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ABSTRACT Although much work has linked the human microbiome to specific
phenotypes and lifestyle variables, data from different projects have been challeng-
ing to integrate and the extent of microbial and molecular diversity in human stool
remains unknown. Using standardized protocols from the Earth Microbiome Project
and sample contributions from over 10,000 citizen-scientists, together with an open
research network, we compare human microbiome specimens primarily from the
United States, United Kingdom, and Australia to one another and to environmental
samples. Our results show an unexpected range of beta-diversity in human stool mi-
crobiomes compared to environmental samples; demonstrate the utility of proce-
dures for removing the effects of overgrowth during room-temperature shipping for
revealing phenotype correlations; uncover new molecules and kinds of molecular
communities in the human stool metabolome; and examine emergent associations
among the microbiome, metabolome, and the diversity of plants that are consumed
(rather than relying on reductive categorical variables such as veganism, which have
little or no explanatory power). We also demonstrate the utility of the living data re-
source and cross-cohort comparison to confirm existing associations between the
microbiome and psychiatric illness and to reveal the extent of microbiome change
within one individual during surgery, providing a paradigm for open microbiome re-
search and education.

IMPORTANCE We show that a citizen science, self-selected cohort shipping samples
through the mail at room temperature recaptures many known microbiome results
from clinically collected cohorts and reveals new ones. Of particular interest is inte-
grating n = 1 study data with the population data, showing that the extent of mi-
crobiome change after events such as surgery can exceed differences between dis-
tinct environmental biomes, and the effect of diverse plants in the diet, which we
confirm with untargeted metabolomics on hundreds of samples.

KEYWORDS citizen science, microbiome

he human microbiome plays a fundamental role in human health and disease.

While many studies link microbiome composition to phenotypes, we lack under-
standing of the boundaries of bacterial diversity within the human population and
the relative importance of lifestyle, health conditions, and diet to underpin preci-
sion medicine or to educate the broader community about this key aspect of human
health.

We launched the American Gut Project (AGP; http://americangut.org) in November
2012 as a collaboration between the Earth Microbiome Project (EMP) (1) and the
Human Food Project (HFP; http://humanfoodproject.com/) to discover the kinds of
microbes and microbiomes “in the wild” via a self-selected citizen-scientist cohort. The
EMP characterizes global microbial taxonomic and functional diversity, and the HFP
focuses on understanding microbial diversity across human populations. As of May
2017, the AGP included microbial sequence data from 15,096 samples from 11,336
human participants, totaling over 467 million (48,599 unique) 16S rRNA V4 gene
fragments (abbreviated 16S). Our project informs citizen-scientist participants about
their own microbiomes by providing a standard report (Fig. 1A) and deposits all
deidentified data into the public domain on an ongoing basis without access restric-
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FIG 1 Population characteristics. (A) Participants across the world have sent in samples to American Gut, although the primary geographic regions of
participation are in North America and the United Kingdom; the report that a participant receives is depicted. (B) The primary sample breakdown for subsequent
analyses. Red denotes the reasons that samples were removed. (C) Between the two largest populations, the United States (n = 6,634) and the United Kingdom
(n = 2,071), we observe a significant difference in alpha-diversity. (D) In a meta-analysis, the largely industrialized population that makes up American Gut

exhibits significant differential abundances compared to nonindustrialized populations.

tions (see Table S1 in the supplemental material). This reference database characterizes
the diversity of the industrialized human gut microbiome on an unprecedented scale;
reveals novel relationships with health, lifestyle, and dietary factors; and establishes the
AGP resource and infrastructure as a living platform for discovery.

RESULTS

Cohort characteristics. AGP participants primarily reside in the United States (n =
7,860). However, interest in the AGP rapidly expanded beyond the United States to the
United Kingdom (n = 2,518) and Australia (n = 321), with 42 other countries or territories
also represented (Fig. 1A; see also Table S1 in the supplemental material). Participants in the
United States inhabit urban (n = 7,317), rural (n = 29), and mixed (n = 98) communities
(2010 U.S. Census data based on participant ZIP codes) and span greater ranges of age,
race, and ethnicity than other large-scale microbiome projects (2-6).

Using a survey modified from references 7 and 8, participants reported general
health status, disease history, and lifestyle data (Table S2 and Text S1). In accordance
with our institutional review board (IRB), all survey questions were optional (median
per-question response, 70.9% [Table S2]). Additionally, 14.8% of participants completed
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a validated picture-based food frequency questionnaire (FFQ) (VioScreen; http://www
.viocare.com/vioscreen.html), and responses correlated well with primary survey diet
responses (Table S2).

