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ABSTRACT Although variation in gut microbiome composition has been linked
with colorectal cancer (CRC), the factors that mediate the interactions between CRC
tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known
to regulate CRC progression and are associated with patient survival outcomes. In
addition, recent studies suggested that host miRNAs can also regulate bacterial
growth and influence the composition of the gut microbiome. Here, we investigated
the association between miRNA expression and microbiome composition in human
CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed
(DE) in tissue from CRC tumors and normal tissue, including the known oncogenic
miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated
with the relative abundances of several bacterial taxa, including Firmicutes, Bacte-
roidetes, and Proteobacteria. Bacteria correlated with DE miRNAs were enriched with
distinct predicted metabolic categories. Additionally, we found that miRNAs that cor-
related with CRC-associated bacteria are predicted to regulate targets that are rele-
vant for host-microbiome interactions and highlight a possible role for miRNA-driven
glycan production in the recruitment of pathogenic microbial taxa. Our work charac-
terized a global relationship between microbial community composition and miRNA
expression in human CRC tissues.

IMPORTANCE Recent studies have found an association between colorectal cancer
(CRC) and the gut microbiota. One potential mechanism by which the microbiota
can influence host physiology is through affecting gene expression in host cells. Mi-
croRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene ex-
pression and have important roles in cancer development. Here, we investigated the
link between the gut microbiota and the expression of miRNA in CRC. We found
that dozens of miRNAs are differentially regulated in CRC tumors and adjacent nor-
mal colon and that these miRNAs are correlated with the abundance of microbes in
the tumor microenvironment. Moreover, we found that microbes that have been
previously associated with CRC are correlated with miRNAs that regulate genes re-
lated to interactions with microbes. Notably, these miRNAs likely regulate glycan
production, which is important for the recruitment of pathogenic microbial taxa to
the tumor. This work provides a first systems-level map of the association between
microbes and host miRNAs in the context of CRC and provides targets for further
experimental validation and potential interventions.
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The colon microenvironment hosts trillions of microbes, known as the gut micro-
biome. A healthy microbiome helps maintain colon microenvironment homeosta-

sis, immune system development, gut epithelial function, and other organ functions
(1–5). Although many factors impact the composition of the gut microbiome, the
overall functional profiles remain stable over time (6, 7). Nevertheless, changes in the
taxonomic and functional compositions of the microbiome have been implicated in
many diseases, including colorectal cancer (CRC) (8–11). Although the association
between microbiome alterations and disease processes has been extensively demon-
strated, the directionality, as well as the mediators of the host-microbiome interaction,
remains unclear.

Diet has been independently associated with both the gut microbiome and CRC. For
example, the Western diet (characterized by low fiber and high protein, fat, and sugar)
affects gut microbiome composition in humanized mice, whereby mice fed a Western
diet have an increased abundance of Firmicutes and a decreased abundance of Bacte-
roidetes (12, 13). The same Western diet has also long been considered a risk factor for
developing CRC (14–16). Using an animal model of CRC, Schulz et al. demonstrated that
the high-fat diet (HFD) exacerbates CRC progression; however, treating animals with
antibiotics blocks HFD-induced CRC progression (17). This suggests that diet can drive
microbiome composition change in the gut as a precursor to CRC development.

Recent studies have found that host genetic variation is correlated with microbiome
composition. For example, a polymorphism near the LCT gene, which encodes the
lactase enzyme, is associated with an abundance of Bifidobacterium in the gut micro-
biome, and microbes in the Christensenellaceae family were shown to be heritable, with
a higher similarity between monozygotic than dizygotic twins (18–23). Another recent
study investigated CRC tumors and identified a correlation between coding mutations
in tumors and the composition of the microbial community in the tumor microenvi-
ronment (24). Interestingly, in a genetic mutation model of intestinal tumors, germfree
animals developed significantly fewer tumors in the small intestine (25). Although the
finding is limited to the small intestine, the trend shows that CRC development partially
depends on the microbiome. In an animal model of colitis-associated CRC, Uronis et al.
showed that germfree mice exhibit normal histology and do not develop tumors,
compared to 62% of conventionalized mice that developed tumors (n � 13) (26). These
results support an interaction between the microbiome and host genomics that may
affect tumor development.

