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Abstract

Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of 

head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic 

segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image 

artifact in CT images. Shape priors have been proved effective in addressing this challenging task. 

However, conventional methods incorporating shape priors often suffer from sensitivity to shape 

initialization and also shape variations across individuals. In this paper, we propose a novel 

approach to incorporate shape priors into a hierarchical learning-based model. The contributions 

of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is 

proposed to identify vertices with distinctive appearances and strong consistency across different 

subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more 
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vertices with the guidance of previously located vertices; and 3) an innovative framework of joint 

shape and appearance learning is further developed to capture salient shape and appearance 

features simultaneously. Using these innovative strategies, our proposed approach can essentially 

overcome drawbacks of the conventional shape-based segmentation methods. Experimental results 

show that our approach can achieve much better results than state-of-the-art methods.

Index Terms

Image segmentation; machine learning; vertex regression; random forest; radiotherapy planning; 
head and neck cancer

I. Introduction

Head and neck cancer (H&NC) is the fifth most common cancer diagnosed worldwide and 

the eighth most common cause of cancer death [1]. Intensity modulated radiotherapy 

(IMRT) can deliver precise radiation doses to a tumor while minimizing the dose to organs 

at risk (OARs). Therefore, IMRT has become the state of the art method for the treatment of 

H&NC. When treating H&NC using IMRT, the accurate delineation of OARs from H&N 

CT images is an essential step. However, it is a tedious and time-consuming task to delineate 

OARs manually. Moreover, the intra- and inter-rater variability by manual delineation [2]–

[4] can directly influence the treatment performance of IMRT. Consequently, it is clinically 

desirable to develop computer-aided methods to automatically and accurately segment 

OARs from H&N CT images.

However, it is difficult to accurately and automatically segment OARs from CT images due 

to low contrast of soft tissue and image artifact (e.g., caused by dental implants) in CT 

images, as well as the variations of OARs across individuals. Many methods have been 

proposed to address these challenges. For example, Street et al. [5] developed a 3D level set 

based computerized system for automatically segmenting a diverse set of lesions in H&N 

CT scans. On the other hand, since atlases can provide prior information, atlas-based 

segmentation method is also a hot topic for researchers. Han et al. [6] proposed an atlas-

based method for automatic segmentation of critical structures and lymph node regions in 

the given H&N CT images. Both Levendag et al. [7] and Sims et al. [8], respectively, gave a 

clinical assessment of their atlas-based method in automatically delineating OARs from 

H&N CT images. In order to obtain the closed surfaces, active contours [9] or graph cuts 

[10] were further used to postprocess the results of the atlas-based segmentation. In recent 

years, the deep nets based methods, such as fully convolutional network (FCN) [11], U-Net 

[12] and Generative Adversarial Nets (GANs) [13], has been proven effective in semantic 

image segmentation [14], [15] as well as medical image segmentation [16]–[18]. But, to our 

knowledge, there are no reports of applying deep learning to H&N CT image segmentation 

so far.

Incorporating shape prior knowledge of the target object into the segmentation problem can 

often significantly improve the segmentation performance [19]–[28], especially when having 

blurred boundaries in the target organ. Among all shape prior based segmentation methods, 

deformable model based segmentation methods can directly incorporate shape priors to 
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regularize the final segmentation of the target organ and have been widely used to segment 

organs from CT images. For example, statistical appearance models and geodesic active 

contours were combined with multi-atlases based segmentation to segment OARs from 

H&N CT images [29]. The methods presented in [30]–[33] also used deformable shape 

model to segment organs from pelvic CT images.

However, most of the deformable model based segmentation methods have two 

disadvantages: (1) Sensitivity to initialization. In the process of refining the locations of 

model points, these methods usually perform simple gradient-descent optimization, and thus 

can be easily trapped into local minima, with poor segmentation [34]. (2) Insufficient 
robustness to shape variations of target organ across individuals. In the conventional 

deformable model based segmentation methods [35]–[37], local search strategy is often used 

to refine the shape model. Specifically, after the shape model is initialized, each vertex of 

deformable model locally searches along its normal direction to find its new position with 

the maximum boundary likelihood, e.g., the maximum intensity gradient magnitude. 

