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ABSTRACT Genetically identical cells exhibit diverse phenotypes even when experiencing the same environment. This
phenomenon in part originates from cell-to-cell variability (noise) in protein expression. Although various kinetic schemes
of stochastic transcription initiation are known to affect gene expression noise, how posttranscription initiation events
contribute to noise at the protein level remains incompletely understood. To address this question, we developed a sto-
chastic simulation-based model of bacterial gene expression that integrates well-known dependencies between transcrip-
tion initiation, transcription elongation dynamics, mRNA degradation, and translation. We identified realistic conditions
under which mRNA lifetime and transcriptional pauses modulate the protein expression noise initially introduced by the
promoter architecture. For instance, we found that the short lifetime of bacterial mRNAs facilitates the production of protein
bursts. Conversely, RNA polymerase (RNAP) pausing at specific sites during transcription elongation can attenuate protein
bursts by fluidizing the RNAP traffic to the point of erasing the effect of a bursty promoter. Pause-prone sites, if located
close to the promoter, can also affect noise indirectly by reducing both transcription and translation initiation due to RNAP
and ribosome congestion. Our findings highlight how the interplay between transcription initiation, transcription elongation,
translation, and mRNA degradation shapes the distribution in protein numbers. They also have implications for our under-
standing of gene evolution and suggest combinatorial strategies for modulating phenotypic variability by genetic
engineering.
INTRODUCTION
One of the most important tasks cells do is regulate the level
of gene expression—the conversion of genetic information
written in DNA into a certain amount of proteins. Interest-
ingly, isogenic cells in the same environment produce vari-
able amounts of mRNA and protein (1–3). Variability
(noise) in mRNA and protein levels, however, varies among
genes. For example, low noise is expected for genes encod-
ing proteins that are needed in all cells, such as house-
keeping proteins. Consistent with this idea, experiments in
Escherichia coli and budding yeast have shown that genes
essential for viability tend to exhibit lower noise than nones-
sential genes (4–7). For ‘‘noisy’’ genes, such as some genes
involved in stress response, a large variability in protein
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expression can lead to beneficial traits for the population
by generating different cell phenotypes. Such a phenotypic
heterogeneity is known to offer a ‘‘bet-hedging’’ strategy
for bacterial survival in fluctuating and stressful environ-
ments (8–11). It can also be beneficial for cooperative social
adaptations through ‘‘division of labor’’ within the cell pop-
ulation (12).

Multiple sources of protein expression noise exist.
Intrinsic noise arises because of the stochastic nature of
gene expression processes. Extrinsic noise can be produced
by cell-to-cell heterogeneity in global factors, including the
concentration of RNA polymerases (RNAPs) and ribo-
somes, cell size, and the cell cycle (13). Previous experi-
mental and theoretical studies have identified transcription
initiation (i.e., the loading of RNAP onto the promoter re-
gion) as a major source of intrinsic noise (e.g., 13–27). Spe-
cifically, if transcription initiation occurs randomly at a
certain frequency, a mode known as ‘‘nonbursty’’ initiation,
the mRNA number at steady state follows a Poisson
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FIGURE 1 Integrated model of gene expression. (A) This is a sche-

matic showing the current view on the temporal coordination between

transcription, translation, and mRNA degradation in E. coli. RNAP loads

onto the promoter. Once the ribosome-binding site (RBS) is transcribed,

ribosomes load and translocate. mRNA degradation by RNase E can start

on the nascent mRNA. The first ribosome maintains contact with the

RNAP throughout elongation. In our model, a full-length protein is

produced immediately after a ribosome reaches the end of the mRNA.

(B) This is a schematic showing the different steps included in our

TASEP-based model of bacterial gene expression. Transcription starts

at the first base pair of the template, and transcription elongation occurs

by RNAP stepping along the 3000-bps template. Translation initiates at

the first base of the mRNA template (considered here as the RBS), and

translation elongation occurs by ribosome stepping on each nucleotide

along the mRNA template. mRNA degradation starts from the 50 end
of the mRNA and continues concomitant to the motion of the last

ribosome on the transcript. Degraded ribonucleotides are shown in red.

Input parameters of our model are indicated. To see this figure in color,

go online.