We focused our primary investigative efforts on a “healthy adult” subset (n = 3,942)
of individuals aged 20 to 69 years with body mass indexes (BMls) ranging between 18.5
and 30 kg/m?; no self-reported history of inflammatory bowel disease (IBD), diabetes,
or antibiotic use in the past year; and at least 1,250 16S sequences/sample (Fig. 1B
and S1B).

The two largest populations in the data set (United States and United Kingdom)
differed significantly in alpha-diversity, with Faith’s phylogenetic diversity (PD) higher in
U.K. samples (9) (Mann-Whitney test P < 1 X 10~ '%) (Fig. 1C). One balance (10) (a
log-ratio compositional transform) explained most of the taxonomic separation be-
tween U.S. and U.K. samples (area under the curve [AUC] = 77.7%; analysis of variance
[ANOVA] P = 1.01 X 10778, F = 386.85) (Fig. S1C and Table S3). To understand how
these two populations differed from others, we compared adult AGP samples (pre-
dominantly from industrialized regions) to samples from adults living traditional life-
styles (6, 11, 12) (e.g., hunter-gatherer and remote agrarian populations). As previously
observed (6), samples from industrial and traditional populations separated in principal-
coordinate analysis (PCoA) space of unweighted UniFrac distances (13) (Fig. S1D).
UniFrac is a formal distance metric (14) which computes a dissimilarity based on the
amount of unique phylogenetic branch length between two samples. These distances
show a greater variation within industrial populations than within traditional popula-
tions (2) and facile separation based on microbial taxonomy (industrial versus nonin-
dustrial agrarian, AUC = 98.9%; ANOVA P = 1.52 X 1072%°, F = 1,265.8; industrial
versus hunter-gatherer, AUC = 99.5%; ANOVA P = 4.48 X 10~227, F = 1,092.35) (Fig. 1D
and Table S3).

Removal of bacterial blooms. An important practical question is whether self-
collected microbiome samples can match those from better-controlled studies. Most
AGP samples are stools collected on dry swabs and shipped without preservative
to minimize costs and avoid exposure to toxic preservatives. Escherichia coli and a
few other taxa grow in transit, so based on data from controlled-storage studies as
previously described (15), we removed sub-operational taxonomic units (sOTUs) (16)
(median of 7.9% of sequences removed per sample) shown to bloom.

We further characterized the impact of these organisms through culturing, high-
performance liquid chromatography mass spectrometry (HPLC-MS) analysis of cultured
isolates, and shotgun metagenomics of the primary samples and storage controls (15,
17). Culturing primary specimens stored at —80°C (United States, n = 116; United
Kingdom, n = 73; other, n = 25) showed a strong correlation between the fraction of
sequences reported as blooms in 16S sequencing and positive microbial growth
following overnight incubation under aerobic conditions (Fig. 2A). Culture supernatants
were characterized using HPLC-MS; most metabolites in these supernatants were
absent from the primary specimens (Fig. 2B; see method details in Text S1). We
sequenced draft genomes of 169 isolates; of these, 65 contained the exact E. coli 16S
sequence in the published bloom filter (15). To characterize the impact of the 16S filter
for blooms used exactly as described in reference 15, we computed effect sizes over the
participant covariates and technical parameters for 9,511 individual participant sam-
ples, including and excluding blooms (complete list in Table S2), and observed tight
correlations for both unweighted (Fig. 2C) (Pearson r = 0.91, P = 3.76 X 10~>7;
Spearman r = 0.90, P = 9.45 X 107>%) and weighted (Fig. 2D) (Pearson r = 0.42, P =
1.71 X 107%; Spearman r = 0.58, P = 1.03 X 10~°) UniFrac values, suggesting that the
presence of the blooms does not substantially alter effect sizes of the study variables.
An outlier on the quantitative metric (weighted UniFrac) is present and corresponds to
a variable representing the fraction of bloom reads in a sample. In Text S1, we further
compare the ranking of these effect sizes to reference 17. The filter for 16S blooms acts
by removing exact sOTUs from the data set prior to rarefaction. This filter is applied to
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FIG 2 Blooms and effect sizes. (A) The fraction of 16S reads that recruit to bloom reads defined by Amir et al. (15) is strongly associated with the likelihood for
microbial growth under aerobic culture conditions on rich medium. (B) Overlap of mass spectral features (consensus MS/MS cluster nodes; see Materials and
Methods, “Molecular networking”) between AGP samples and blooms. (C) Unweighted UniFrac effect sizes. The inset shows the correlation of effect sizes when
including or excluding the bloom 16S reads (Pearson r = 0.91, P = 3.76 X 10~57). (D) Weighted UniFrac effect sizes. The inset shows the correlation of the effect
sizes when including or excluding bloom 16S reads (Pearson r = 042, P = 1.71 X 10~¢); the outlier is the 16S bloom fraction of the sample.

all samples in the data set, including samples from other studies when performing
meta-analyses.