Nevertheless, due to the shape variations among individuals, the ground-truth location of a 

model point is likely not exactly in the normal direction, and thus the shape prior at this 

vertex will provide incorrect constraint to the final segmentation.

In this paper, we propose a novel shape prior based method to automatically segment OARs 

from H&N CT images for radiotherapy planning. The main idea is based on the fact that 

some points on the organ boundaries are more distinctive in image appearance and thus can 

be more critical in describing shapes of the target organs. In the following, we will simply 

refer to the distinctive and critical points as critical boundary points. The most critical 

boundary points can be easily detected, which can then be used to help locate other less 

critical boundary points. By iterating this procedure, more and more boundary critical points 

can be located hierarchically. Finally, these located critical boundary points can be used to 

carry out the organ segmentation. Our key idea is to identify and locate critical boundary 

points hierarchically, especially using the previously located critical points to guide the 

detection of next less critical boundary points.

In our work, the above idea is achieved by our proposed random forest (RF) based iterative 

learning framework. Specifically, in the training stage, the learning framework starts with 

the construction of the organ shape model, which is composed of model vertices sparsely 

distributed on the organ surface. Then, regression forest is employed to train the iterative 

vertex regression forests for estimating the locations of model vertices in the new testing 

image. In the first iteration, for each model vertex in the shape model, we employ a 

regression forest to train a vertex regression forest that can predict the 3D displacement from 

a testing image voxel to each model vertex, based only on the surrounding appearance 

features of this testing image voxel. To identify the most critical vertices, all available atlases 

are partitioned to the training and validation sets, and the validation set is used to evaluate 

the performance of vertex regression forests trained using the training set. Then, the vertices 

that can be accurately predicted are regarded as the most critical model vertices. In the 

following iterations, the vertex regression forests learned in the previous iteration are first 
applied to each training image to generate displacement maps over the entire image domain. 

Then, with both the appearance features from intensity image and the shape prior from the 
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estimated displacement maps, for each model vertex, a second vertex regression forest is 

trained. By repeating this procedure, more and more critical vertices can be hierarchically 

located. Once every model vertex is iteratively evaluated and included into the hierarchical 

set of critical model vertices, we can further employ classification forest to obtain the final 

segmentation, which can be trained by both the appearance features from intensity images 

and the shape prior from the displacement maps (that are generated by applying our trained 

iterative vertex regression forests).

The testing stage is similar to the above training stage. That is, given a testing image, our 

trained iterative vertex regression model is first used to hierarchically predict the locations of 

all model vertices in the testing image space, and then our trained classification forest is 

applied to obtain the final segmentation result.

The main contributions of our work are as follows:

1. We present a novel learning-based mechanism to locate critical model vertices. 

This mechanism is able to identify critical model vertices with distinctive 

appearance and strong across-subject consistency.

2. We also propose a hierarchical strategy for vertex regression. Specifically, the 

most critical model vertices are located first. Then, with the spatial guidance 

from these most critical model vertices, other less critical model vertices can be 

gradually located. By iterating this process, all model vertices can be 

hierarchically located. The use of this strategy makes our segmentation very 

robust.

3. We further develop a framework to jointly learn shape and appearance. In 

particular, both the shape information from the spatial configuration of vertices 

and the appearance information from intensity image are captured 

simultaneously in the regression forests.

The rest of the paper is organized as follows. Section II introduces our hierarchical vertex 

regression based segmentation method. Experimental results are presented in Section III. 

Conclusions are given in Section IV.

II. Method

A. Notations

An atlas library  consists of multiple atlases {An = (In, Ln) |n = 1, 2,⋯, N}, where In and 

Ln are the intensity image and the label image of the nth atlas, and N is the total number of 

atlases in the atlas library.

 is deformed to

Awarp
n = Iwarp

n , Lwarp
n ∣ n = 1, 2, ⋯, N

using groupwise registration [38].
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In this work, an organ shape is represented by a Point Distribution Model [35]. Let S denote 

the target organ shape. A set of landmarks sparsely distributed on S construct a vertex set V 
= {v1, ⋯, vm, ⋯, vM}, where vm ∈ ℝ3(m = 1, 2, ⋯, M) is the vector of 3D coordinate of the 

mth landmark, and M is the total number of landmarks.