Modulation of Protein Expression Noise
distribution, which characteristically shows an mRNA Fano
factor (variance/mean) equal to one. In contrast, if the rate
of transcription initiation varies over time, such as in pulsa-
tile transcription from a promoter that cycles between active
and inactive states, the mRNA levels become more variable
among cells (mRNA Fano factors>1). This ON/OFF model
of transcription, referred to as ‘‘bursty’’ initiation, is sup-
ported by the observation of pulsatile transcription events
in live E. coli cells (28) and by the grouping of RNAPs
along the rRNA operon in electron micrographs (29). The
mRNA Fano factors measured in E. coli span from 1 to
�10, suggesting that both nonbursty and bursty promoters
may operate in vivo (5,25,26).

Cell phenotypes are generally dictated at the protein,
rather than mRNA, level. Noise in protein levels is often
quantified by the squared coefficient of variation (CV2),
which is the squared standard deviation divided by the
squared mean of the protein number distribution (17).
Most current analytical models that calculate the noise
in protein levels assume that the kinetic parameters asso-
ciated with the promoter architecture are the major
contributing factors in protein synthesis fluctuations and
therefore ignore transcription elongation dynamics and
known dependencies between transcription, translation,
and mRNA degradation (18–22). Analytical models that
include transcription elongation exist, but they only
consider limit cases of low transcription initiation rate
(30) or constant RNAP elongation speed (31,32) to neglect
RNAP-RNAP interactions (RNAP congestion) during
elongation. To examine RNAP traffic, modelers have
turned to stochastic simulation-based models. This
approach has shown that RNAP traffic caused by RNAP
pauses can create mRNA and protein bursts from non-
bursty promoters (33–38), highlighting the importance of
considering transcription elongation dynamics when
studying protein expression noise. Including transcription
elongation dynamics in stochastic gene expression models
requires many variables and increases the complexity of
the model. For this reason, previous simulation-based
models have examined special conditions, leaving out
translation, mRNA degradation, and/or bursty transcrip-
tion initiation (33–38).

Here we explore how various scenarios of transcription
elongation dynamics and mRNA degradation affect the
noise initially set by bursty and nonbursty promoters. We
developed an integrative stochastic model of bacterial pro-
tein expression that includes transcription initiation, tran-
scription elongation, mRNA degradation, and translation
as well as established dependencies, such as the coupling
between transcription and translation (39–41), cotranscrip-
tional mRNA degradation (42,43), and the ribosome effect
on mRNA degradation (44) (Fig. 1 A). Simulations of this
model identified new regimes of posttranscription initiation
dynamics that modify the protein expression noise initially
set by the promoter.
METHODS

Modeling transcription, translation, and mRNA
degradation

All steps described in this section (Fig. 1 B) were stochastically simu-

lated using the Gillespie algorithm (45). For stochastic transcription

initiation from a bursty promoter, we generated a series of time points

when the promoter was ON or OFF, assuming that the ON and OFF pe-

riods follow exponential waiting time distributions with average tON
and tOFF, respectively. In the case of a nonbursty promoter, the pro-

moter was assumed to be always ON. Next, we determined a series

of time points for RNAP loading attempts during ON periods, assuming

exponentially distributed waiting times between loading attempts

(average rate kloading). Transcription elongation was modeled by sto-

chastic 1-base pair (bp) stepping based on the totally asymmetric exclu-

sion process (TASEP) algorithm (46–48). The DNA templates were

considered as one-dimensional lattices, where each lattice site corre-

sponded to 1 bp. The stepping rate as a function of template position

was provided as an input. For pause-free elongation, we used an average

speed of kelongation. When appropriate, a different stepping rate (inverse

of the pause duration, tpause) was assigned at a pause site (xpause) for all

or a fraction of RNAPs (pausing probability, ppause). We assumed an

exponential dwell time distribution at each nucleotide position based
Biophysical Journal 114, 1718–1729, April 10, 2018 1719
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on previous experimental observations (49–51). Steric hindrance be-

tween RNAPs was checked before each stepping, assuming an RNAP

footprint of 35 bps (52). Similar to previous elongation models

(33,34,53), we did not include RNAP cooperation upon collision (54)

because the kinetics of this process remain unknown. We assumed tran-

scription termination at the end of the template to be instantaneous;

however, if desired, slower RNAP release can be modeled by using a

slower stepping rate at the last position of the template. After RNAP

trajectories were simulated, the spacing between adjacent RNAPs was

calculated as time ‘‘headways’’ at every nucleotide position along the

gene. Headway is defined as the time interval between two consecutive

RNAP exit events at every nucleotide position. Mathematically, it is the

subtraction of trajectories of two subsequent RNAPs at a given position

(tN(x)-tN�1(x), where tN(x) is the trajectory of the N-th RNAP along the

gene). The distribution of headways is considered as an important char-

acteristic of traffic flow (55) and has previously been used to analyze

RNAP traffic (48).