A recent report demonstrated that fecal microRNAs (miRNAs) can shape the com-
position of the gut microbiome (27), indicating a mechanism by which host cells can
regulate the microbial community. In CRC, several miRNAs, such as miR-182, miR-503,
and mir-17~92 cluster, can regulate multiple genes and pathways and have been found
to promote malignant transformation and disease progression (28–30). Interestingly,
studies have also found that microbiome-derived metabolites can change host gene
expression, including expression of miRNAs, in the colon (31, 32). Taken together, these
results suggest a bi-directional interaction between host cells and microbes, potentially
mediated through miRNA activity. However, we still know very little about the role of
miRNAs in host-microbiome interactions, especially in the context of CRC. With thou-
sands of unique miRNAs and microbial taxa present in the CRC microenvironment, it is
challenging to experimentally study all possible pairwise interactions. Nevertheless,
genomic characterization of both miRNA expression and microbial composition in
patients with CRC can identify potential interactions between miRNAs and microbes,
which can then be used as candidates for functional inspection.

Here, we establish the relationships between miRNA expression and microbiome
composition in CRC patients. We sequenced small RNAs and integrated 16S rRNA gene
sequencing data from both tumor and normal colon tissues from 44 patients (88
samples total). We explored the correlation between miRNAs and the microbiome
through imputing the miRNA functional pathways and microbiome metabolic path-
ways in silico (see Fig. S1 in the supplemental material). To our knowledge, this is the
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first analysis to establish a global relationship between miRNA expression and the
microbiome in CRC.

RESULTS
MicroRNAs differentially expressed in tumor tissues. Before performing differ-

ential expression (DE) analysis, we performed extensive quality control of the miRNA
data. Our results indicate that miRNA expression is not strongly affected by tumor
location, patient gender, patient age, or read coverage and show a clear clustering of
miRNA data by tumor and normal samples (Fig. 1; see also Materials and Methods
below). To identify small RNAs that are DE between tumor and normal samples, we
performed DE analysis using DESeq2 (see Materials and Methods). A total of 76 DE
miRNAs were identified, with 55 upregulated and 21 downregulated in tumor tissues
compared to normal tissues (P value � 0.05 after false-discovery rate [FDR] correction).
A full list of DE miRNAs is available in Table S1 in the supplemental material. DE miRNAs
with higher expression levels in tumor tissues include miR-182, miR-183, miR-503, and
the miR-17~92 cluster miRNAs (Fig. 2; Table S1), all consistent with our previous reports
(28, 33). These miRNAs have all been previously shown to contribute to CRC disease
progression; for example, miR-182 and miR-503 were found to cooperatively target
FBXW7 and contribute to CRC malignant transformation and progression and were also
predictive of patient survival (28). The miR-17~92 cluster regulates multiple tumor-
suppressive genes in CRC and other cancers (34). In addition, miR-1, miR-133a, and
miR-448 (Table S1) were observed at higher levels in normal tissues than in matched
tumor tissues, also in agreement with previous reports (33, 35).

