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Abstract

Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the 

abnormal accumulation of toxic forms of the synaptic protein alpha-synuclein (α-syn) within 

oligodendrocytes and neurons. The presence of α-syn within oligodendrocytes in the form of glial 

cytoplasmic inclusions is the diagnostic hallmark of MSA. However, it has been postulated that α-

syn is produced in neurons and propagates to oligodendrocytes, where unknown mechanisms lead 

to its accumulation. The presence of α-syn within neurons in MSA has not been so extensively 

studied, but it may shed light into neuropathological mechanisms leading to oligodendroglial 

accumulation. Here we summarize the principal neuropathological events of MSA, and discuss 

how a deeper knowledge of these mechanisms may help develop effective therapies targeting α-

syn accumulation and spreading.

Multiple system atrophy (MSA) is a rapidly progressing, sporadic and fatal 

neurodegenerative disorder that belongs to the synucleino-pathy spectrum (Farrer et al., 

1999; Spillantini, 1999; Takeda et al., 1998; Wakabayashi et al., 1998a). Clinically, MSA is 

characterized by parkinsonian features and cerebellar, autonomic and urogenital dysfunction, 

which are a reflection of striatonigral degeneration and oli-vopontocerebellar atrophy 

(Gilman et al., 2008). There are two major subtypes of MSA, distinguished by their 

symptoms at the time of diagnosis (Gilman et al., 2008): the parkinsonian subtype (MSA-P), 

where parkinsonism is predominant, including bradykinesia, muscle rigidity, tremors, and 

postural instability; and the cerebellar subtype (MSA-C), characterized by cerebellar ataxia. 

The prevalence of MSA is between 3.4 and 4.9 cases per 100,000 people, and the mean 

incidence is 0.6–0.7 cases per 100,000 people and year (Fanciulli and Wenning, 2015; 

Stefanova et al., 2009), making MSA an orphan disease (Lavandeira, 2002). In Western 

countries, MSA-P predominates, occurring in 66–82% of MSA patients (Wenning et al., 

2013). However, MSA-C is more common in Eastern countries, occurring in 67% of MSA 
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patients (Yabe et al., 2006). The rapid progression, its orphan disease status, and its 

neuropathological features make MSA an ideal candidate for accelerated drug development.

1. The neuropathology of MSA

The principal neuropathological characteristic of MSA is the presence of aggregates 

containing the synaptic protein alpha-synuclein (α-syn) within brain cells (Spillantini et al., 

1998). Specifically, the presence of α-syn-positive inclusions in oligodendroglial cells in the 

form of glial cytoplasmic inclusions (GCIs) is the diagnostic hallmark of MSA (Dickson et 

al., 1999; Papp et al., 1989; Spillantini, 1999; Wakabayashi et al., 1998b). Interestingly, α-

syn aggregates can also be observed as glial nuclear inclusions, neuronal cytoplasmic 

inclusions (NCIs), neuronal nuclear inclusions (NNIs) and dystrophic neurites, however 

these lesions all appear at lower frequencies than the GCIs (Papp and Lantos, 1992). The 

cellular distribution of α-syn aggregates in MSA has been the cause of intense research, as 

α-syn is considered a neuronal protein (Fortin et al., 2005; George et al., 1995) that 

abnormally accumulates within glial cells (oligodendrocytes). Although several groups have 

found no evidence of increased SNCA expression in MSA oligoden-drocytes (Jin et al., 

2008; Miller et al., 2005; Ozawa et al., 2001), a more recent study reported that there is a 3-

fold increase in SNCA mRNA levels in postmortem MSA oligodendrocytes (Asi et al., 

2014). It is unknown if this increase would be enough to induce a significant accumulation 

of α-syn in oligodendrocytes, a cell type that does not express high basal levels of α-syn; or 

if the increased expression is a consequence of α-syn accumulation, rather than its cause.

Achieving a deeper understanding of the neuropathology of MSA has been one of the 

primary goals in the field. In this sense, a major unanswered question is why α-syn tends to 

accumulate to a greater extent in oligodendrocytes than in neurons. One possibility is that α-

syn is produced by oligodendroglial cells which in turn over-express or fail to intrinsically 

clear out α-syn (Fig. 1); the other is that α-syn that propagates from neurons and cannot be 

cleared out by oligoden-drocytes due to defective clearance mechanisms (Fig. 1). In any 

case, the source of α-syn in oligodendroglial cells in MSA is still unclear. Given the high 

levels and widespread distribution of α-syn aggregates in MSA, it is possible that both 

propagation and oligodendroglial α-syn expression might be occurring simultaneously. 