To model the coupling between transcription and translation, the first

ribosome was loaded upon transcription of the first 33 nucleotides (nts).

This accounts for the footprint sizes of the RNAP and ribosome, 35 bps

and 30 nts, respectively (52,56). The first ribosome then moved on the

nascent mRNA in concert with the RNAP to maintain contact throughout

transcription elongation (39–41). Additional ribosomes were stochastically

loaded based on an exponential waiting time distribution (average rate

kriboloading). These ribosomes made stochastic 1-nt steps at the average

speed (kelongation) to reflect the experimental evidence that the average speed

of RNAP and ribosomes match (40,57). During ribosome translocation, the

same steric hindrance principle used for RNAP translocation was used:

ribosomes were unable to bypass each other on an mRNA, and the first

ribosome was unable to bypass the transcribing RNAP on the nascent

mRNA.

In our model, mRNA degradation began at the 50 end of each mRNA,

assuming an exponential waiting time distribution between initial syn-

thesis and degradation (with an average lifetime, tmRNA). Once the first

nucleotide degraded, further ribosome loading was prevented, and the

remaining nts on the mRNA were removed concomitant with the move-

ment of the last ribosome on the transcript (58). This model is consis-

tent with experimental observations of 50-to-30 net directionality of

mRNA degradation (42,59,60) and with the ribosome shielding effect

(44). In most simulations, protein degradation was considered negligible

because most bacterial proteins are very stable (61). However, in some

cases, protein degradation was added to the model, assuming first-order

kinetics and an average protein lifetime of tprotein, as previously done

(e.g., 36). The whole gene expression process (transcription, translation,

and mRNA degradation) was simulated for a total duration of 40 min.

mRNA levels reached steady state within 10 min of the simulation

time under the parameters we used. We performed a total of 1000 sim-

ulations for each scenario.
Analysis of the simulated data

We counted one mRNA when the first nucleotide (50 end) was present,

unless noted otherwise. To obtain steady-state distributions of mRNA

numbers, we counted the number of mRNAs made but not yet

degraded at t ¼ 30 min of simulation time (an arbitrary choice of

time when mRNA levels were in steady state). We used this distribu-

tion to calculate the mean and Fano factor values for each mRNA

distribution.

Protein number increased by one every time a ribosome reached the end

of a transcript. To obtain distributions of protein numbers, we summed all

proteins made from a DNA template between t ¼ 20–30 min of simulation

time, which ensures steady state in mRNA levels. This method of counting

proteins is equivalent to measuring protein accumulation over a period of

time. Means and CV2 of protein numbers were calculated from these

distributions.
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All error bars indicate an estimation of the standard error of the mean

calculated by bootstrap resampling of the original sample size (1000 simu-

lations) 3000 times.
RESULTS

Comparison between nonbursty and bursty
promoters with similar effective transcription
initiation rates

Although our integrated model of gene expression (see
Methods) can be applied to any gene, we modeled the
expression of the 3075-nt lacZ gene of E. coli, which is a
popular model in quantitative gene expression studies.
Given an average RNAP speed (kelongation) of 30 nt/s on
the lacZ region (Fig. S1 A) (40), the input average RNAP
dwell time at each base position x was 1 nt/kelongation ¼
1/30 s. We used the experimentally determined mean lacZ
mRNA lifetime of 90 s (Fig. S1 B) as the first-order rate
constant for 50-end degradation (tmRNA). For transcription
initiation, we varied the RNAP loading rate on the DNA
template to achieve a range of expression levels seen in
experiments (25). For translation initiation, we used an
experimentally-derived average rate of ribosome loading
(kriboloading) of 0.2 s�1 (62,63).

To build on previously known promoter properties, we
considered two different types of promoters: nonbursty
and bursty. Although the lac promoter is thought to be
bursty (25,64), we also considered nonbursty conditions
for comparison and to expand our approach to other pro-
moters. The complex, multistep kinetics of transcription
initiation (65,66) was approximated as one rate-limiting
step, as previously done (e.g., 25,26). Transcription initia-
tion from nonbursty promoters was modeled as a Poisson
process with an RNAP loading rate, kloading, which is the in-
verse of the loading interval, tloading (Fig. 2 A). This param-
eter was varied to obtain an output RNAP loading interval
between 3 and 500 s, reflecting the decreasing strength of
a constitutive promoter. For the bursty case, the promoters
cycled between ON and OFF states, with rate constants
kON (rate of switching from OFF to ON state, 1/tOFF) and
kOFF (rate of switching from ON to OFF state, 1/tON).
RNAPs were loaded only during the ON state at an interval
of tloading (RNAP loading interval during the ON state)
(Fig. 2 A) (22–25). This model resulted in multiple RNAP
loading events clustered in time in a pulsatile manner. We
used experimentally derived tOFF ¼ 143 s and tloading ¼
2.2 s (25), and varied the fraction of time spent in the ON
state (fON ¼ tON/(tON þ tOFF)) from 0.005 to 0.99 to
achieve an output average RNAP loading intervals between
3 and 500 s.