Predicted functions of microbiome taxa correlated with DE miRNAs in tumor
samples. To investigate the relationship between individual miRNAs and the micro-
biome in CRC tumor samples, we performed correlation analysis using Sparse Correla-
tions for Compositional Data (SparCC). SparCC is developed specifically to analyze
compositional genomic survey data, such as 16S rRNA gene sequencing and other
types of high-throughput sequencing data (36). Hierarchical clustering revealed several
clusters of significantly correlated miRNAs and bacterial taxa (Fig. S5). To further
investigate the relationship between miRNAs and the microbiome in CRC, we selected
bacteria significantly correlated with the DE miRNAs (Fig. 3A). The correlations clearly
show a distinct pattern based on the enrichment of miRNAs, even though the corre-
lation analysis is performed only with tumor samples. We then built a network visual-
izing the relationship between the top 9 DE miRNAs and their significantly correlated
bacteria (Fig. 3B and C). The correlation network shows a highly interconnected
relationship between these miRNAs and bacteria. Interestingly, Blautia, a genus previ-
ously found to have lower abundance in tumor samples, is negatively correlated with
miR-20a, miR-21, miR-96, miR-182, miR-183, and miR-7974, which are all miRNAs with
high expression levels in tumor tissues. Blautia is also positively correlated with the
expression level of miR-139, which is an miRNA with high expression levels in normal
tissues. Experimental validations are required to investigate the correlations.

We then analyzed the predicted functional composition of the microbiome data
and investigated correlations with miRNAs (Fig. S6). We hypothesized that if
miRNAs selectively affect the growth of certain bacteria, then bacteria correlated
with DE miRNAs are likely to represent functional differences between tumor and
normal tissues, while the uncorrelated bacteria would not. Using the PICRUSt v.1.0.0
software, we generated the predicted functional profiles of the correlated and
uncorrelated bacteria by assigning pathways and enzymes using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database. A total of 25 pathways have
significantly altered enrichment (two-sided Wilcoxon signed-rank test with an
FDR-corrected P value of �0.05) (Fig. S6). Interestingly, several metabolic pathways
and signaling pathways, including signal transduction, amino acid metabolism,
energy metabolism, and linoleic acid metabolism, were all enriched in the uncor-
related group, suggesting increased metabolic processes in this group. For bacteria
significantly correlated with DE miRNAs, however, pathways related to transporters,
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peptidoglycan, and terpenoid backbone biosynthesis have significant enrichment.
It is worth noting that the predicted metagenome may not accurately represent the
function of the microbiome; further validation using quantitative PCR or high-
throughput sequencing is required.

FIG 1 Small RNA sequencing data quality. Principal-component analysis showing principal component 1 (PC1) on the x axis and PC2 on the y axis. Each dot
is colored according to its normal/tumor status (A), tumor location (B), patient gender (C), patient age (D), raw read count (E), and mature miRNA mapped read
count (F). (G) Bar plot of the numbers of mature miRNAs identified in each sample, with coverages over 1 read (gray) and over 5 reads (blue).
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Predicted functions of miRNAs correlated with CRC-associated bacteria. To
investigate the function of miRNAs correlated with CRC-associated bacteria, we focused
on bacterial genera previously associated with CRC, including Fusobacterium, Providen-
cia, Bacteroides, Akkermansia, Roseburia, Porphyromonas, and Peptostreptococcus (8,
37–40). We hypothesized that if these bacteria affect CRC through modulating miRNA
expression, then miRNAs that are significantly correlated with the bacteria should show
enrichment in cancer-related genes and pathways. A list of miRNAs significantly
correlated with these bacteria is available in Table S3. We separated these miRNAs into
groups with positive correlation and negative correlation with each bacterium inde-
pendently. Then, using the miRPath v.3 software, we predicted the functions of miRNAs
by assigning pathways to the miRNA targets using the KEGG database (Table S4). We
visualized the pathways with a q value of �0.01 (modified Fisher exact test; FDR
corrected) in Fig. 4.

