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Abstract

Displaying a single representative conformation of a biopolymer rather than an ensemble of states 

mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. 

However, there are few apparent options due to the fixed nature of print media. Here we suggest a 

standardized methodology for visually indicating the distribution width, standard deviation and 

uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single 

representative conformation. Of particular note is that the visualization method employed clearly 

distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this 

method to ligand binding, suggesting a way to indicate the expected error in many high throughput 

docking programs when visualizing the structural spread of the output. We provide several 

examples in the context of nucleic acids and proteins with particular insights gained via this 

method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-

deoxyuridine-5-O-monophosphate) – a topoisomerase-1 (Top1), apoptosis-inducing poison – and 

nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss 

how these methods can be extended to any macromolecular data set with an underlying 

distribution, including experimental data such as NMR structures.

1. Introduction

Discussing the static images of proteins found in journals, Henzler-Wildman and Kern 

comment, “Physicists, however, will object to a static picture: they see proteins as soft 

materials that sample a large ensemble of conformations. …” [1] Indeed, we do object. 

Since the crystallography work by Austin et al. in 1975 on myoglobin [2–4] there is 

widespread understanding that proteins exist in statistical ensembles of states rather than 

static conformers, with similar understandings emerging for biopolymers in general [1,4–7]. 

The specific objection presented here is that despite decades of such knowledge, one of the 

most basic practices when dealing with distributions of data has yet to become standard for 

visualizing macromolecules – error bars. Displaying single structures without some 

indication as to the variance in the distribution those structures represent at best leaves it to 

the reader to imagine an ensemble and at worst deceives a reader into believing that there is 

a single state in which the molecule exists [1]. Here we argue for the need to indicate 

underlying distributions of states when showing macromolecular structures and present 

statistically rigorous methodologies – involving expected error and standard deviation (see 

Section 4) – for doing so.
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Admittedly, the leap from error bars around a point on a scatter plot or a bar on a histogram 

to visualizing the uncertainty in a conformation is not obviously straightforward. Therefore, 

we present several examples and the underlying methodologies. Our first example is of 

representative structures from Molecular Dynamics (MD) simulations, a useful and 

increasingly common tool in drug discovery [8,9], generating ever larger ensembles of states 

as available computational power increases [10,11]. Here we show structures from all-atom 

MD simulations of a therapeutic oligomer of FdUMP (5-fluoro-2-deoxyuridine-5-O-

monophosphate) [12–15]. The large number of structures generated in MD trajectories often 

requires partitioning conformation space into a handful of macrostates. Typically a 

representative from each macrostate – say a mean or median structure – is then displayed. 

However, displaying only the representative with no indication of uncertainty obscures the 

width of the underlying distribution. We propose a method based on combining clustering – 

quality threshold clustering [16] for the purposes of this manuscript – combined with 

statistical analysis as described in Section 4.

As an example of this method’s application to structure prediction and protein-protein 

interaction (PPI), we show predicted interactions between SufC and SufD, Fig. 4, from 

Bacillus subtilis [17–24] responsible for ATP hydrolysis and thought to be analogous to 

similar proteins in Escherichia coli [25]. In addition to the most likely complex, we use the 

expected error of the PPI calculations to choose additional structures to display – Fig. 4b–d. 

Our next two examples, Figs. 5 and 6, extend to high-throughput, small ligand docking 

software that predicts in vivo interactions. Such docking software carries with it an expected 

error, which we translate to conformation space (see Section 4) and display along with the 

highest ranked docking pose – Figs. 5b–d and 6b–d. We also discuss how these methods can 

be extended to any macromolecular data set with an underlying distribution, including 

experimental data from NMR and X-ray crystallography studies, concluding with a final 

example of such an application, Fig. 7. To aide others in using these methods, we have made 

example Python [26] scripts publicly available online [27], supporting information Fig. 1.