When we compared nonbursty and bursty promoters of
similar strength (i.e., yielding similar effective transcription
initiation rates and numbers of mRNAs at steady state), we
found expected differences at intermediate RNAP loading
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moters on RNAP traffic and mRNA number distri-

bution. (A) These are schematics for two modes of

transcription initiation. The promoter states are

shown in cyan, and RNAP loading events are repre-

sented by orange bars. (B) These are example tra-

jectories of RNAP loading and translocating on

individual DNA templates over 10 min based on

different transcription initiation conditions: for

nonbursty transcription initiation, the input tloading
was varied as 500, 30, 15, 6, 2.5 s (from left to

right); for bursty transcription initiation, fON was

varied as 0.005, 0.1, 0.25, 0.5, 0.99 (from left to

right). The average loading interval (gray box)

was calculated from the simulation model output.

(C) Shown are steady-state distributions of

mRNA numbers per DNA template under the tran-

scription initiation conditions used in (B). mRNAs
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base. See Fig. S2 B for the results using an
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in situ hybridization experiments. (D) Fano factors
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used in (B) and (C). To see this figure in color, go

online.

Modulation of Protein Expression Noise
intervals (e.g., 7, 15, and 30 s in Fig. 2, B–D). First,
bursty promoters showed pronounced bursts of RNAP
loading events followed by notable OFF periods, resulting
in temporal profiles of RNAP trajectories that were very
different from those obtained from a nonbursty promoter
of similar strength (Fig. 2 B). Second, the distribution of
RNAPs on the DNA templates was wider for bursty pro-
moters than for nonbursty promoters, with a noticeable
peak close to zero due to the stochastic occurrence of OFF
and ON states (Fig. S2 A). Third, the steady-state distribu-
tions of mRNA numbers for bursty initiations were broader,
despite having similar mean mRNA numbers (Figs. 2 C and
S2 B). Fourth, the distribution of ‘‘headways,’’ which is
defined by the time interval between two adjacent RNAPs
passing a given DNA position (55), appeared largely expo-
nential for nonbursty promoters (Fig. S2 C). In contrast,
RNAPs from bursty promoters displayed either small head-
ways arising from loading events within an ON period, or
large headways arising from loading events separated by
an OFF period (Fig. S2 C).

In both promoter cases, the headway set at transcription
initiation was conserved until the end of transcription, as
shown by the near-perfect overlap in distributions between
headways at initiation and termination (Fig. S2 C). The con-
servation of the promoter-dependent ‘‘burstiness’’ until the
end of transcription elongation was also shown by
comparing the Fano factors calculated from the 50 and 30

ends of the mRNA. For both promoter types, the 30-end
mRNA Fano factor remained the same as the 50-end
mRNA Fano factor (one for nonbursty promoters and
greater than one for bursty promoters) (Fig. 2 D). Although
a previous modeling study (34) suggested that RNAP
bursts set by a bursty promoter can completely disappear
during transcription elongation (i.e., 30-end mRNA Fano
factor ¼ 1), we found that such a phenomenon appears
when 1) RNAPs are loaded back-to-back during the ON
Biophysical Journal 114, 1718–1729, April 10, 2018 1721
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period and 2) the RNAP footprint size is modeled as 1 bp (as
in 34) instead of 35 bps (Fig. S3). With the smaller RNAP
size, many RNAPs load back-to-back during a given ON
period, augmenting RNAP congestion and headway separa-
tion due to extensive interactions (Fig. S4). We expect that,
under realistic parameter values, the memory of a bursty
promoter’s ON/OFF switch is largely maintained
throughout transcription elongation, at least in the absence
of RNAP pauses.