Our results show that Akkermansia is the only taxon correlated with miRNAs
associated with the colorectal cancer pathway. Fusobacterium, Providencia, and Rose-
buria correlate with miRNAs associated with cancer-related pathways, including the
glioma, pancreatic cancer, and renal cell carcinoma pathways and pathways in cancer.
Interestingly, glycan-related pathways, including the pathways mucin-type O-glycan
biosynthesis, other O-glycan biosynthesis, glycosaminoglycan biosynthesis– heparan
sulfate/heparin, and proteoglycans in cancer, have correlations with all bacterial genera
analyzed, except for Akkermansia. This finding corresponds to a previous study showing
that Fusobacterium nucleatum infection stimulates mucin secretion in vitro (41). Addi-
tionally, Fusobacterium nucleatum binds to specific Gal-GalNAc, which is expressed by
CRC tumors, through the Fap2 protein (42). Porphyromonas gingivalis was shown to
induce shedding of a proteoglycan, syndecan-1, in oral epithelial cells (43). However,
the role of the bacteria and glycan interaction is not clear in the context of CRC. Cell
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FIG 2 Differentially expressed miRNAs between matched normal and tumor samples. Box plot and dot plot
showing differentially expressed miRNAs. Each panel represents a single miRNA with a normalized expres-
sion level on the y axis. Lines connect a normal and a tumor sample from the same individual, with red lines
indicating a higher expression level in tumor tissues and green lines indicating a higher expression level in
normal tissues. miR-17, -18a, -20a, -92a, -182, and -503 were found to have significantly higher expression
levels in tumor tissues.
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signaling pathways previously implicated in CRC, such as the Ras, PI3K/Akt, ErbB, and
Hippo pathways, are also correlated with these bacteria (44–47).

DISCUSSION

Although there is a known association between gut microbiome composition
change and CRC (8–11), the potential mediators of this relationship remain unclear. One
potential mediator is host genetics and, specifically, CRC tumor mutational profiles (25,
26). Additional evidence indicates that miRNAs can mediate host-microbiome interac-
tions in patients with CRC (27). Here, we presented the first integrated analysis of
miRNA expression and gut microbiome profiles in CRC patients. Our data show a highly
interconnected correlation network between miRNA expression and the composition of
the microbiome and support the role for miRNAs in mediating host-microbiome
interactions.

Active interactions between host and the microbiome in CRC have been previously
observed, leading to the proposition that pathogenic “passenger” bacteria colonizing
tumor tissue might lead to exacerbated tumor progression (48). In our analysis, we
focused on potential passenger bacteria, including Fusobacterium, Providencia, Bacte-
roides, Akkermansia, Roseburia, Porphyromonas, and Peptostreptococcus. Fusobacterium
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includes several pathogenic species and is implicated in dental disease, infections, and
CRC (49–51). Similarly, Providencia has also been implicated in gastrointestinal infec-
tions (8, 52–54). The mechanism of Fusobacterium in promoting CRC tumorigenesis and
progression has been investigated. It activates the Wnt/�-catenin signaling pathway
through FadA protein, which binds to the E-cadherin protein on intestinal epithelial
cells (IECs), thus promoting cell proliferation (49). Several mechanisms might explain
this observation. One possibility is that bacteria can infiltrate the intestinal epithelial
barrier after certain pathogenic bacteria, cleaving the E-cadherin (49, 55). This might
lead to an increased inflammatory response in the colon microenvironment, and the
inflammation can lead to DNA damage and contribute to disease progression (48, 49).
Another potential mechanism is that bacteria can directly cause mutations in IECs
through virulence proteins. Several of these virulence proteins were found in Esche-
richia coli and Helicobacter pylori (56, 57), and results indicate that these virulence
factors may be enriched in the CRC microbiome, especially in Fusobacterium and
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Providencia (8). However, it is unclear whether these bacteria produce virulence pro-
teins that can directly cause DNA damage, and further investigation is required to
elucidate this mechanism.