Supporting the possibility of propagation, several studies have shown that α-syn aggregates 

can transmit from neuron to neuron (Desplats et al., 2009; Lee et al., 2012b), neuron to 

astroglial and oligodendroglial cells (Lee et al., 2010; Reyes et al., 2014), and 

oligodendroglial to astroglial cells (Valera et al., 2014), leading to neuronal dysfunction, 

apoptosis and neuroin-flammation (Desplats et al., 2009; Klucken et al., 2012; Lee et al., 

2010; Valera et al., 2014; Volpicelli-Daley et al., 2011). Moreover, recent studies have shown 

that injection of homogenates from MSA brains propagate α-syn pathology in a prion-like 

fashion in the murine brain (Prusiner et al., 2015; Watts et al., 2013). Neuronal cells (donors) 

release α-syn aggregates into the extracellular environment by exocytosis and in clear 

vesicles and exosomes (Danzer et al., 2012; Lee et al., 2005), and α-syn is taken up by other 

neurons, oligodendrocytes and astrocytes (acceptors) via endocytosis (Lee et al., 2008a) 

(Fig. 1). This scenario could explain the presence of NCIs and NNIs in MSA neurons, 

however whether neurons showing α-syn accumulation are the source of extracellular α-syn 

in MSA has not been investigated.
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Whether its origin is intracellular or due to cell-to-cell propagation, recent evidence supports 

the notion that failure of intracellular protein clearance mechanisms (e.g. autophagy, 

unfolded protein response, proteolysis) might play a role in the process of α-syn 

aggregation, release and subsequent accumulation of α-syn pathological species in donor 

and acceptor cells (Klucken et al., 2012; Lee et al., 2013) (Fig. 1). Accumulation of toxic α-

syn within MSA oligodendrocytes might be a direct consequence of impairments on those 

mechanisms. Free extracellular oligomeric α-syn is taken up by oligodendrocytes by 

clathrin-dependent endocytosis (Kisos et al., 2012; Konno et al., 2012), and endocytic 

vesicles containing α-syn are then directed to lysosomal degradation; however, cytosolic α-

syn might also be degraded by other mechanisms such as UPR and proteolysis (Hoozemans 

et al., 2007; Xilouri et al., 2013). Impairments in clearance mechanisms such as autophagy 

have already been described in MSA and other synucleino-pathies (Lynch-Day et al., 2012; 

Schwarz et al., 2012).

1.1. Neuronal neuropathology in MSA

Histopathologically, the morphology and immunoreactivity of NCIs differ from that of the 

neuronal aggregates found in other synucleino-pathies (Spillantini et al., 1998), known as 

Lewy bodies. Interestingly, the immunohistochemical and ultrastructural features of NCIs 

seem to be virtually identical to those of GCIs (Yokoyama et al., 2001). NCIs are observed 

in the putamen and pons of all MSA cases, and they can also be observed in the cerebral 

cortex, medulla oblongata and spinal cord, with no NCIs present in the cerebellum and 

midbrain (Sugiura et al., 1995). NCI pathology follows a hierarchy of region-specific 

susceptibility, independent of the clinical phenotype, and the severity of the pathology is 

duration-dependent (Cykowski et al., 2015). Widespread NCIs have been identified not only 

in regions typically associated with the disease, but also within other areas such as anterior 

cingulate cortex, amygdala, entorhinal cortex, basal forebrain, hypothalamus, and in some 

cases cerebellar roof nuclei (Cykowski et al., 2015). These findings suggest that the neuronal 

pathology plays an important role in the developmental and progression of MSA. 

Interestingly, NCIs are heterogeneous, and in uncommon cases they may include Pick body-

like inclusions that are strongly associated with neuronal loss in the hippocampus and 

amygdala (Aoki et al., 2015), potentially representing a novel subtype of frontotemporal 

lobar degeneration associated with α-syn.