At transcription initiation frequencies that were either
very low or very high (e.g., average loading interval
z500 s or 3.5 s), bursty promoters were virtually indistin-
guishable from nonbursty promoters (Figs. 2, B–D and
S2). At very low initiation frequencies, the ON period
was too short to accommodate enough RNAP loading
events to exhibit transcriptional bursts. This is consistent
with the experimentally determined mRNA Fano factor
of 1 for the repressed lacZ promoter (25). At very high
initiation frequencies, the OFF period was so short that it
became negligible (3). These results suggest that transcrip-
tional bursts are unlikely for genes at either side of the
expression spectrum.

Importantly, our simulations identified a dynamic range
of transcription initiation rates for which our model pro-
duced a clear difference between nonbursty and bursty
promoters (Figs. 2 and S2). When we examined protein pro-
duction under this range of transcription initiation rates, the
temporal profile of protein production was largely dictated
by the temporal profile of RNAP loading onto the promoter.
Nonbursty transcription initiations yielded a relatively con-
stant number of proteins made from a DNA template over
time (Fig. 3 A). In contrast, bursty transcription initiations
resulted in bursty protein productions, showing periods of
time without any new protein production from the DNA
template (Fig. 3 A). As a result, bursty promoters produced
the expected broader protein number distribution in compar-
ison to nonbursty promoters, despite having the same mean
protein production (Fig. 3 B). We also verified that the noise
in protein levels increased with increasing RNAP loading
intervals (i.e., decreasing transcription initiation rates)
from both promoter types (Fig. S5 A), consistent with
analytical models (18–22).
Short mRNA lifetimes facilitate production
of protein bursts

Once we had established parameter conditions that clearly
distinguish bursty and nonbursty transcription initiations,
our goal was to examine how posttranscription initiation
processes may affect the burstiness (or lack thereof) set
by the promoter. First, we considered mRNA degradation.
Although the lifetime of the mRNA is known to impact
the amount of protein produced (the mean), its effect on
the noise in protein levels (CV2) is less clear. If both the
mRNA lifetime and the transcription initiation rate were
1722 Biophysical Journal 114, 1718–1729, April 10, 2018
changed to maintain the same average protein level, the
change in transcription initiation is the dominant factor
affecting noise (Fig. S5 B), which is consistent with a
previous report (37). But does the CV2 vary when the
mRNA lifetime changes independently of the transcrip-
tion initiation rate? When we applied analytical solutions
that consider mRNA degradation, we found that they
give different answers; some (19,20) predict a negative
effect, whereas others (21,22) predict no effect (Fig. S6,
A and B).

Simulations of our model showed that the observation of
a bursty promoter leading to bursty protein production
(Fig. 3 A) was dependent on the use of a 90-s mRNA life-
time. When the lifetime of the mRNAwas increased without
changing other parameters, protein bursts generated from
bursty promoters became less apparent, as illustrated with
a 10-min mRNA lifetime (Fig. 3 C). Although bursty pro-
moters still produced broader protein number distributions
than nonbursty promoters (Fig. 3 D), the CV2 from both
types of promoters was reduced by the increase in mRNA
lifetime (Fig. 3 E). In both cases, the reduction in protein
expression noise was correlated with an overall attenuation
of temporal fluctuations of protein synthesis, as evidenced
by the virtual disappearance of periods of no protein produc-
tion (Fig. 3 F).

We reasoned that the reduced temporal fluctuations of
protein synthesis stemmed from the mRNA lifetime being
much longer than the RNAP loading interval, resulting in
increased protein production between transcription events.
Consistent with this idea, the noise in protein expression
for both nonbursty and bursty promoters increased either
by shortening the mRNA lifetime for a given average
RNAP loading interval or by increasing the average
RNAP loading interval for a given mRNA lifetime
(Fig. 4, A and B). In these simulations, protein degradation
was neglected because most bacterial proteins are long-
lived (61). However, we obtained similar trends when we
included protein degradation in our model and simulated
an arbitrary average protein lifetime of 20 min (Fig. S6,
C and D).

When the mRNA lifetime was much smaller than the
average RNAP loading interval (e.g., 90 s vs. 500 s), a non-
bursty promoter was able to produce protein bursts (Fig. 4,
C and D), resulting in higher protein production noise (CV2)
than when the mRNA lifetime was longer than the average
RNAP loading interval (e.g., 90 s vs. 15 s) (Fig. 4 E). This is
consistent with in vivo observations that occasional firing of
the repressed lac promoter (average RNAP loading interval
of 40–150 min under the experimental condition used in the
cited studies) causes spikes of protein production (62,67).
This is because each mRNA is degraded before the next
one is made, resulting in well-separated bursts of protein
production.