One common way to show the distribution of states underlying a representative structure is 

to visualize a superposition of states [28] that have been aligned by minimizing a distance 

metric between the structures – a method that has been applied to MD, NMR and X-ray 

crystallography data sets, of which we cite a few examples [28–32]. Within these examples 

we see both sets of all solid structures superimposed, similar to panel b in all figures herein, 

where every structure is given equal visual weight. However, this visualization method is 

often used without a statistically rigorous method for selecting frames. To emphasize the 

difference between such selection methods and ours, in Figs. 1–3, we choose the additional 

frames in panel b randomly. In the remaining figures of the paper, we use the statistical 

measures described in Section 4.

For displaying additional conformers, we also see the use of transparency, in which a single 

representative structure is given the most visual weight with the additional conformations 

seen as a shadow, panel c in all figures, or diffuse cloud, panel d in all figures. For each 

example system, we include a side-by-side comparison of a traditional structural ensemble 

diagrams (panels a and b, except Fig. 5) and our suggested styles (panels c and d), drawn 

with the same representation and viewpoint so that readers may judge for themselves both 
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the value in displaying a clearly defined metric of uncertainty and the usefulness of our 

preferred visualization styles. No matter the display method, we clearly indicate the 

statistical metric for choosing these conformations, as the primary point of this work is to 

show the value in indicating uncertainty in visualization of macromolecule conformers.

Another method is to adjust the width of a residue – or other substituents – based on the 

width of its distribution of positions [28,33]. These visualizations have the advantage of 

maintaining the visual simplicity of a single structure and provide information on each 

substituent’s degree of contribution to overall structural uncertainty. There are also more 

abstract methods for visualizing these structural varieties, such as that used by Best and 

Hege to plot sets of interchanging structures or even entire trajectories on planar maps [34]. 

Such a method brings with it the analysis methods for planar graphs in general [35–38], 

allowing for a great deal of information to be extracted from the transitions among 

conformations [34,39,40]. While far less abstract than mapping to a planar graph, the 

methodology we suggest has a higher level of statistical rigor than simple overlays and is 

intuitively more straightforward than more abstract methods.

In addition to a representative structure, we choose which substituents to display based on a 

statistical measure relevant to the data. We display a median – or otherwise representative – 

structure as solid and each frame in some subset of the distribution as a shadow or cloud – 

e.g., those falling within one standard deviation of the median, panels c and d in Figs. 1–3, 

or those within some expected error of the representative, Figs. 4–6. In the shadow 

representation, overlapping shadows add their opacity to one another, distinguishing 

between isotropic and anisotropic motion based on the relative darkness of areas in the 

shadow. In the cloud representations, this distinction is diminished in favor of seeing the 

variance in three dimensions. Our methods differ from others primarily in the use of a 

statistical measure – other than random selection, even sampling or the entire distribution 

width – to choose the superimposed frames. To demonstrate the value of indicating the 

statistical measure used, we select additional frames using an uncertainty-based cutoff and 

state the measure used.

2. Results and discussion

2.1. F10 and SufC – MD examples

Applying our visualization method to MD trajectories of a therapeutic oligomer of FdUMP 

(5-fluoro-2-deoxyuridine-5-O-monophosphate) [12–15], we have observed shifts in the 

ensemble of preferred structures resulting from the presence of various ions. When 

visualizing the macrostate representatives (median structure), we include all frames in that 

macrostate that are within one RMSD-based standard deviation (see Section 4) of the 

representative conformation. We discern from these visualizations that in the presence of 

calcium ions, F10 is in a stable but seemingly unstructured state, Fig. 1. We conclude the 

conformation is unstructured in that it is fully extended and has no obvious base interactions. 

The small variance in the shadows and cloud, Fig. 1c and d, serves as a conformation space 

error bar showing one standard deviation.

Melvin and Salsbury Page 3

J Mol Graph Model. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparing this structural ensemble to one from a simulation of F10 in the presence of zinc, 

Fig. 2, we see that the zinc-solvated distribution of states is more structured but less stable. 

Additionally, here we see that layering shadows, Fig. 2c, quickly distinguishes between 

isotropic and anisotropic motion. Bases’ whose motion is more localized show darker in the 

preferred position, while bases’ whose motion is isotropic have roughly the same opacity 

over the range of positions. From these variations in shading, we might infer that zinc is 

preferentially stabilizing some of the bases.