Novel taxa and microbiome configurations. To better understand human micro-
biome diversity, we placed AGP samples in the context of the EMP (1). Building on
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FIG 3 OTU and beta-diversity novelty. (A) The AGP data placed into the context of extant microbial diversity at a global scale. (B) A phylogenetic tree showing
the diversity spanned by the AGP and the HMP in the context of Greengenes and the EMP. (C and D) sOTU novelty over increasing numbers of samples in the
AGP (C); the AGP appears to have begun to reach saturation and is contrasted with the data from the work of Yatsunenko et al. (6) (D), which, unlike the AGP,
had extremely deep sequencing per sample. (E) The minimum observed UniFrac distance between samples over increasing numbers of samples for the AGP
and the HMP; the inset is from 0 to 500 samples. (F) An AGP “trading card” of an sOTU of interest (shown in full in Fig. S2).

earlier work that revealed a striking difference between host-associated and environ-
mental microbiomes (18), we found that the distances between pairs of human gut
microbiomes (just one body site in one vertebrate) are often comparable to the
distances between completely different types of environments and that even the first
two dimensions of a PCoA plot capture this intuition visually (Fig. 3A). This intuition is
confirmed by PERMDISP (homogeneity of dispersion) analysis: on average, a randomly
chosen AGP fecal sample was more likely to be close to the centroid of the AGP fecal
distribution (distances in the range of 0.1 to 0.2) than a randomly chosen EMP sample
and was less distant on average from the centroid overall (P < 0.001, PERMDISP).
However, the maximum distance from the centroid was greater for AGP than EMP (0.65
versus 0.58; no statistical analysis possible because this is a single value), matching the
intuition from the PCoA plot that the dispersion of the AGP samples is large compared
to individual environments and that the extremes of the spread are comparable to that
of the EMP. Because the maximum distance from the centroid increases with the
number of samples, this distance would have been expected to be greater for the EMP,
which is a larger data set.

Inserting the sOTU fragments of AGP and EMP samples into a Greengenes (19)
reference phylogenetic tree using SATé-enabled Phylogenetic Placement (SEPP) (20)
(Fig. 3B) showed that the AGP population harbored much broader microbial diversity,
as measured by phylogenetic diversity, than the Human Microbiome Project (HMP) (5).
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While the AGP vastly exceeds the phylogenetic diversity observed in the HMP (Faith'’s
PD, 1,579.6 versus 338.2), both data sets are dwarfed by the breadth of bacterial and
archaeal phylogenetic diversity in environmental samples (Faith’s PD, 17,740.6). This
result is expected based on the relative size of the data sets (HMP < AGP < EMP), as
Faith’s PD increases with sampling effort until the diversity of a habitat is saturated,
which has not yet been achieved for any of these types of samples. We confirmed that
these differences were statistically significant (P < 0.001) by bootstrap resampling
samples from each study, measuring the distances again, and examining the fraction of
the time that the rank order of the PD of the studies differed from that reported (0 of
1,000 replicates). Examining sOTUs over increasing numbers of samples, we observed
a reduction in the discovery rate of novel sOTUs starting around 3,000 samples,
emphasizing the need for focused sampling efforts outside the present AGP population
(Fig. 3C). The importance of sample size for detecting novel microbes and microbiomes
is apparent when contrasted with the work of Yatsunenko et al. (6), which contained
hundreds of samples from three distinct human populations at ~1 million sequences/
sample (Fig. 3D). This effect is magnified in beta-diversity analysis, where the AGP has
saturated the configuration space, and new samples are not “distant” from existing
samples (Fig. 3E). To encourage broad scientific engagement with sOTUs found in the
AGP, we adapted the EMP “trading cards” for sOTUs (Fig. 3F and S2).