These results suggest that short mRNA lifetimes (in the
minute time scale), a common characteristic of bacterial
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mRNAs (42,59,68), facilitate bursty protein synthesis and
increase the variability in protein levels across the popula-
tion for both bursty and nonbursty promoters.
Sequence-dependent pauses can attenuate RNAP
bursts and reduce protein expression noise

So far, our simulations considered pause-free elongation. In
in vitro experiments, RNAPs can pause seemingly at
random along the DNA template (49,69,70). Modeling
studies have shown that long stochastic (sequence-indepen-
dent) pauses can produce RNAP bursts from nonbursty pro-
moters, because RNAPs can pile up behind the paused
RNAP and form a convoy that travels together once the
pause ends (33–36). RNAPs are also known to pause at spe-
cific DNA sites for durations that generally range from sec-
onds to �1 min (49,51,71–80). Pause sites are common in
E. coli based on RNAP profiling experiments (81,82). Previ-
ous modeling work has shown that sequence-dependent
pauses of 100 or 500 s generate protein bursts from non-
bursty promoters due to ribosome piling up behind the
paused RNAP (37). However, such long-lived RNAP pauses
are expected to be rare, and it is unclear whether shorter
pauses at specific DNA sites can still affect the noise in pro-
tein levels. Furthermore, to our knowledge, the role of
sequence-dependent RNAP pauses has only been reported
in the case of nonbursty promoters. Whether pause-prone
sites affect gene expression noise from bursty promoters is
unknown.

In our model of sequence-dependent pausing, RNAPs
resided at each nucleotide on average for 1/30 s as before
except at the pause site (xpause), where we varied the average
RNAP dwell (tpause). The probability of a pause at the
particular site (ppause) was also considered, such that if a
pause occurred, the dwell time was randomly chosen
from an exponential distribution with a mean dwell time
Biophysical Journal 114, 1718–1729, April 10, 2018 1723
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of tpause (49–51). For illustration purposes, we modeled a
single pause site in a 3-kbp gene, driven by either a non-
bursty or bursty promoter with an average RNAP loading
interval of �15 s. Even at ppause ¼ 100%, pauses shorter
than the RNAP loading interval, such as tpause ¼ 1 s, had a
negligible effect on RNAP traffic regardless of the
promoter type, as shown by the near-perfectly overlapping
distributions of Dheadways (the difference between the
headway at the end of elongation and the headway at the
start for two consecutive RNAPs) between the 1-s pause
and the no-pause cases (Fig. S7).

When the pause was similar to (e.g., tpause ¼ 10 s) or
longer than the RNAP loading intervals and the probability
of pausing was high (e.g., ppause �80%, as for the his and
ops pauses (51,76,79)), the pause resulted in two effects on
RNAP traffic: 1) RNAP piling upstream of the pause site
and 2) a change in RNAP headway downstream of the
pause. In the case of a nonbursty initiation, these effects
(Fig. 5 A) resulted in a broader distribution of Dheadways
between subsequent RNAPs, but the Dheadway distribu-
tion remained centered around zero, with no net change
(Fig. 5 B). The nonbursty conditions remained until the
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end of the template because the headway between subse-
quent RNAPs either increased or decreased with similar
probabilities. As a consequence, the Fano factor was
maintained at �1 at both the 50 and 30 ends of the
mRNA (Fig. 5 C), and the noise in protein levels (CV2)
was not affected (Fig. 5 D). Unlike a 100-s pause (37), a
10-s pause did not provide sufficient time for ribosomes
to pile up behind the paused RNAP to create substantial
protein bursts (Fig. S8). In the case of bursty promoters,
the frequent back-to-back loading of RNAPs (i.e., small
initial headway) caused the majority of RNAPs to catch
up with each other at the pause site (Fig. 5 E). As most
RNAPs in the pile will also stop at the pause site,
they will resume traveling with a new headway dictated
by the pause duration. As a result, the headway
between RNAPs showed a net increase after the pause
site (Fig. 5 F). This situation is analogous to car traffic
near a tollbooth. The congested traffic before the tollbooth
becomes fluid after the cars stop for the toll. The pause-
dependent increase in headway led initial RNAP clusters
to largely dissipate into a nonbursty-like situation after
the pause, as seen in the example RNAP trajectories
(Fig. 5 E) and in the large decrease in mRNA Fano factor
between 50 and 30 ends (Fig. 5 G). In other words, pauses
similar to or longer than RNAP loading intervals dimin-
ished the effect from the bursty promoter’s ON/OFF switch
by increasing the RNAP headway after the pause. This
memory loss of initial conditions lowered protein expres-
sion noise (Fig. 5 H) by smoothing the temporal profile
of protein production (Fig. 5 I). Pauses also resulted in a
noise-attenuating effect when we considered protein degra-
dation (see Fig. S9 for a protein lifetime of 20 min).