The Wnt/�-catenin pathway activation by Fusobacterium can lead to upregulation of
numerous genes related to CRC (58–60). One such gene, MYC, is a transcription factor
that targets multiple genes related to cell proliferation, the cell cycle, and apoptosis.
The miR-17~92 cluster is a known transcriptional target of MYC and has oncogenic
properties in several cancer types (30, 34, 61, 62). Interestingly, butyrate, a short-chain
fatty acid produced by members of the microbiome, diminishes MYC-induced miR-
17~92 overexpression in CRC in vitro through its function as a histone deacetylase
inhibitor (31). Studies of CRC have consistently found low fecal butyrate levels as well
as a reduced relative abundance of butyrate-producing bacteria, such as members of
the Firmicutes phylum (31, 37, 63). One potential explanation is that, in CRC, the DE
miRNAs can affect the growth of certain microbes, which eventually outcompete other
species and form a biofilm on tumor tissues (27). Indeed, our data show several
enriched bacterial nutrient biosynthesis and metabolism pathways in the microbes
uncorrelated with DE miRNAs, but not in the correlated group. Interestingly, pathways
in bacterial cell motility and secretion are also enriched among uncorrelated bacteria,
suggesting that, in addition to promoting bacterial growth, certain miRNAs may be
involved in recruiting bacteria to tumor tissues. This may also provide a possible
explanation for the observed difference in alpha diversity of tumor microbiomes (8,
64, 65).

In our analysis of the functions of miRNAs correlated with selected bacteria known
to have associations with CRC, prion disease, and morphine addiction pathways found
to be enriched in our analysis do not immediately seem related to cancer (Fig. 4). Upon
further investigation of miRNA target genes in these pathways, we found that several
genes included in the pathways may have relevant functions in cancer. For example,
mitogen-activated protein kinase (MAPK) is central to cell proliferation and survival,
interleukin-6 (IL6) and interleukin-beta (IL1�) are cytokines involved in inflammation,
protein kinase A (PKA) is important in regulating nutrient metabolism, Bcl-2-associated
X protein (BAX) is a tumor suppressor gene; and prion protein (PRNP) are known to have
a significant role in regulating immune cell function (66–68).

A recent study has suggested an additional mechanism affecting host-microbiome
interactions that may promote CRC tumorigenesis and progression (42, 69). Abed et al.
showed that Fap2 produced by Fusobacterium binds to glycan produced by CRC to
attach to the tumor tissue (42). Interestingly, glycan biosynthesis pathways were
enriched in targets of the miRNAs correlated with CRC-associated bacteria. The in-
creased glycan production may increase recruitment of certain bacteria, such as
Fusobacterium, to the tumor location. This result highlights a novel potential mecha-
nism for miRNAs, through regulating glycan biosynthesis, to attract specific microbes to
the tumor microenvironment and thus impact tumor development. Interestingly, the
mucin-type O-glycan biosynthesis pathway is enriched in miRNAs positively correlated
with Fusobacterium but negatively correlated with Bacteroides and Porphyromonas. This
suggests that these bacteria may have different mechanisms of attachment to the
mucosal surface due to different abilities to bind to O-glycan (70). Additional studies are
required to test the association between Fusobacterium, tumorigenesis, and miRNA-
driven glycan production.

It is important to note that our study uses 16S rRNA gene sequencing to characterize
microbiome taxonomic composition and computationally predicted pathway compo-
sition using PICRUSt v1.0.0 (71). Although this method is widely used, metagenomic
shotgun sequencing can be more accurate and informative in understanding the
functional makeup of a microbial community. Similarly, to impute miRNA functional
profiles, we used an in silico prediction method, miRPath (71, 72). While both of these
methods have been rigorously tested and validated with experimental data, the results
remain predictions and may not represent the real biological system (71, 72). Another
limitation of our approach is that it identifies correlations and not causal relation-
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ships. Nevertheless, this approach allows us to generate a microbiome- and miRNA
transcriptome-wide characterization of potential interactions, which shed light on
potential new mechanisms of host-microbiome interactions.

In addition, we highlight candidates for potentially interacting host miRNAs and
microbial taxa, which can be directly validated and explored in model systems (73). For
example, mouse models have been extensively used to study host-microbiome inter-
actions in the gut (74), and studies have quantified how microbiome colonization can
modulate gene expression in the host gut (75, 76). In addition, in vitro approaches can
be useful in dissecting the regulatory effects of the microbiome and in characterizing
the effects of variation in individual taxon abundances on gene expression in host cells
(77, 78). These studies can validate interactions identified in our current study and shed
light on the directionality and causality.