In contrast, NNIs appear as a loosely woven network or irregularly arranged fibrils beneath 

the nuclear membrane (Nishie et al., 2004), occasionally coexisting with NCIs in the same 

neurons. Due to their count number and correlation with disease progression, it has been 

suggested that NNI formation is an earlier phenomenon than NCI formation (Nishie et al., 

2004). One question that remains to be answered is if NCIs and GCIs share mechanistic 

origins, or if they are originated by independent mechanisms; the shared features between 

both structures would suggest the former.

The presence of α-syn-positive aggregates within neurons suggests that these cells fail to 

clear out increased intracellular levels of mis-folded α-syn. It is possible that a significant 

inhibition of clearance mechanisms is related to the origin of the disease, fueled by the fact 

that misfolded, aggregated α-syn is also able to inhibit its own degradation (Snyder et al., 
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2003; Winslow and Rubinsztein, 2011). Supporting this notion, it has been observed that 

autophagic failure promotes the exocytosis and intercellular transfer of α-syn (Lee et al., 

2013). It is possible that the release of α-syn to the extracellular environment is an attempt 

to reduce its intracellular levels, however more research is needed to elucidate if this is the 

case. In the past few years, strong evidence has been provided supporting the prion-like 

behavior of α-syn, which has been confirmed in cellular models (Desplats et al., 2009; Lee 

et al., 2012b), animal models (Luk et al., 2012; Masuda-Suzukake et al., 2014; Prusiner et 

al., 2015), and indirectly in patients with PD that received neuronal grafts (Kordower et al., 

2008; Li et al., 2008). Moreover, the fact that α-syn accumulation has been observed in cell 

types other than neurons in animal models of PD and in PD brains (Bruck et al., 2016) 

further supports this hypothesis.

1.2. Glial neuropathology in MSA

According to the α-syn propagation hypothesis of MSA, oligoden-drocytes would 

incorporate extracellular α-syn and accumulate it in the form of GCIs (Fig. 1) and nuclear 

inclusions (Nishie et al., 2004). However, it is unclear why oligodendrocytes preferentially 

uptake and/or fail to clear α-syn in MSA brains, a neuropathological event not widely 

observed in other synucleinopathies. One hypothesis is that the incorporation of 

extracellular, misfolded α-syn may impair the endogenous clearance machinery of the 

oligodendrocyte, progressively leading to α-syn accumulation (Pukass and Richter-

Landsberg, 2015; Schwarz et al., 2012). Another option is that a dysfunction in the clearance 

machinery is a prerequisite for α-syn uptake and/or accumulation in oligodendrocytes. In 

both scenarios, the oligodendroglial accumulation of α-syn may be further potentiated by 

increased expression of its gene (Asi et al., 2014; Djelloul et al., 2015) and oligo-

dendrocyte-to-oligodendrocyte propagation. Finally, other suggested mechanisms are the 

involvement of altered iron metabolism in oligo-dendrocytes (Visanji et al., 2013), and 

epigenetic and/or environmental factors (Sturm et al., 2016). Furthermore, it is possible that 

multiple mechanisms combine, leading to the pathological, progressive oligo-dendroglial 

accumulation of α-syn observed in MSA brains. In light of these observations, it could also 

be concluded that there may exist a genetic predisposition for oligodendrocytes to develop 

abnormal α-syn accumulation (Sturm et al., 2016). The genetic risk factors with the most 

evidence in MSA are variants in the SNCA and COQ2 genes (Collaboration, 2013; Scholz et 

al., 2009), however genome-wide association studies have failed to find association between 

common genetic variations in those genes and MSA (Sailer et al., 2016).

The principal consequences of α-syn-induced oligodendroglial degeneration are the loss of 

trophic support to neurons and demyelination (Ettle et al., 2016; Stefanova and Wenning, 

2016; Ubhi et al., 2011; Wong et al., 2014), which in turn lead to further neurodegeneration. 