When we examined the effect of imposing two pause sites
(tpause¼ 10 s, ppause ¼ 100% and xpause¼ 1500 and 2500 bp)
on a gene driven by a bursty promoter, we found that the
second pause did not affect the RNAP headway as much
as the first pause (Fig. S10, scenarios (ii) vs. (i)). We
reasoned that the headway increase generated by the first
pause reduced the number of RNAPs that pile up at the sec-
ond pause site. However, when the second pause was longer
than the first (e.g., tpause ¼ 10 and 15 s, respectively), it
further increased RNAP headways (Fig. S10, scenarios
(iii) vs. (i)), suggesting that multiple long-lived pauses can
have additive effects on RNAP traffic.
DISCUSSION

In this study, we highlight the role of posttranscription
initiation processes, such as mRNA degradation and
RNAP pausing, in altering the intrinsic noise in protein
expression dictated at transcription initiation by the
promoter.

Although the lifetime of mRNA is well known to alter the
amount of proteins produced, its potential effect on protein
noise was less clear based on previous theoretical studies
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Modulation of Protein Expression Noise
(Fig. S6, A and B). We found that mRNA lifetimes longer
than the OFF period of a bursty promoter dampen the tem-
poral fluctuations of protein synthesis (Fig. 3 A vs. Fig. 3 C).
Because one mRNA typically generates more than one pro-
tein, longer mRNA lifetime reduces the effect of the bursty
promoter’s ON/OFF switch (Fig. 4 B). mRNA expression
from nonbursty promoters also fluctuates over time due to
the stochastic nature of transcription initiation. Hence, the
Biophysical Journal 114, 1718–1729, April 10, 2018 1725
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mRNA lifetime also smooths temporal fluctuations of pro-
tein production in the case of nonbursty promoters (Figs.
3 C and 4 A). Altogether, this suggests that mRNA degrada-
tion is a factor to consider when studying noise in gene
expression, especially given that the lifetimes of bacterial
mRNAs can vary over an order of magnitude (42,59,68).

RNAP pausing is another important posttranscription
initiation event that can affect noise. So far, pauses have
been viewed as noise-generating factors (33–38). Our
work suggests that RNAP pauses can also attenuate noise
by modulating RNAP traffic downstream of the pause
(Fig. 5, E–I). The RNAP headway, which shapes the tempo-
ral fluctuations in mRNA and protein production, can be
altered by a pause (Fig. 5, E and F) to the point that the
memory of a bursty promoter’s ON/OFF switch can be
lost after the pause site (Fig. 5 G).

Whether transcriptional pausing attenuates or generates
mRNA and protein bursts depends on the probability of
RNAPs to stop at a particular DNA site. If an RNAP pause
occurs stochastically at a random position along the gene
(i.e., low probability of pausing at any given position), it
can create a line of RNAPs behind the pause that travels
as a convoy when the pause ends (33–36). This is akin to
a traffic light situation in which all cars stopped at a red light
move together when the light turns green. The size of the
RNAP convoy, which dictates the size of mRNA and protein
bursts, increases with the duration of the pause, the RNAP
loading rate and the RNAP translocation speed. A similar
noise-generating effect on RNAP traffic is expected if a
low-probability pause occurs at a specific DNA sequence
(36,38). However, if a pause has a high probability of occur-
ring, it has an opposite noise-attenuating effect. Here, as
mentioned before, the traffic analogy is with a tollbooth
where all cars must stop, one by one, before resuming travel
with a new headway. Similarly, RNAPs accumulated behind
the pause have to stop at the pause site before being released
one RNAP at a time (Fig. 5 E). Emergence from the pause
site results in more fluid traffic, diminishing any pro-
moter-induced noise effects (Fig. 5, G and H).