Temporal and spatial analyses. Longitudinal samples are required for understand-
ing human microbiome dynamics (21). We examined 565 individuals who contributed
multiple samples and observed an increasing trend of intrapersonal divergence with
time. Still, over time individuals resemble themselves more than others, even after
1 year (Fig. 4A).

Recent reports suggest that the microbes of human bodies (8), like those of homes
(22), are influenced mostly by local phenomena rather than regional biogeography (23),
and accordingly, we observed only weak geographic associations with sOTUs (Fig. 4B),
no significant distance-decay relationships (Fig. 4C), and, with Bray-Curtis distance, only
a weak effect at neighborhood sizes of ca. 100 km (Mantel r = 0.036, Benjamini-
Hochberg adjusted P = 0.03) to 1,000 km (Mantel r = 0.016, Benjamini-Hochberg
adjusted P = 0.03) (Fig. 4D).

We tested whether patterns in individual longitudinal sample sets could be better
explained when placed in the context of the AGP by integrating samples collected from
(i) a time series of 58 time points from one subject (designated LS), prior to and
following a large bowel resection; (ii) two time points from 121 patients in an intensive
care unit (ICU) (24); (iii) samples from the “extreme” diet study from the work of David
et al. (25); and (iv) samples from the Hadza hunter-gatherers for additional context (22).
Through the longitudinal sampling of LS, dramatic pre- and postmicrobial configuration
changes that exceeded the span of microbial diversity associated with the AGP pop-
ulation were observed (Fig. 4E; animated in reference 26). Immediately after surgery,
the subject’s samples more closely resembled those of ICU patients (Kruskal-Wallis H =
79.774, P = 4197 X 10~ '°) (Fig. S2A to C) and showed a persistent state change upon
return to the AGP fecal space. Remarkably, the UniFrac distance between the samples
immediately prior to and following the surgery was almost identical to the distance
between a marine sediment sample and a plant rhizosphere sample (unweighted
UniFrac distance of 0.78). Furthermore, the observed state change in LS is not system-
atically observed in the extreme diet study (Fig. S2D) (PERMANOVA [permutational
multivariate analysis of variance] not significant [NS] when controlling for individual).
Despite extensive dietary shifts, these subjects do not deviate from the background
AGP context.

Dietary plant diversity. The self-reported dietary data suggested, unexpectedly,
that the number of unique plant species that a subject consumes is associated with
microbial diversity, rather than self-reported categories such as “vegan” or “omnivore”
(Fig. 2C and D). Principal-component analysis (PCA) of FFQ responses (Fig. 5A) revealed
clusters associated with diet types such as “vegan.” However, these dietary clusters did
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not significantly relate to microbiome configurations (Fig. 5B) (Procrustes [Fig. 5A] M2 =
0.988). We therefore characterized the impact of dietary plant diversity, as measured
using food frequency questionnaires and mass spectrometry (Fig. 5C and D), on the
microbial community.

Using a partial least-squares (PLS) approach (10), we identified several putative
short-chain fatty acid (SCFA) fermenters associated with eating more than 30 types of
plants, including sOTUs putatively of the species Faecalibacterium prausnitzii and of the
genus Oscillospira (27) (AUC = 68.5%; ANOVA P = 8.9 X 1073°, F = 177.2) (Fig. 5E and
Table S3). These data suggest community-level changes associated with microbial
fermentation of undigested plant components. Because bacteria differ in their carbo-
hydrate binding modules and enzymes that hydrolyze diverse substrates in the gut (28),
a diet containing various types of dietary fibers and resistant starches likely supports a
more diverse microbial community (29, 30). Studies suggest that these types of
responses in the gut microbiome to a high-plant diet may be common across verte-
brates. For example, core fecal taxa of herbivorous mammals (both hindgut fermenters
and ruminants) have been identified to include both Prevotella and Ruminococcaceae
(31, 32). Oscillospira in particular has been found to increase in omnivorous lizards fed
a plant-rich diet (33).

Plant consumption was also associated with a reduction in certain antibiotic resis-
tance genes. Individuals who consume more than 30 types of plants per week com-
pared to those who consume 10 or fewer plants per week had significantly reduced
abundance of antibiotic resistance genes for aminoglycosides, chloramphenicol, and
major facilitator superfamily (MFS) transporters (antibiotic efflux pumps).