Additional analysis needs to be done before formally reporting conclusions about the 

structure and dynamics of F10 in the presence of various ions. However, we were able to 

draw immediate, statistics-based inferences about F10 from these visually simple images, 

panels c and d of Figs. 1 and 2. These examples illustrate the ease and simplicity with which 

statistically relevant information about biopolymer structural ensembles can be displayed by 

calculating a standard deviation from some – in this case median – structure and displaying 

as a shadow or cloud all frames within the distance. While the uncertainty displayed in these 

images is RMSD-based, the essential idea could be transferred to any measure that can be 

mapped to conformation space. As demonstrated by analysis of these images, they are able 

to convey more useful information than the primitive superposition shown in panel b. 

Furthermore, regardless of the visualization method, the use of a common statistical measure 

to select the frames in Figs. 1 and 2 allows a reader to immediately understand the 

information conveyed by the visualization.

Using this visualization method, we have also observed the stability of a homology-

predicted structure of SufC from B. subtilis. The lowest order RMSD-based cluster, Fig. 3, 

captures 50% of the MD frames and shows little variance from the representative structure. 

Furthermore, the bulk of the fluctuations within that cluster occur in loops. From the 

conformations within one standard deviation of the median, we see that the alpha helices and 

beta sheets move little within the cluster relative to the unstructured loop (Fig. 3c and d). 

Just as in the above nucleic acid example, adding frames within one standard deviation 

indicates the confidence level in the visualized structure. In this protein example, we see 

little uncertainty in the secondary structure regions of the protein and more uncertainty in 

the unstructured regions.

2.2. B. subtilis – a PPI example

In order to suggest candidate residues for mutation studies of B. subtilis, we have predicted 

the interactions of SufC and SufD – two proteins responsible for ATP hydrolysis when in 

complex with one another. According to the Critical Assessment of PRedicted Interactions 

(CAPRI) experiment [41], the set of top 50 predictions returned by PPI software ZDOCK 

[42–44] for a given system has a 51% chance of containing at least one acceptable structure 

prediction (defined by an RMSD cutoff from an experimental crystal structure [45,42]). 

Therefore, in addition to the top ranked ZDOCK prediction, we display the next 49 highest 

ranked predicted structures as additional conformers, Fig. 4b–d.

From this image, we are immediately able to see the high level of variance in the predicted 

interactions. The SufD (orange) poses are related to one another by a smaller range of 

orientations than the SufC (pink) poses. From these observations, we conclude that there is 
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much uncertainty in ZDOCK’s prediction of SufC’s orientations relative to SufD. 

Additionally, there are no areas of shadow as dark as those in Fig. 2c, indicating little 

commonality among the positions of secondary structural elements in the top 50 docking 

predictions. Small shifts would result in much overlap, making some regions of the shadow 

much darker, as seen in Fig. 2c. By visualizing the uncertainty of PPI output we quickly 

conclude there is a high level of uncertainty and that we need to either rethink our docking 

strategy or find a structural refinement methodology that can increase our confidence in the 

structure predicted before proceeding.

Regardless of how the structure prediction work continues, though, the value in reporting the 

uncertainty is particularly clear in this example. CAPRI trials report that the top structure 

from ZDOCK has a 12% chance of being an acceptable structure [42]. If only the top 

prediction were shown, Fig. 4a, it would be 88% likely our displayed result is not an 

acceptable docking pose. Hence, visualizing that structure alone would be useless to anyone 

interested in the interactions between the two proteins. By showing the top 50 predictions, it 

is more likely than not that an acceptable docking pose is contained therein, and we have 

made it clear through these additional conformations that there is a high level of variance 

among the potential interaction geometries.

This system is the clearest of our examples for the utility of our particular visualization 

scheme (panels c and d in all figures). When the additional conformers within the expected 

error of ZDOCK are displayed as solid superimposed frames, Fig. 4b, it is difficult to see the 

secondary structure of any conformation or indeed discern any single conformation at all, a 

difficulty which is reduced by highlighting a representative structure, Fig. 4c and d. From 

this example, we hope the reader takes away the general importance of visualizing 

uncertainty in PPI complex predictions and clearly indicating the measure of error used. Just 

as showing error bars without indicating the measure they represent would be useless for a 

viewer, showing the variance in a conformation is not very useful without a clear statement 

of the associated underlying measure of uncertainty.