Conclusions. Our analysis, together with evidence from previous studies, suggests
that miRNAs likely mediate host-microbiome interaction in CRC. We identify potential
novel mechanisms that mediate this interaction and may have a role in CRC tumori-
genesis, including a possible role for miRNA-driven glycan production in the recruit-
ment of pathogenic microbial taxa. The interactions identified here might be a direct
target for developing therapeutic strategies that can benefit CRC patients. Follow-up
studies using model systems are warranted to assess the causal role of individual
microbes and miRNAs in CRC.

MATERIALS AND METHODS
Tissue samples. A total of 88 matched tumor and adjacent normal tissues were collected from 44

patients by the University of Minnesota Biological Materials Procurement Network. A detailed description
of sample collection was previously published (8). Briefly, all patients provided written, informed consent.
All research conformed to the Helsinki Declaration and was approved by the University of Minnesota
Institutional Review Board, protocol 1310E44403. Tissue pairs were resected concurrently, rinsed with
sterile water, flash frozen in liquid nitrogen, and characterized by staff pathologists. Detailed deidentified
sample metadata, including age, gender, tumor location, tumor stage, and microsatellite stability (MSS)
status, are available in Table S1 in the supplemental material.

16S rRNA sequencing and sequence analysis. The 16S rRNA gene sequencing data were previously
published (8). Raw sequences were deposited in the NCBI Sequence Read Archive under project
accession number PRJNA284355, and processed data files are available in the work of Burns et al. (8).
Briefly, total DNA was extracted from approximately 100 mg of tissue. Tissues were first physically
disrupted by placing the tissue in 1 ml of QIAzol lysis solution in a 65°C ultrasonic water bath for 1 to
2 h. The efficiency of this approach was verified by observing high abundances of Gram-positive bacteria
across all samples, including those from the phylum Firmicutes. DNA was then purified using an AllPrep
nucleic acid extraction kit (Qiagen, Valencia, CA). The V5-V6 region of the 16S rRNA gene was PCR
amplified with multiplexing barcodes (79). The bar-coded amplicons were pooled and ligated to Illumina
adaptors. Sequencing was performed on a single lane on an Illumina MiSeq instrument (paired-end
reads). The forward and reverse read pairs were merged using the USEARCH v7 program fastq_merge-
pairs, allowing stagger but no mismatches (80). Operational taxonomic units (OTUs) were picked using
the closedreference picking script in QIIME v1.7.0 and the Greengenes database (August 2013 release)
(81–83). The similarity threshold was set at 97%, reverse read matching was enabled, and reference-
based chimera calling was disabled. The unfiltered OTU table used for the analysis is available in Table S2.

MicroRNA sequencing. To prepare samples for small-RNA sequencing, total RNA was extracted
using an AllPrep nucleic acid extraction kit (Qiagen, Valencia, CA). RNA was quantified using the
RiboGreen fluorometric assay (Thermo Fisher, Waltham, WA). RNA integrity was then measured using a
model 2100 Bioanalyzer (Agilent, Santa Clara, CA). Library creation and sequencing were performed by
the Mayo Clinic Genome Analysis Core. Briefly, small-RNA libraries were prepared using 1 �g of total RNA
per the manufacturer’s instructions for the NEBNext multiplex small-RNA kit (New England Biolabs,
Ipswich, MA). After purification of the amplified cDNA constructs, the concentration and size distribution
of the PCR products were determined using an Agilent (Santa Clara, CA) Bioanalyzer DNA 1000 chip and
Qubit fluorometry (Invitrogen, Carlsbad, CA). Four of the cDNA constructs are pooled, and the 120- to
160-bp miRNA library fraction is selected using Pippin Prep (Sage Science, Beverly, MA). The concentra-
tion and size distribution of the completed libraries were determined using an Agilent Bioanalyzer DNA
1000 chip and Qubit fluorometry. Sequencing was performed across 4 lanes on an Illumina HiSeq 2000
instrument (paired end).