To test these effects in the stool metabolome, we performed HPLC-MS annotation
and molecular networking (34, 35) on a subset of fecal samples (n = 219), preferentially
selecting individuals at the extremes of plant type consumption, i.e., eating <10 or >30
different types of plants per week. Several fecal metabolites differed between the two
groups, with one key discriminating feature annotated as octadecadienoic acid (anno-
tation level 2 according to the 2007 metabolomics initiative [36]). Further investigation
using authentic standards revealed that the detected feature was comprised of multiple
isomers, including linoleic acid (LA) and conjugated linoleic acid (CLA). CLA abundance
did not correlate with dietary CLA consumption as determined by the FFQ (dietary
[Fig. 5C]; Spearman r < 0.16; P > 0.15) but was significantly higher in individuals
consuming >30 types of plants and those consuming more fruits and vegetables
generally (Fig. 5D) (one-sided t test; P < 107>). CLA is a known end product of LA
conversion by lactic acid bacteria in the gut, such as Lactobacillus plantarum (37) and
Bifidobacterium spp. (38). FFQ-based dietary levels of LA and MS-detected LA did not
differ significantly between groups (Fig. S3), suggesting that their different micro-
biomes may differentially convert LA to CLA. Several other putative octadecadienoic
acid isomers were also detected (Fig. 5F), some strongly correlated with plant con-
sumption. Determining these compounds’ identities as well as their origin and function
may uncover new links between the diet, microbiome, and health.

FIG 4 Legend (Continued)

shown as BSD. Even at 1 year, the median distance between a participant’s samples is less than the median
between-participant distance. (B) Within the United States, spatial processes of sOTUs appear driven by stochastic
processes, as few sOTUs exhibit spatial autocorrelation (Moran’s /) on the full data set or partitions (e.g., participants
older than 20 years). (C) Distance-decay relationship for Bray-Curtis dissimilarities between subject pairs that are
within a 100-km (great-circle distance) neighborhood radius of one another (Mantel test r = 0.036, adjusted P = 0.03).
To avoid the overplotting associated with visualization of the more than 3.4 X 10° pairwise comparisons, we
visualized this relationship using two-dimensional frequency bins; darker colors indicate higher-frequency bins. Solid
lines represent fits from linear models to raw data. The inset shows the largest radius (i.e., the contiguous United
States). Axes are the same as in the large panel. (D) Mantel correlogram of estimated Mantel r correlations, significance
of distance-decay relationships, and neighborhood size (x axis). Filled points represent neighborhood sizes for which
distance-decay relationships were significant (adjusted P values < 0.05). (E) Characterizing a large bowel resection
using the AGP, the EMP, a hunter-gatherer population, and ICU patients in an unweighted UniFrac principal-
coordinate plot. A state change was observed in the resulting microbial community. The change in the microbial
community immediately following surgery is the same as the distance between a marine sediment sample and a plant
rhizosphere sample.
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FIG 5 Diversity of plants in a diet. (A) Procrustes analysis of fecal samples from n = 1,596 individuals using principal components of the
VioScreen FFQ responses and principal coordinates of the unweighted UniFrac distances (M?> = 0.988) colored by diet; Procrustes tests
the fit of one ordination space to another. PCA shows grouping by diets such as vegan, suggesting that self-reported diet type is
consistent with differences in micronutrients and macronutrients as recorded by the FFQ; however, these dietary differences do not
explain relationships between the samples in 16S space. (B) The full AGP data set, including skin and oral samples, through unweighted
UniFrac and principal-coordinate analysis, highlighting a lack of apparent clustering by diet type. (C and D) Dietary conjugated linoleic
acid levels as reported by the FFQ between the extremes of plant diversity consumption (C) and the levels of CLA observed by HPLC-MS
(D). (E) Differential abundances of sOTUs (showing the most specific taxon name per sOTU) between those who eat fewer than 10 plants
per week and those who eat over 30 per week. (F) The molecules linoleic acid (LA) and conjugated linoleic acid (CLA) (only trans-,
trans-isomers are shown) were found to comprise the octadecadienoic acid found to be the key feature in this difference in number of
plants consumed.
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Molecular novelty in the human gut metabolome. Our untargeted HPLC-MS
approach allowed us to search for novel molecules in the human stool metabolome,
parallel to our search for novelty in microbes and microbiome configurations described
above. Bacterial N-acyl amides were recently shown to regulate host metabolism by
interacting with G-protein-coupled receptors (GPCRs) in the murine gastrointestinal
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FIG 6 (A) Compound occurrence frequency plot. Examples of compounds originating from food (piperine, black pepper alkaloid), host (stercobilin, heme
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drugs (lisinopril, high blood pressure medication) are shown. (B to E) Alpha- and beta-diversity assessments of antibiotic (B and C) and plant (D and E) cohorts;

insets depict minimum observed beta-diversity over increasing samples.