2.3. Applications to high throughput ligand docking

Beyond determining the structure of SufC and SufD in complex with one another, we are 

interested in the complex’s interactions with ATP, Fig. 5. In addition to the model with 

lowest free energy of binding according to Autodock Vina, we also visualize all predictions 

within Vina’s expected error of 2.85 kcal/mol of the top model [46], Fig. 5b–d. Immediately, 

we see that there is a preferred binding pocket, as all models within the expected error of the 

top are in the same region. Upon zooming in on the ATP binding pocket, Fig. 5b–d, we see 

that the adenine’s position fluctuates more than the phosphate groups. That is, the adenine 

base is mostly responsible for the variance in the predicted docking poses. From this 

observation, we might infer there is a residue on SufC (red) in the binding pocket, that is 

highly attracted to the negatively charged phosphate groups and that adenine itself may not 

be directly interacting with the protein complex. Aside from possible interpretations, though, 

this example demonstrates how visualizing the expected error in small ligand docking allows 

for interpreting the confidence level of the docking software. In this case, we would be more 
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confident in a predicted position of one of ATP’s phosphate groups than that of the nucleic 

acid.

We also applied this error visualization scheme to high throughput dockings of F10 to 

human serum albumin, Fig. 6. After an ensemble docking run, we displayed the top 

predicted model and all models within AutoDock Vina’s expected error, Fig. 6b–d. From 

this visualization we see that there is a wide variance in the conformations predicted to dock 

with albumin. There are two clear commonalities among those docking poses, though. First, 

all models involve surface docking. Second, within the expected error, F10 prefers to dock to 

one region of albumin over others with one outlier seen near the bottom of panels b–d in Fig. 

6. From a quick analysis of this image, we see that we can be more confident in the general 

area of likely binding than we can be in a prediction of a specific conformation likely to 

bind.

2.4. Application to experimental methods

As demonstrated by the above examples, translating a measure of distribution width or 

uncertainty to conformation space can be done for any ensemble of states. This statement 

holds not only for computationally predicted structures but also for experimentally derived 

ensembles. NMR studies of biopolymers in solution sample multiple conformations that can 

– and should – be reported as ensembles of states, as even the rare conformations found in 

NMR studies may have significant biological rolls [47,31,48–50,30,51–53]. Therefore, not 

indicating the ensemble nature of an NMR-derived structure risks missing out on structural 

variations that result in changes in biological function. Similarly for X-ray crystallography, 

structural variations across differing crystallization conditions can uncover states of 

biological import [54,55]. Once such ensembles of states are solved, the visualization 

methods presented here can be applied just as they were to structures predicted by 

computational methods.

Consider, for example, an NMR structure of ubiquitin bound to a ubiquitin-binding zinc 

finger from human Rad18, Fig. 7. This structure is part of the DNA damage tolerance 

pathway. Rizzo et al. calculated 200 conformers for this complex, submitting 20 of them to 

the RCSB [56]. By displaying all of the submitted structures with the top submission 

displayed as solid, we see that the relative position of some structural components are more 

certain than others. One alpha helix on the right of each panel has almost no shadow, 

indicating high certainty for this secondary structure element. The other two alpha helices 

have more variance in their position. The beta sheet near the top alpha helix likewise has 

little uncertainty in its coordinates relative to the other beta sheets. The loop regions show 

high variance in their coordinates, which is to be expected from such mobile regions, which 

are often difficult to resolve in experimental methods. By showing the additional conformers 

beyond the top submission as shadow, we avoid the visual clutter associated with simple 

superposition while conveying the relative certainty of structural element positions in the 

submitted coordinates. This example, though, does raise the question of alignment methods. 