MicroRNA sequence data processing and QC. See Fig. S1 for an overview of the data analysis steps.
Briefly, quality control (QC) of miRNA sequencing data was performed using FastQC before and after
adaptor trimming with Trimmomatic (84). Then, the paired-end reads were assembled using PANDAseq
and aligned to the hg38 genome assembly using bowtie2 (85, 86). Finally, the total mature miRNA counts
were generated with HTSeq (87). We removed 7 samples (S01, S02, S03, S36, S40, S41, S43) due to a low
number of total raw reads (fewer than 500,000 raw reads) from the analysis (Table S1). A previous study
showed that a number of miRNA sequencing reads as low as 500,000 provides sufficient coverage for
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analysis (88). The remaining 81 samples have between 519,373 and 17,048,093 (median, 6,010,361) reads
per library, with an average quality score of greater than 37 in all libraries. Between 66.79% and 96.14%
(median, 83.53%) of reads passed adapter trimming (Fig. S2). Of all the reads passing adapter trimming,
between 287,356 and 11,102,869 (median, 3,701,487) reads were identified as concordant pairs by
PANDAseq. After being mapped to the hg38 genome, between 18,947 and 4,499,805 (median, 859,546)
reads were assigned to a total of 2,588 mature miRNAs (Fig. S2). Principal-component analysis (PCA)
visually shows a clear separation between tumor and normal samples (Fig. 1A), while tumor location,
gender, age, total raw reads, and total mature miRNA reads do not appear to have an impact on the data
(Fig. 1B to F). Similarly, PCA plots, including an additional principal component, did not detect clustering
based on these factors (Fig. S3). We further performed discriminant analysis of principal components
(DAPC) using the adegenet package in R, and it confirmed the existence of separate clusters for tumor
and normal samples (P � 2.2 � 10�16) (see Fig. S4) but not for gender and tumor locations (P � 0.2 for
all comparisons) (Fig. S4) (89). Between 283 and 1,000 (median, 670) miRNAs had coverage over 1 read,
and between 134 and 599 (median, 367) miRNAs had coverage over 5 reads (Fig. 1G). Overall, the quality
of our sequencing results is on par with those of previous studies and our previous observations (90).

MicroRNA differential expression and correlation analysis. We identified differentially expressed
(DE) miRNAs between tumor and normal samples using the DESeq2 package (1.10.1) in R (version 3.2.3)
(91). Raw miRNA counts were filtered to include miRNAs with �1 read in �80% of the samples. The
remaining 392 miRNAs were then used for DESeq2 analysis. We define DE miRNAs as showing a fold
change of over 1.5, with a false-discovery rate (FDR)-adjusted P value (q value) of �0.05. We performed
correlation analysis for the tumor samples using Sparse Correlations for Compositional Data (SparCC) at
the genus level for bacteria and the miRNAs (36). To increase the accuracy of estimation, we performed
20 iterations for each SparCC procedure. SparCC then performs 100 permutations to calculate the
pseudo-P values. Significant correlations were defined as a correlation coefficient (r) of over 0.05 (or less
than �0.05), with a pseudo-P value of �0.05 (8). Heatmaps of the correlation were generated in R using
the pheatmap package. We performed hierarchical clustering for both columns and rows with the
average linkage method using Pearson’s correlation. We utilized PICRUSt v1.0.0 to construct a predicted
metagenome for bacteria with significant correlations with the DE miRNAs in tumor tissues (71).
Specifically, bacterial OTUs that are significantly correlated with the DE miRNAs are collapsed to the
species level (L7). The predicted metagenomes are then generated by following the standard PICRUSt
metagenome prediction pipeline. We included miRNAs with significant correlations with CRC-associated
genera (Fusobacterium, Providencia, Bacteroides, Akkermansia, Roseburia, Porphyromonas, and Peptostrep-
tococcus) to perform pathway enrichment analysis using miRPath v.3 (72, 92). We generated network
visualization of miRNA-microbe using Cytoscape v3.5.1.
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