tract, mimicking host-derived signaling molecules (39). These agonistic molecules
regulate metabolic hormones and glucose homeostasis as efficiently as host ligands.
Manipulating microbial genes that encode enzymes that produce specific metabolites
eliciting host cellular responses could enable new drugs or treatment strategies for
many major diseases, including diabetes, obesity, and Alzheimer’s disease: roughly 34%
of all marketed drugs target GPCRs (40). We observed N-acyl amide molecules previ-
ously hypothesized but unproven to be present in the gut (39) (Fig. 6 and Fig. S4), as
well as new N-acyl amides (Fig. 6).
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Levels of two N-acyl amides, annotated as commendamide (m/z 330.2635 [Fig. S4B])
and N-3-OH-palmitoyl ornithine (m/z 387.3220 [Fig. S4C]), positively correlated with a
self-reported medical diagnosis of thyroid disease (Kruskal-Wallis false discovery rate
[FDR] P = 0.032, P = 2.48 X 1073, x2 = 11.99; N-3-OH-palmitoyl ornithine, Kruskal-
Wallis FDR P = 0.048, P = 5.63 X 103, 2 = 10.35). Conversely, glycodeoxycholic acid
(m/z 450.3187) was significantly higher in individuals not reporting thyroid disease
diagnosis (Kruskal-Wallis FDRP = 1.28 X 10~4, P = 4.41 X 107, x> = 29.27). This cholic
acid is produced through microbial dehydroxylation, again linking gut microbiota to
endocrine function (41, 42).

Finally, we compared metabolome diversity to 16S rRNA amplicon diversity in the
samples selected for dietary plant diversity and a second set of samples selected to
explore antibiotic effects (n = 256 individuals who self-reported not having taken
antibiotics in the past year [n = 117] or self-reported having taken antibiotics in the
past month [n = 139]; participants were matched for age, BMI, and country). By
computing a collector’s curve of observed molecular features in both cohorts (Fig. 6B
and D), we observe that, paradoxically, individuals who had taken antibiotics in the past
month (n 139) had significantly greater molecular diversity (Kruskal-Wallis H =
255.240, P = 1.87 X 10~>7) than those who had not taken antibiotics in the past year
(n = 117) and differed in molecular beta-diversity (Fig. 6B, inset), suggesting that
antibiotics promote unique metabolomes that result from differing chemical and
microbial environments in the gut. Notably, the diversity relationships of this set are not
reflected in 16S diversity (Fig. 6C and E), where antibiotic use shows decreased diversity
(Kruskal-Wallis H = 3,983.839, P = 0.0). Within the dietary plant diversity cohort, we
observed a significant increase (Kruskal-Wallis H = 897.106, P = 4.17 X 107'97) in
molecular alpha-diversity associated with a high diversity of plant consumption (n =
42) compared to low plant diversity (n = 43), a relationship also observed in 16S
diversity, where high dietary plant diversity increased 16S alpha-diversity (Kruskal-
Wallis H = 65.817, P = 4.947 X 10 '6). Recent antibiotic use (within the last 30 days)
was, counterintuitively, associated with a decrease in quinolone resistance genes (see
Materials and Methods), although not with a change in other families of antimicrobial
resistance (AMR) genes. However, these results are difficult to interpret given the wide
range of antibiotics taken by subjects, the many confounding variables, and the
self-reported nature of the data. Studies in more carefully controlled clinical environ-
ments would be needed to make more meaningful statements about the role of the
use of specific antibiotics in modifying the overall antimicrobial resistance profile of the
human gut microbiome.

Citizen science aspects of the project. The AGP engages citizen scientists both
through providing an individualized report (Fig. TA) and through auxiliary resources to
support human microbiome research, including an online course (Gut Check: Exploring
Your Microbiome, https://www.coursera.org/learn/microbiome). Because the AGP is
crowdsourced and self-selected, and subjects generally support the cost of sample
processing, the population is unrepresentative in several important respects, including
having a lower prevalence of smoking and obesity and having higher education and
income (Fig. S1A) and underrepresentation of Hispanic and African American commu-
nities (Table S1); generalization of the results should therefore be treated with caution.
Targeted and population-based studies will be crucial for filling these cohort gaps
(Text S1). Because of the citizen science nature of the project, we sought to
minimize errors and misclassifications well known to occur in self-reported data (43).
Survey responses relied on controlled vocabularies. For analyses, we trimmed numeric
entries at extremes (e.g., weight over 200 kg or below 2.5 kg) and excluded obviously
incorrect answers (e.g., infants drinking alcohol) and samples for which necessary data
were not supplied (e.g., missing ZIP code data for spatial analyses); see the supple-
mental material for details.