Given N label images in , N shape instances Ṡ = {Ṡn|n = 1, 2, ⋯, N} are constructed by 

shape correspondence method with the corresponding vertex sets 𝕍̇ = {V̇n|n = 1, 2, ⋯, N}. 

Here, V
. n = v.1

n, ⋯, v.m
n , ⋯, v.M

n  are the M landmarks on shape instance Ṡn, and v.m
n  is the mth 

landmark on the nth shape instance Ṡn. The mth landmark on all N shape instances can 

construct a correspondence vertex set V
.
m = v.m

1 , ⋯, v.m
n , ⋯, v.m

N , where all vertices are 

corresponding to each other. That is, each vertex v.m
n (n = 1, 2, ⋯, N) represents the same 

anatomical location of different shape instances.

In this paper, the target organ shape is modeled by the vertex set V, as well as the spatial 

relationships between vertices in V, i.e., the relative positions of each vertex to other 

vertices. Note that our proposed RF based learning framework can learn these spatial 

relationships from multiple shape instances in 𝕊̇ without the need for explicit formula.

In our method, atlas-based segmentation is formulated as a machine learning problem, where 

heuristics and prior knowledge are learned from the atlas library  and then used to segment 

a new image Itest. We apply random forest algorithm to address this learning problem. And 

there are J cascaded multilevel regressions and one classifier in our framework, and the jth 

regression is denoted as Rj, j = 1, 2, ⋯, J. For each regression forest Rj, a critical vertex set 

ℂj = {Cm,j |m = 1, 2, ⋯, Mj} is constructed and also a corresponding regression forest set j 

= {Fm,j |m = 1, 2, ⋯, Mj} is trained, where m is the index of critical vertex and Mj is the total 

number of critical vertices in ℂj. By applying Fj on a deformed testing image Iwarp
test , a set of 

estimated displacement maps 𝕐 j
test = Ym, j

test ∣ m = 1, 2, ⋯, M j  can be generated. For the 

classification forest FC, it is trained to complete the segmentation and provide the final 

segmentation result, i.e., the final label image Lout.

B. Method Overview

Algorithm I gives a training procedure of our proposed method. Before the training 

procedure, we perform atlas preprocessing, including atlas registration, shape instances 

extraction and correspondence construction, which converts the N training label images {Ln|

n = 1, 2, ⋯, N} into the N shape instances represented by the corresponding vertex sets 𝕍̇. 
After preprocessing, our proposed RF based hierarchical vertex regression and target organ 

classification framework (Fig. 1) utilizes the shape features extracted from 𝕍̇ and the 

appearance features extracted from intensity images {In|n = 1, 2, ⋯, N} to construct 

regression and classification models, which are applied to a testing intensity image Itest to 

generate its final segmentation result. Algorithm II gives the testing pipeline of our proposed 

method.

There are three major steps in our proposed learning framework:
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1. Appearance Based Most Critical Vertices Regression: (shown in the left 
part of Fig. 1)—In this step, we first use the appearance features extracted from the 

training CT images to train our vertex regression forests. Then, we validate them on the -

validation CT images to identify the most critical model vertices with the smallest prediction 

errors by our trained vertex regression forests. In this way, we can use the vertex regression 

forests for the most critical vertices (identified) to guide the selection of next less critical 

vertices in the subsequent step.

2. Appearance and Shape Based Hierarchical Vertex Regression: (shown in 
the middle part of Fig. 1)—There are several sequentially connected iterative regressors 

in this step. Each regressor is trained based on both the appearance features from CT images 

and the shape features from the displacement maps estimated by previous regressors. In each 

iteration, more new critical model vertices are identified and their corresponding vertex 

regression forests are learned; meanwhile, the vertex regression forest for the critical model 

vertices identified in the previous iterations are re-trained with the new shape features for 

refinement. Note that, in the testing stage, the learned regressors are sequentially applied to 

the testing CT image to hierarchically locate those critical model vertices.
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Algorithm 1

Training Pipeline of Our Proposed Hierarchical Vertex Regression Based Organ 

Segmentation
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Algorithm 2

Testing Pipeline of Our Proposed Hierarchical Vertex Regression Based Organ Segmentation

3. Appearance and Shape Based Organ Classification: (shown in the right part 
of Fig. 1)—In this step, both the appearance features from CT images and the shape prior 

from displacement maps of critical model vertices are used to train a classifier forest, which 

is employed to achieve the final segmentation of target organ.

