinical trials, and additional

clinical data were requested by the FDA for the FDC doses

that did not meet the bioequivalence criteria [17]. Clinical

efficacy studies were conducted, with the modeling and

simulation results used to inform study design and opti-

mization. Ultimately, the clinical results and the simula-

tion-predicted results closely matched, and, after review of

the clinical data, the FDC was approved by the FDA.

Regulatory agencies are increasingly open to model-

informed submissions, and intelligent use of modeling

tools is likely to be increasingly important for successful

regulatory interactions. In the United States, for example,

the Prescription Drug User Fee Act (PDUFA) was recently

re-authorized, and the FDA has proposed PDUFA VI

performance goals and procedures for fiscal years 2018

through 2022, including a specific goal to advance model-

informed drug development (MIDD) through development

of expertise in this area in FDA staff, public workshops to

discuss relevant topics, and a pilot program including

additional opportunities to meet with the FDA and discuss

MIDD approaches [32]. The FDA’s continuing investment

in and commitment to using modeling and simulation

approaches to address drug development, regulatory, and

therapeutic questions has also been highlighted in public

statements by the current FDA commissioner [33].

In summary, this paper has provided examples of the

impact of modeling and simulation on drug development

strategies and decisions in the cardiovascular area at vari-

ous stages of the drug development process. The models

informed key decisions and strategies in these development

programs, such as whether to advance compounds to the

clinic, which dose to advance to late phase trials, how to

design efficient clinical studies, how to provide appropriate

guidance in the product label, and whether formulation

strategies could be used to mitigate an unintended adverse

event. Looking to the future, there is potential for model-

based approaches to have an even greater degree of impact

on drug development due to the changing regulatory

environment and the development of more integrative QSP
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disease platform models to compliment more empirical

pharmacometric approaches.
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28. Lu J, Hübner K, Nanjee MN, Brinton EA, Mazer NA (2014) An

in silico model of lipoprotein metabolism and kinetics for the

evaluation of targets and biomarkers in the reverse cholesterol

transport pathway. PLoS Comput Biol 10(3):e1003509

29. Gadkar K, Lu J, Sahasranaman S, Davis J, Mazer NA, Ramanujan

S (2016) Evaluation of HDL-modulating interventions for car-

diovascular risk reduction using a systems pharmacology

approach. J Lipid Res 57(1):46–55

30. Hallow KM, Lo A, Beh J, Rodrigo M, Ermakov S, Friedman S,

de Leon H, Sarkar A, Xiong Y, Sarangapani R, Schmidt H, Webb

R, Kondic AG (2014) A model-based approach to investigating

the pathophysiological mechanisms of hypertension and response

to antihypertensive therapies: extending the Guyton model. Am J

Physiol Regul Integr Comp Physiol 306(9):R647–R662

31. Hallow KM, Gebremichael Y (2017) A quantitative systems

physiology model of renal function and blood pressure regula-

tion: application in salt-sensitive hypertension. CPT

6(6):393–400

32. FDA and the Regulated Industry (2017) PDUFA reauthorization

performance goals and procedures Fiscal years 2018 through

2022 https://www.fda.gov/downloads/ForIndustry/UserFees/Pre

scriptionDrugUserFee/UCM511438.pdf. Accessed 16 Dec 2017

33. Gottlieb S (2017) How FDA plans to help consumers capitalize

on advances in science. FDA voice. https://blogs.fda.gov/fda

voice/index.php/2017/07/how-fda-plans-to-help-consumers-capi

talize-on-advances-in-science/. Accessed 16 Dec 2017

364 Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:355–364

123

https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Q_As_R3__Step4.pdf
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Q_As_R3__Step4.pdf
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Q_As_R3__Step4.pdf
https://www.fda.gov/downloads/ForIndustry/UserFees/PrescriptionDrugUserFee/UCM511438.pdf
https://www.fda.gov/downloads/ForIndustry/UserFees/PrescriptionDrugUserFee/UCM511438.pdf
https://blogs.fda.gov/fdavoice/index.php/2017/07/how-fda-plans-to-help-consumers-capitalize-on-advances-in-science/
https://blogs.fda.gov/fdavoice/index.php/2017/07/how-fda-plans-to-help-consumers-capitalize-on-advances-in-science/
https://blogs.fda.gov/fdavoice/index.php/2017/07/how-fda-plans-to-help-consumers-capitalize-on-advances-in-science/

	Leveraging model-informed approaches for drug discovery and development in the cardiovascular space
	Abstract
	Introduction
	Cardiovascular drug discovery
	Example: Informing therapeutic window in the discovery phase

	Cardiovascular drug clinical development
	Example: Informing dose selection for late phase trials
	Example: Informing product label
	Example: Informing FDC development

	Cardiovascular safety de-risking
	Example: Informing QTc risk early in development
	Example: Informing development for a compound with unexpected blood pressure effects

	Discussion
	Author contributions
	Funding
	References