To promote public data engagement, we aimed to broaden the citizen science
experience obtained by participating in AGP by “gamifying” the data and separately by
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developing an online forum for microbiome data discussion and discovery. The gami-
fication introduces concepts of beta-diversity and challenges users to identify clusters
of data in principal-coordinate space (http://csb.cs.mcgill.ca/colonyb/). The forum,
called Gut Instinct (http://gutinstinct.ucsd.edu), enables participants to share lifestyle-
based insights with one another. Participants also have the option to share their AGP
sample barcodes, which will help us uncover novel contextual knowledge. Gut Instinct
now has over 1,050 participants who have collectively created over 250 questions.
Participants will soon design and run their own investigations using controlled exper-
iments to further understand their own lifestyle and the AGP data.

A living data set. The AGP is dynamic, with samples arriving from around the world
daily. This allows a living analysis, similar to continuous molecular identification and
annotation revision in the Global Natural Products Molecular Networking (GNPS)
database (34). Although the analysis presented here represents a single snapshot,
samples continued to arrive during preparation of the manuscript. For example, after
we defined the core “healthy” sample set, an exploratory analysis using matched
controls was performed by collaborators to test for correlations between mental iliness
and microbiome composition (as reported in references 44 and 45). By analyzing
mental illness status (depression, schizophrenia, posttraumatic stress disorder [PTSD],
and bipolar disorder—four of the most disabling illnesses per the World Health
Organization [46]) reported by AGP participants (n = 125) against matched 1:1 healthy
controls (n = 125), we observed a significant partitioning using PERMANOVA in
weighted UniFrac (P = 0.05, pseudo-F = 2.36). These findings were reproducible within
U.S. residents (n = 122, P = 0.05, pseudo-F = 2.58), U.K. residents (n = 112, P = 0.05,
pseudo-F = 2.16), women (n = 152, P = 0.04, pseudo-F = 2.35), and people 45 years
of age or younger (n = 122, P = 0.05, pseudo-F = 2.45). We also reproduced some
previously reported differentially abundant taxa in Chinese populations using our U.K.
subset (44, 47) (Table S3). This shows that multicohort replication is possible within the
AGP (additional detail in Text S1).

DISCUSSION

The AGP provides an example of a successful crowdfunded citizen science project
that facilitates human microbiome hypothesis generation and testing on an unprece-
dented scale, provides a free data resource derived from over 10,000 human-associated
microbial samples, and both recaptures known microbiome results and yields new
ones. Ongoing living data efforts, such as the AGP, will allow researchers to document
and potentially mitigate the effects of a slow but steady global homogenization driven
by increased travel, life spans, and access to similar diets and therapies, including
antibiotics. Because the AGP is a subproject of the EMP (1), all samples were processed
using the publicly available and widely used EMP protocols to facilitate meta-analyses,
as highlighted above. Further examples of applications include assessing the stability of
AGP runs over time and comparing the AGP population to fecal samples collected from
a fecal transplant study (48) and an infant microbiome time series (49), the latter using
different DNA sequencing technology, to highlight how this context can provide
insight (50).

A unique aspect of the AGP is the open community process of assembling the
Research Network and analyzing these data, which are released immediately on data
generation. Analysis details are shared through a public forum (GitHub, https://github
.com/knightlab-analyses/american-gut-analyses). Scientific contributions to the project
were made through a geographically diverse Research Network represented here as the
American Gut Consortium, established prior to project launch and which has grown
over time. This model allows a “living analysis” approach, embracing new research-
ers and analytical tools on an ongoing basis (e.g., Qiita [http://giita.microbio.me] and
GNPS [34]). Examples of users of the AGP as a research platform include educators at
several universities, UC San Diego Athletics, and the American Gastroenterological
Association (AGA). Details on projects using the AGP infrastructure can be found in the
supplemental material.
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The AGP therefore represents a unique citizen science data set and resource,
providing a rich characterization of microbiome and metabolome diversity at the
population level. We believe that the community process for involving participants
from sample collection through data analysis and deposition will be adopted by many
projects harnessing the power of citizen science to understand the world around and
within our own bodies.