This secondary neurodegeneration may explain the lack of response to L-DOPA observed in 

MSA patients and the fast progression of this devastating disease. One of the most relevant 

characteristics of MSA is the selective neuronal loss and axonal degeneration in the central 

autonomic, striatonigral and olivopontocerebellar networks, with cell loss also present in 

autonomic brain stem nuclei (Jellinger, 1998; Kuzdas-Wood et al., 2014; Wakabayashi et al., 

2010). Moreover, the presence of misfolded α-syn in the extracellular compartment can 

result not only in oligodendroglial dysfunction, but also in the overstimulation of as-troglia 
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and microglia (Bae et al., 2012; Lee et al., 2010; Vieira et al., 2015) (Fig. 1). Both 

astrogliosis and microgliosis have been observed in MSA brains (Schwarz et al., 1996), and 

in transgenic mouse models of MSA (Ubhi et al., 2012; Valera et al., 2015; Valera et al., 

2014). As-trocytes are able to accumulate α-syn in MSA and in tg mouse models (Mandler 

et al., 2015; Nakamura et al., 2016), and stimulate the release of pro-inflammatory cytokines 

(Lee et al., 2010). MSA brains exhibit widespread astrogliosis (Schwarz et al., 1996) 

correlated to the presence of nearby GCI-positive oligodendrocytes (Radford et al., 2015), 

suggesting that localized presence of extracellular α-syn may underlie the astrocytic 

pathology in MSA. Additionally, microglia phagocytize α-syn (Lee et al., 2008b; Park et al., 

2008) and also release pro-in-flammatory factors and reactive oxygen species in response to 

extracellular α-syn (Beraud et al., 2013; Fellner et al., 2013). Microgliosis has been 

described and identified as one of the main features of the disease process in MSA (Ishizawa 

et al., 2004; Stefanova et al., 2007). However, there is evidence of both neuroprotective and 

detrimental effects of microglial activation in MSA and MSA models. This dual role seems 

to be associated with the capacity of microglia to both remove extracellular α-syn and 

produce neurotrophic factors, and their ability to release pro-inflammatory mediators 

(Fellner et al., 2013; Stefanova et al., 2011). These neuroinflammatory mechanisms would 

create a hostile environment for neurons in the MSA brain.

Finally, it is worth mentioning that, although the principal component of GCIs is fibrillar α-

syn, other proteins such as p25α, tau, ubiquitin, tubulin, Cdk5 and MAP2 can also be found 

(Cairns et al., 1997; Chiba et al., 2011; Gai et al., 1999; Nakamura et al., 1998; Wakabayashi 

et al., 1998b). Interestingly, p25α is an oligodendroglial protein that can induce aggregation 

of α-syn (Hasegawa et al., 2010). Changes in the cellular interactions between the myelin 

protein MBP and p25α occur early in MSA and contribute to abnormalities in myelin and 

subsequent α-syn aggregation (Song et al., 2007).

2. Therapeutic opportunities based on the MSA neuropathology

The neuropathological features of MSA suggest that targeting the oligodendroglial α-syn 

accumulation, neuronal α-syn accumulation, or common mechanisms leading to α-syn 

accumulation in both cell types, may be potential therapeutic alternatives. In this sense, it is 

likely that approaches that lead to a reduction in α-syn accumulation in both 

oligodendrocytes and neurons may be more effective that cell-specific approaches. 

Moreover, the important component of α-syn propagation and the pathological accumulation 

of α-syn within two different cell types, and its orphan disease status make MSA a strong 

synucleinopathy candidate for accelerated drug discovery (Krismer et al., 2014).

Most of the research aimed at developing new therapeutic candidates for MSA has been 

primarily focused on targeting oligodendroglial α-syn accumulation. The use of transgenic 

models that express α-syn directly in oligodendroglial cells, under the control of the PLP 

(Kahle et al., 2002), MBP (Shults et al., 2005), or CNP (Yazawa et al., 2005) promoters, is a 

reflection of this trend. However, this approach does not cover an important part of the 

neuropathological landscape: the presence of α-syn within neurons, and its pathological 

propagation from neurons to oligodendrocytes. Another important limitation of these models 

lays on the fact that the mechanisms leading to α-syn accumulation within oligodendrocytes 
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in MSA are still unknown, thus limiting the possibility of finding suitable targets or 

preventing α-syn accumulation from early stages (Stefanova and Wenning, 2015). In this 

scenario, approaches limited to reducing α-syn accumulation in oligo-dendrocytes may not 

provide enough disease modification to be able to stop or delay the progression of the 

disease.