In the rest of this section, we will first describe the preprocessing procedure, then briefly 

introduce RF and its implementation in our method, and finally give the detailed 

descriptions of the three main steps aforementioned.

C. Preprocessing

1) Registration—In order to eliminate the orientation difference across atlases {An = (In, 

Ln) |n = 1, 2, ⋯, N}, groupwise registration [38] is needed. Accordingly, we first use a 

groupwise registration toolbox GLIRT (http://www.nitrc.org/projects/glirt) to estimate an 
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unbiased group mean image Ī, which is used as the reference image in this paper. Then, all 

intensity images are affine registered onto this reference image Ī by the registration toolbox 

Elastix (http://elastix.isi.uu.nl). Similarly, all corresponding label images of atlases are affine 

transformed into the reference image space for generating a set of registered atlases 

𝔸warp = Awarp
n = Iwarp

n , Lwarp
n ∣ n = 1, 2, ⋯, N .

2) Shape Correspondence—Shape correspondence aims at identifying a set of 

corresponding landmarks across a population of shape instances. Shape correspondence 

construction algorithms, as well as their evaluations, have been widely investigated in the 

past years [39], [40]. In this paper, an entropy-based particle systems algorithm [41], [42] is 

used to construct shape correspondence, although other advanced methods can also be 

applied.

As shown in Fig. 2, each registered label image Lwarp
n (n = 1, 2, ⋯, N) in the atlas library 

represents an organ shape instance Ṡn. After shape correspondence detection, we obtain N 
corresponding vertex sets 𝕍̇ = {V̇n|n = 1, 2, ⋯, N}.

Then the mean shape S̄ is calculated by averaging over the locations of the corresponding 

vertices across all the 3D shape instances, i.e., S̄ = {v̄m|m = 1, 2, ⋯, M}, where 

vm = ∑n = 1
N vm

n /N. In the following section, S̄ is used to determine the neighborhood 

relationship of vertices in V.

D. Random Forest Based Regression and Classification

As mentioned in Section II.B, our learning framework is based on RF. In this section, we 

will give a brief introduction about RF and its implementation in our work.

RF [36], [43]–[50], an efficient model for a variety of learning tasks, has been widely used 

and shown great performance in image processing. It ensembles a number of trained 

decision trees to produce an accurate prediction for an unseen data. As a general learning 

model, the use of RF has two phases: training and testing.

1) Training Phase—The goal of training is to optimize the parameters of split function at 

each split tree node in RF and to determine the leaf node distributions. For each tree in a RF, 

a training example set D is randomly sampled, i.e., D = {(x1, y1), ⋯, (xw, yw), ⋯, (xW, yW)}, 

where xw ∈ ℱ is an input K-dimensional feature vector and yw is the output with respect to 

xw. The split function at a split node is a function with binary output:

f l, 𝒯 ≜ (B · x ≥ 𝒯) (1)

where B is a K-dimensional binary vector with only one (lth) non-zero entry and  ∈ ℝ is a 

threshold. The D is simultaneously pushed through all the trees. Let Dp denote the sample 

set arriving at the split node p, where D0 = D at the root node. At each split node, Dp is 

divided into two subsets according to the result of split function and they are sent to the left 

or right child node separately. The tree grows by iteratively splitting of the training data until 
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it reaches a predefined depth or the sample number at a node is less than a predefined 

threshold. Each leaf node of the trees stores the empirical distribution of output target y over 

the incoming subset of training data.

2) Testing Phase—A previously unseen input feature vector xtest is simultaneously 

pushed through all trees of RF. Starting at the root, each split node applies its associated split 

function fl,T to xtest. According to the result of split function, the input data xtest is sent to the 

left or right child node. This process is repeated until xtest reaches a leaf node. The empirical 

distribution of output y stored in the respective leaf node provides a prediction for the testing 

data xtest. All the predictions of all trees in a forest are averaged to gain an overall prediction 

ŷ for the target value.