In vitro single-molecule experiments have shown that the
probability of an RNAP pause at a given location correlates
with its duration (51). Therefore, sequences that generate
pauses long enough to alter RNAP traffic are likely to
be efficient at pausing RNAPs, favoring the ‘‘tollbooth’’
noise-attenuating mechanism that we report. That said,
low-probability pauses that are long-lived are also likely
to occur inside cells. For instance, in E. coli, RNAPs occa-
sionally retain the initiation sigma factor, s70 during elonga-
tion (83–93), and these s70-associated RNAPs can pause at
promoter-like sequences within genes for very long periods
of time (minutes) (85,88,91,92,94). Since a minority of the
RNAPs retain s70 after initiation (83–92), only a fraction of
the RNAP population will pause, effectively triggering the
‘‘traffic-light’’ noise-generating mechanism described above
(Fig. S11). Furthermore, because of the coupling between
1726 Biophysical Journal 114, 1718–1729, April 10, 2018
transcription and translation in bacteria, these long-lived
RNAP pauses may also affect the traffic of ribosomes, re-
sulting in sharper protein bursts (Fig. S11).

Location is yet another important pause property to
consider. In the E. coli genome, RNAP pause sites are
often located near promoters (81,83,85,86,91,95). RNAP
piling behind the pause site may extend to the promoter
and prevent the loading of additional RNAPs (53,95–97).
Since the transcription initiation rate inversely scales
with CV2 (Fig. 4, A and B) (15,16,19), this promoter
blockage can indirectly increase noise (Fig. S12, A and
B). Furthermore, RNAP stalling near the promoter
can also result in reduced translation initiation rates
(Fig. S12 C) when ribosomes piling on the nascent tran-
script reach and block the ribosome-binding site (RBS)
(Fig. S12 D). This second effect on protein expression
rate stems from the temporal coupling between transcrip-
tion and translation in bacteria.

Thus, transcriptional pausing can create opposite effects
on noise depending on the pause probability, duration, and
location. Interestingly, the longevity of a pause site in a
Salmonella magnesium transporter gene has been shown
to change in response to varying concentrations of magne-
sium (79). This example raises the possibility of environ-
mental regulation of noise by modulating pause duration.
Overall, our study stresses the importance of a comprehen-
sive model of gene expression when estimating noise,
including for the analysis of genome-wide trends in gene
expression noise (3) since promoter architectures and pause
properties vary among genes.

As congested traffic dynamics of RNAPs and ribosomes
have yet to be solved analytically, a simulation-based
model such as ours provides a convenient tool for testing
different scenarios and for estimating the combinatorial ef-
fect of noise modulators. For this purpose, we provide our
MATLAB-based simulation code and detailed guidelines
in the Supporting Materials and Methods. Simulations
generate mRNA and protein distributions, as well as
RNAP and ribosome traffic dynamics. Although we tested
the model using the tON, tOFF, and tloading parameter values
reported for the lacZ promoter, our model is generalizable
and can be extended to genes with different promoter ar-
chitectures by simply varying tON, tOFF, and tloading. A lim-
itation of our current model is that it does not include
processes, such as physical ‘‘pushing’’ between RNAPs
(54) and potential premature termination of transcription
and translation at RNAP- and ribosome-congested sites
(98,99), which may mitigate pause-dependent effects on
protein expression noise. Determining the kinetic parame-
ters of these processes will facilitate their integration in
future models.

mRNA lifetimes and RNAP pauses are evolvable features
at the gene-specific level because they are sequence-depen-
dent and can change through mutations. Our work predicts
that mutations altering pause conditions (e.g., duration and
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probability) or mRNA lifetime (e.g., by altering mRNA sec-
ondary structure at the 50-untranslated region) will affect
protein expression noise at the level of individual genes.
Our work also suggests possible ways by which protein
expression noise may change globally. For example, muta-
tions that render RNAP less prone to pausing (e.g.,
rpoB5101 mutation in E. coli (76)) are expected to affect
the protein expression noise of pause-sensitive genes.

In summary, by comparing bursty and nonbursty tran-
scription initiations under a variety of scenarios, we high-
light conditions under which bursty promoters produce
nonbursty protein production and nonbursty promoters
generate bursty protein profiles. These findings underscore
the combinatorial origin of protein expression noise.
Noise-modulating factors can have opposite effects depend-
ing on parameter conditions. The combinatorial effect of
these factors may affect how genome sequences evolve by
modulating phenotypic variability within a population.
Combinatorial approaches could also be exploited for ge-
netic engineering in synthetic biology. For instance, our
findings suggest conditions to maximize protein expression
noise and phenotypic diversity: a bursty promoter, a short
mRNA lifetime, and an absence of long RNAP pauses.
The opposite conditions are expected to minimize pheno-
typic heterogeneity.
SUPPORTING MATERIAL
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