Expanding the MSA therapeutic landscape beyond the oligoden-drocyte, the neuronal 

pathology of MSA has not been so extensively explored. While neuronal α-syn 

accumulation has been greatly studied (and targeted) in PD and other synucleinopathies, less 

is known of its potential as a target for MSA, and its interest has been mostly limited to act 

as α-syn source for oligodendrocytes. The involvement of neuronal α-syn accumulation as a 

main pathological event in MSA remains to be investigated. Nevertheless, according to the 

propagation model of MSA pathology, a reduction in the neuronal expression, release and 

accumulation of α-syn may translate in a decrease in oligodendroglial α-syn levels and lead 

to disease modification. Moreover, supporting and repairing neuronal function by restoring 

trophic support (e.g. BDNF, GDNF) (Ubhi et al., 2010), myelination (Ettle et al., 2016), and 

by the use of regenerative therapies (Lee et al., 2012a) are therapeutic alternatives to 

consider for MSA.

Recently, therapies aimed at reducing α-syn propagation have been extensively explored. 

That is the case in immunotherapies, which not only block toxic propagation of α-syn 

species, but are also able to reduce intracellular α-syn accumulation (Games et al., 2014; 

Mandler et al., 2015; Mandler et al., 2014). The Austrian company AFFiRiS recently 

completed an active immunotherapy Phase I clinical trial with the α-syn vaccine PD03A. 

Both low and high doses were well tolerated and no serious adverse events were reported. 

PD03A induced a dose-dependent immune response against both the vaccine itself and the 

α-syn epitope over time. An α-syn passive immunotherapy approach using a humanized 

monoclonal antibody against α-syn (Prothena, PRX002) has also been tested in Phase Ia and 

Ib clinical trials. In both trials, free serum α-syn levels were drastically reduced (Schenk et 

al., 2017). A dose-dependent increase in PRX002 levels in cerebrospinal fluid was observed, 

without serious adverse events. PRX002 has move forward to Phase II trials in patients with 

early PD. A Phase I passive immunotherapy trial using the anti α-syn antibody BIIB-054 

(Biogen) is also ongoing. Preliminary reports suggest that this antibody was well tolerated in 

healthy volunteers, and was detectable in the cerebrospinal fluid (Brundin et al., 2017). 

Additional clinical trials to commence soon include the α-syn antibodies BAN0805 

(BioArctic & AbbVie), targeting oligomeric forms of α-syn, and MEDI1341 (AstraZeneca 

& Takeda). Moreover, the therapeutic potential of stimulating α-syn degradation pathways, 

such as autophagy, is also being investigated at the preclinical level (Xilouri et al., 2013). 

Neuroinflammation induced by extracellular α-syn contributes to MSA pathology, thus 

therapies reducing the overactivation of glial cells and the production of pro-inflammatory 

cytokines are also being explored (Stefanova et al., 2012; Stefanova et al., 2007; Vieira et al., 

2015). Finally, using strategic drug combinations or multi-target drugs might increase the 

efficiency of therapeutic treatments for MSA (Valera and Masliah, 2016). Therapies aimed 

at reducing α-syn accumulation and cell-to-cell transfer, such as immunotherapy, could be 

combined with agents that reduce neuroin-flammation with synergistic outcomes (Valera et 

al., 2017).

Valera and Masliah Page 6

Auton Neurosci. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It can be concluded that more research is needed to elucidate how neurons, oligodendrocytes 

and other glial types interplay at the origin of the MSA pathology and during the progression 

of the disease. The pathological production, accumulation and propagation of α-syn between 

different cell types may be a significant therapeutic target not only limited to the 

oligodendroglial aspect of the disease. Investigating the role of neurons on the pathology as 

source and accumulators of toxic protein species may lead to more effective therapies for 

reducing neurodegeneration in MSA.
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Fig. 1. 
Neuropathology of MSA and cell-to-cell propagation of α-syn. It is believed that in MSA 

oligodendrocytes accumulate α-syn after a process of propagation from neurons or other 

oligodendroglial cells. Increased expression and/or reduced α-syn clearance in neurons may 

stimulate the accumulation of misfolded forms of the protein as NCIs, and their release and 

propagation to oligodendrocytes via exocytosis or within extracellular vesicles (EVs). 

Reduced α-syn clearance in oligodendrocytes may also enhance its accumulation in the 

form of GCIs, and induce its release to the extracellular environment. It is also possible that 

enhanced expression of the α-syn gene is present in oligodendrocytes. These 

neuropathological events represent potential targets for therapeutic intervention in MSA.
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