If the output y associated with an input data is continuous, the RF is a regression forest and 

can be used for the nonlinear regression of dependent variables given independent input. If 

the output y is discrete, the RF is a classification forest and can be used to produce 

probabilistic output with the likelihood of the input data belonging to a certain class.

In this paper, both regression forest and classification forest are used. Specifically, regression 
forest is used to predict the 3D displacement vector, pointing from a query voxel in CT 

image to a model vertex in the shape model. And, classification forest aims to predict the 

likelihood of a query voxel belonging to a target organ.

It is very important for RF to select suitable features as the input. Due to serious noise in CT 

images, it is not effective of directly using image intensities as features. Haar-like features, a 

kind of low-level appearance features extracted from local intensity patches, are robust to 

noise and can be computed very rapidly using integral image. Also, Haar-like features have 

shown high performance in many applications [37], [51]–[53].

Thus, in this paper, we use the scheme of [53] and consider two types of Haar-like features. 

The first type is one-block Haar-like features which calculate the average intensity of a block 

at a location within the local intensity patch. The second type is two-block Haar-like features 

which compute the average intensity difference between two blocks at two locations within 

the local intensity patch. The mathematical definition of the Haar-like features used in this 

paper is formulated as follows:

f (Io ∣ c1, s1, c2, s2) = 1
(2s1 + 1)3 ∑

‖d − c1‖ ≤ s1
Io (d) − λ

(2s2 + 1)3 ∑
‖d − c2‖ ≤ s2

Io (d) (2)

where Io denotes a local intensity patch centered at voxel o and Io (d) returns the intensity of 

the image at voxel d. f (Io|c1, s1, c2, s2) denotes one Haar-like feature with parameters {c1, 

s1, c2, s2}, where c1 ∈ ℝ3 and s1 ∈ ℝ are the center and size of the positive block, 

respectively, and c2 ∈ ℝ3 and s2 ∈ R are the center and size of the negative block, 

respectively. Here, λ ∈ {0, 1} is a switch between the two types of Haar-like features. When 

λ is 0, Eq. (2) denotes one-block Haar-like features; When λ is 1, Eq. (2) denotes two-block 
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Haar-like features. Fig. 3 gives the graphical illustration of how the Haar-like features are 

computed.

It is worth noting that features are calculated over the blocks, instead of the patches, and the 

block size will not change with the patch size. Therefore, a larger patch size will not result in 

the blurred features.

In fact, the exhaustive Haar-like feature space is very large and overcomplete, even for a 

patch size with practical value [52]. In our work, we randomly sample a feature sub-space to 

resolve this problem. To train a tree in the RF, we adopted two types of random sampling. 

The first is to generate a Haar-like random feature sub-space sub by randomly setting λ to 0 

or 1 and by uniformly and randomly sampling parameters {c1, s1, c2, s2}, under the 

constraint that both positive and negative blocks should stay within the local patch. The 

second is to randomly sample voxels from each training atlas and then extract feature vector 

according to the feature sub-space ℱsub for constructing the training example set D.

In order to include the discriminative features in ℱsub, the number of extracted Haar-like 

features in ℱsub is quite large. Random forest is able to distinguish discriminative features 

from all extracted Haar-like features during the training, thus it is used as a regression or 

classifier technique in our proposed method.

E. Training and Identification of the Most Critical Model Vertices

Since all the vertices in a correspondence vertex set V̇
m are at the corresponding positions of 

all the 3D shapes, their appearance features from intensity image should be consistent with 

each other to some extent. But, some correspondence vertex sets have stronger 

distinctiveness in appearance and more consistency across individuals, than other 

correspondence vertex sets. Thus, these critical vertices are easier to be detected. The main 

purpose of this subsection is to identify the most critical model vertices, as well as to learn 

the respective regression forests to detect them. The flowchart for these tasks is shown in 

Fig. 4.