That is, if the structures are aligned based on a particular secondary structure element, that 

portion of the polymer would show less variance. Here we aligned to all heavy atoms to 

avoid biasing the representations as much as possible (see Section 4).
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3. Conclusions

Regardless of the specific method employed, it is our primary goal that readers will be 

motivated to visualize biopolymers (and macromolecules in general) as ensembles of states 

rather than static conformers in their own works. The nature of such polymers to exist in a 

distribution of conformations is experimentally known and widely accepted. This fact should 

be made more evident by the images shown in literature. Additionally, in visualizing the 

dynamic nature of these molecules, there is little added work in utilizing basic statistical 

methods to choose which structures from the underlying distribution to display along with a 

representative. It is, therefore, our secondary goal that those who are moved toward 

visualizing underlying distributions will do so in ways that are statistically rigorous, just as 

is typically done on scatter and bar plots.

Additionally, such error reporting is of particular import given the present state of structure 

determination. At the time of this writing, there are roughly five times as many entries in the 

Uniprot [57] sequence database as there are in the RCSB [58] structure database. While 

experimental data is obviously preferred and should be used when available, the ability to 

predict structures while waiting on – or more precisely, hoping for – a solved crystal 

structure is a valuable tool in drug discovery [59,60]. Given that computational structure 

prediction is a presently necessary stop gap, a standardized method for reporting the 

uncertainty in such predictions is crucial.

We find our specific method of visualizing structural uncertainty to be informative without 

much loss of visual simplicity. The use of shadows clearly differentiates between the 

representative structure and those chosen as the structural equivalent of error bars. 

Additionally, adding the opacity of the shadows shows relative weights in the underlying 

ensemble and differentiates between isotropic and anisotropic motion in those structures 

from MD – and could be used similarly for any dynamics-based data set. For those who 

would like replicate our visualization method, we have made the Python scripts used in 

making figures in this work available for free online [27], supporting information Fig. 1.

4. Methods

For the layered (shadow) and blended (cloud) images (panels c and d in all figures), we 

separately visualized representative structures and additional conformers in VMD [61], 

rendered them with Tachyon [62] and combined the resulting graphics into the images 

shown here using Pillow, a fork of the Python Image Library. For processing structural data 

and molecular dynamics trajectories in Python [26], we used the MDTraj library [63]. For 

the purpose of selecting which frames to include in a given shadow, we stored and processed 

all data and calculations in NumPy arrays [64]. The method for selecting the frames is based 

on quality threshold clustering combined with statistical analysis as described below.

The additional conformers in Figs. 1–3 are all frames within one modified standard 

deviation of the median structure of the lowest order RMSD-based cluster – i.e., highest 

population cluster – as assigned by the Quality Threshold (QT) [16] algorithm in VMD. For 

reference, consider the usual form of standard deviation:
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σx
1
N ∑

i = 1

N
(xi − x)2

where xi is the ith measurement in a given experiment, x is the average across all 

measurements, and N is the number of measurements. For Figs. 1–3, we calculated the 

RMSD of every conformation in the cluster relative to the median structure. In these images, 

we do not show the average structure, since it is likely nonphysical. Instead, we show the 

median structure, and we want our shadows to indicate the variation from this median rather 

than from the average of all structures in the cluster. Therefore, as a substitute for 

subtracting the average RMSD – i.e., xi − x  – we first superposed all structures in the 

cluster onto the median. That is, we minimized the RMSD of each structure in the ensemble 

relative to the median structure using rigid body rotations and translations as implemented in 

the command trajectory.superpose() in the MDTraj library. These alignments are based on 

all heavy atoms.

Therefore, using ri as the RMSD of a structure from the median and N as the number of 

structures in the cluster, our modified standard deviation is

σr
1
N ∑

i = 1

N
(ri)

2

The key difference from the usual standard deviation is the measurement of distance from a 

median rather than a mean. To be clear, we are not advocating for the use of this particular 

statistical measure for choosing structures to display – though, it is our preference – but 

rather for the use of some statistical measure that is clearly stated with the figure, just as one 

would do for error bars on a scatter plot. For those who wish to reproduce or modify this 

method of frame selection, we have made the script used for generating the images in Figs. 

1–3 available online [27], supporting information Fig. 1.