MATERIALS AND METHODS

Participant recruitment and sample processing. Participants signed up for the project through
Indiegogo (https://www.indiegogo.com) and later FundRazr (http://fundrazr.com/). A contribution to the
project was made to help offset the cost of sample processing and sequencing (typically $99 per sample;
no requirement to contribute if another party was covering the contribution). All participants’ consent
was obtained under an approved Institutional Review Board human research subject protocol, either
from the University of Colorado Boulder (protocol no. 12-0582; December 2012 to March 2015) or from
the University of California, San Diego (protocol no. 141853; February 2015 to present). The IRB-approved
protocol specifically allows for public deposition of all data that are not personally identifying and for
return of results to participants (Fig. 1A). This research was performed in accordance with the University
of Colorado Boulder’s Institutional Review Board protocol number 12-0582 and the University of
California San Diego’s Human Research Protection Program protocol number 141853.

Self-reported metadata were collected through a web portal (http://www.microbio.me/americangut).
Samples were collected using BBL culture swabs (Becton, Dickinson and Company, Sparks, MD) and
returned by mail. Samples collected in Australia and the United Kingdom were shipped using domestic
post within each country to an aggregation site and stored at —80°C at the aggregation site until
shipment to the United States. Shipment to the United States was done on dry ice using a certified
shipping service. All samples were handled and processed in kind with other American Gut samples. For
more information, please find an extensive benchmark of shipping conditions in reference 17. All
samples were processed using the EMP protocols. Briefly, the V4 region of the 16S rRNA gene was
amplified with barcoded primers and sequenced as previously described (51). Sequencing prior to
August 2014 was done using the 515f/806r primer pair with the barcode on the reverse primer (52);
subsequent rounds were sequenced with the updated 515f/806rB primer pair with the barcode on the
forward read (52). Sequencing batches 1 to 19 and 23 to 49 were sequenced using an lllumina MiSeq;
sequencing for batches 20 and 21 was performed with an Illumina HiSeq Rapid Run, and round 22 was
sequenced with an Illumina HiSeq High-Output.

16S data processing. The 16S sequence data were processed using a sequence variant method,
Deblur v1.0.2 (16), trimming to 125 nucleotides (nt) (otherwise default parameters), to maximize the
specificity of 16S data; a trim of 125 nt was used because one sequencing round in the American Gut
used 125 cycles while the rest used 150. Following processing by Deblur, previously recognized bloom
sequences were removed (15). The Deblur sOTUs were inserted into the Greengenes 13_8 (19) 99%
reference tree using SEPP (20). SEPP uses the simultaneous alignment and tree estimation strategy
described in reference 53 to identify reasonable placements for sequence fragments within an existing
phylogeny and alignment. Taxonomy was assigned using an implementation of the RDP classifier (54) as
implemented in QIIME2 (55). Multiple rarefactions were computed, with the minimum being 1,250
sequences per sample with the analyses using the 1,250-sequence set except where noted explicitly.
Rarefaction was used to mitigate uneven sequencing depth in accordance with the benchmarking in
reference 56. Diversity calculations were computed using scikit-bio 0.5.1 with the exception of UniFrac
(13), which was computed using an unpublished algorithmic variant, Striped UniFrac (https://github
.com/biocore/unifrac), which scales to larger data sets and produces results identical to previously
published UniFrac algorithms. In brief, unweighted UniFrac computes a dissimilarity between two
samples by summing up the amount of branch length that is unique to each sample and divides this by
the sum of the branch length that is common to the two samples.

Metadata curation. To address the self-reported nature of the AGP data and the ongoing nature of
the project, basic filtering was performed on the age, height, weight, and body mass index (BMI). Height
and weight were gated to consider heights only between 48 cm and 210 cm and weight between 2.5 kg
and 200 kg. BMI calculations using values outside this range were not considered. We assumed that age
was misreported by any individual who reported a birthdate after the sample was collected. We also
assumed that age was misreported for participants who reported an age of less than 4 years but height
over 105 c¢cm, weight over 20 kg, or any alcohol consumption. Values assumed to be incorrect were
dropped from analyses (see Fig. S1B in the supplemental material).

Sample selection. Analyses in this paper were performed on a subset of the total AGP samples. A
single fecal sample was selected for each participant with at least one fecal sample that amplified to
1,250 sequences per sample unless otherwise noted. Priority was given to samples that were ass