1) Appearance Based Vertex Regression—For each correspondence vertex set Vṁ, 

we train a regression forest Fm. To train a tree in Fm, we first construct training example data 

set D. As mentioned in Section II.D, the Haar-like feature sub-space ℱsub is first constructed 

by randomly sampling from the whole Haar-like feature space. Then, we randomly sample a 

number of voxels from each atlas and extract a feature vector from a CT image for every 

sampled voxel to generate a training input data X = {x1, ⋯, xw, ⋯, xW}, where W is the total 

number of voxels sampled from all the atlases. For the wth sampled voxel pw, supposing that 

it is sampled from the nth atlas, the 3D displacement vector yw ∈ ℝ3 from the voxel pw to the 

ground-truth vertex v.m
n  is computed, i.e., yw = pw − v.m

n . With the training example set D 

={(x1, y1), ⋯, (xw, yw), ⋯, (xW, yW)}, a tree can be trained by the regular exhaustive search 

optimization method. After vertex-wisely training, we get totally M regression forests, one 

forest for one correspondence vertex set.
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2) Identification of the Most Critical Model Vertices—Meanwhile, given a new 

registered validation CT image Iwarp
vali , our goal is to estimate the positions of all the vertices 

of the shape model in Iwarp
vali . For a voxel p of the validation CT image Iwarp

vali , the Haar-like 

feature vector xvali is first extracted from the local intensity patch centered at p. And then the 

prediction value ym
vali, i.e., the 3D displacement vector from p to the mth vertex vm of the 

shape model, is estimated by pushing xvali through all the trained trees in Fm. All voxel-

wisely predicted 3D displacement vectors construct a 3D displacement map Ym
vali, which can 

be regarded as a vector image with the image size as the same as Iwarp
vali .

As previously described, those critical vertices in the shape model have more distinctive 

appearance in each individual subject and are also more consistent across individual 

subjects. These properties can be captured by the trained regression forests, i.e., their 

performances in predicting the locations of model vertices. According to this observation, 

we propose below a mechanism to identify the most critical model vertices.

Since the ground-truth vertex positions for the training data are known, we can use CT 

images in the atlas library as validation images (i.e., in a K-fold cross-validation fashion) to 

inspect the prediction accuracy of the learned regression forests. Specifically, the training 

atlases are divided into K subgroups. For each vertex vm in the shape model, atlases in all K 
− 1 subgroups are used as the training data to train a regression forest Fm, while atlases in 

the remaining subgroup are used as the validation data to validate the model Fm. This cross-

validation process is repeated K times, with each of the K subgroups used exactly once as a 

validation data. Finally, we obtain N predicted 3D displacement maps Ym
n ∣ n = 1, 2, ⋯, N

for each shape model vertex vm.

Meanwhile, by directly computing the 3D displacement vector from each voxel of Iwarp
n  to 

the ground-truth location of vertex v.m
n , we get the ground-truth 3D displacement field Ym

n . 

Then, the prediction error to Iwarp
n  can be computed by the following equation:

em
n = 1

VOLΩ
∑

o ∈ Ω
Ym

n (o) − Ym
n (o) 2

2
(3)

where Ω is a spherical region centered at vm
n , VOLΩ is the volume of Ω with its radius 

selected by experience, and Ym
n (o) and Ym

n (o) return the respective displacement vectors at 

voxel o. After computing the prediction errors to all the CT images in the atlas library, we 

can use the following equation to comprehensively evaluate the prediction error for the 

vertex vm:

Em = em + em (4)

Wang et al. Page 12

IEEE Trans Image Process. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where

em = 1
N ∑n = 1

N em
n ,

and

em = 1
N ∑n = 1

N em
n − em

2 .

For each vertex in the shape model, a prediction error can be calculated by (4). The smaller 

Em is, the more accurate prediction is. Thus, the vertices with the smaller Em can be selected 

as the most critical model vertices, which thus construct a set of the most critical model 

vertices ℂ1 = {Cm,1|m = 1, 2, ⋯ M1, as well as a set of their corresponding regression forests 

1 = {Fm,1|m = 1, 2, ⋯ M1}. Here M1 is the number of vertices in ℂ1.

In Algorithm I, we present the procedure of identifying critical vertices.