Nucleic acid structures in Figs. 1, 2 and 6 are output from MD simulations run under the 

canonical ensemble (NVT) in ACEMD [11] simulation software. The single protein in Fig. 3 

and the protein-ATP complex shown in Fig. 5 is output from an MD simulation run under 

the isothermal-isobaric ensemble (NPT) in ACEMD. In all simulations, hydrogen mass 

repartitioning as implemented in ACEMD allowed us to use 4fs time steps in our production 

runs. Before beginning these production runs, systems underwent 1000 steps of conjugate-

gradient minimization. During simulation, systems were held at 300 K using a Langevin 

thermostat. For VdW and electrostatic forces, we applied a 9 Å cutoff and 7.5 Å switching 

distance, calculating long-range electrostatics with a smooth particle mesh Ewald (SPME) 

summation method [65,66] These simulations were run on Titan GPUs in Metrocubo 

workstations produced by Acellera. For MD simulations, we solvated nucleic acids in 150 

mM MgCl2 and proteins in 150 mM NaCl, using explicit TIP3P water [67] for all 

biopolymers. For a discussion of counter ion choices, see the review by Lipfert et al. [68].
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The individual structures of SufC and SufD from B. subtilis shown as pink and orange 

respectively in Figs. 3 and 4 are homology predictions made with SWISS-MODEL [69–72]. 

We predicted the interaction of those two structures with the PPI software ZDOCK [42–44], 

generating the complexes in Fig. 4. After relaxing the SufC–SufD complex for 1 

microsecond as described above, we used AutoDock Vina [46] to predict docking poses for 

ATP binding. We used this same software to predict docking poses for F10 [73–

78,12,13,15,14] and human serum albumin [79]. For the purpose of the simple example in 

Fig. 5, we used only the SufC–SufD structure from the final frame of the MD simulation. In 

the docking trial, the receptor (SufC–SufD) was held rigid while the ligand (ATP) was 

treated as flexible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Side-by-side comparison of conformations of F10 in 150 mM CaCl with these four 

visualization techniques reveals (compare a and b) the deceptiveness of using only a single 

conformer, (c) the width of the distribution indicated with little loss of visual simplicity, and 

(d) the ability to see standard deviation in three dimensions.
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Fig. 2. 
By observing the fluctuations about a median structure, we see (in comparison with Fig. 1) 

that F10 is less structured – i.e., the extent of polymer folding – and more stable in the 

presence of calcium (seen in Fig. 1) relative to zinc (seen here). Representative structures are 

median, and additional frames are randomly selected (b) or one standard deviation (c and d) 

(see Section 4).
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Fig. 3. 
In this MD-refined homology prediction of the SufC protein from Bacillus subtilis, we 

observe little uncertainty in the structured regions relative to the unstructured regions. 

Representative structures are median, and additional frames randomly selected (b) or one 

standard deviation (c and d). (For interpretation of the references to color in text near the 

reference citation, the reader is referred to the web version of this article.)
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Fig. 4. 
There is a wide variety of relative structure positions in the top 50 docking poses predicted 

by ZDOCK for SufC (pink) and SufD (orange). We see that SufC’s predicted poses have a 

wide variety of rotations relative to the top ranked prediction. Representative structures are 

ZDOCK’s top prediction, and additional frames (b–d) are within the expected error of the 

top-ranked prediction. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 5. 
Visualizing the expected error of our docking software indicates high confidence in (a) the 

general region of the binding site and (b–d) the specific position of the phosphate groups. 

(For interpretation of the references to color in text near the reference citation, the reader is 

referred to the web version of this article.)

Melvin and Salsbury Page 16

J Mol Graph Model. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
From the localization of F10 docking poses (blue) to one region of albumin (green) within 

AutoDock Vina’s expected error, we can be more confident in the predicted region of 

binding F10 than in the conformation that is likely to bind, which has a large variance within 

the expected error. Representative F10 conformations are Vina’s top prediction, and 

additional conformers are those within Vina’s expected error of the top prediction. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 7. 
Visualizing multiple conformers of PDB ID 2MRE [56] in addition to the top submission 

shows that the alpha helix at the right of each panel has a higher relative certainty in its 

position than the other secondary structure elements.
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