In the testing stage, given a testing CT image Itest, we first register it onto the reference 

image Ī to obtain Iwarp
test , and then apply the learned regressor F1 to Iwarp

test  in a vertex-wise and 

voxel-wise manner, as shown in Algorithm II. That is, we voxel-wisely apply each trained 

vertex-wise RF model Fm,1 in 1 to the testing image Iwarp
test  by using only the appearance 

features (Haar-like feature extracted from the intensity image), for obtaining a displacement 

map Ym, 1
test  that corresponds to the critical vertex Cm,1. Thus, by applying all the trained 

vertex-wise RF models in j to the testing image Iwarp
test , we can finally obtain M1 

displacement maps, i.e., 𝕐 1
test = Ym, 1

test ∣ m = 1, 2, ⋯, M1 .

F. Joint Learner of Shape and Appearance

Since local organ shape at a surface point can be determined by the spatial relationship of 

center surface point to its neighboring surface points, the shape prior information of an organ 

can thus be learned from the spatial relationships among model vertices. Note that each 

vector in the 3D displacement map is an estimated displacement vector from the underlying 

voxel to a specified model vertex. Therefore, the 3D displacement maps of model vertices 

can provide the spatial relationships among the model vertices. Consequently, once some 

critical vertices are identified, their learned regression forests j can be used to predict 3D 

displacement maps, and furthermore these 3D displacement maps can be used to provide 

shape prior information.

Accordingly, we propose a joint learner of shape and appearance. As shown in Fig. 5, the 

training procedure is the same as that of the appearance based vertex regression in Section 

II.E, except for feature extraction and the identification of critical model vertices, as detailed 

below.

Wang et al. Page 13

IEEE Trans Image Process. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) Shape and Appearance Feature Extraction—Given both the set of identified 

critical model vertices ℂj = {Cm,j |m = 1, 2, ⋯, Mj} and the set of their corresponding 

regression forests j = {Fm,j |m = 1, 2, ⋯, Mj}, we can extract not only the appearance 

features from CT images, but also the shape prior information from the displacement maps 

predicted using j. To train the regression forest for the mth model vertex vm, from critical 

model vertex set ℂj, we first seek a certain number of the closest critical model vertices to 

vm (on the mean shape S̄). Then, their corresponding regression forests, a subset of j, are 

applied to each training CT image to generate the displacement maps. For training each tree 

in the new regression forests, we use two parts of Haarlike feature sub-space ℱsub. The first 

part is randomly sampled from the Haar-like feature space of intensity image, which capture 

appearance information. The second part is randomly sampled from the Haar-like feature 

space of displacement maps (corresponding to those closest critical model vertices), which 

capture shape prior information.

2) Identification of Critical Model Vertices—In the previous learning steps, some 

critical model vertices have been already identified. Therefore, in this learning step, we just 

identify new critical model vertices from the rest of the model vertices.

It is worth noting that the set of critical model vertices ℂj identified in the previous learning 

steps will be re-trained in this training step for refining the predictions. In the previous 

learning steps, ℂj is trained with the shape information extracted on a smaller set ℂj−1 or 

without any shape information (when j = 1). In this training step, the larger set of critical 

model vertices ℂj can provide more elaborate shape prior information and thus can lead to 

more accurate predictions.

When the training is finished, more model vertices are selected into the current set of critical 

model vertices ℂj+1, and also the set of their corresponding regression forests j+1 are stored 

for future use.

In the testing stage, the new learned ℂj+1 and j+1 are applied to generate displacement maps 

𝕐 j + 1
test  in the same manner as ℂ0 and 0 (described in Section II.E), except that the input 

features are not only the appearance features extracted from the intensity image but also the 

shape features from 𝕐 j
test estimated using ℂj and j.

G. Hierarchical Vertex Regression

By sequentially linking together an appearance based vertex regressor in Section II.E and 

several joint learners of shape and appearance in Section II.F, a framework for hierarchical 

vertex regression can be constructed (Fig. 6).

This framework takes several iterations. The first iteration is an appearance based vertex 

regressor, which carries out the regression training and also identifies the most critical model 

vertices based only on the appearance features. The other iterations are the joint learners of 

shape and appearance, which use not only shape prior but also appearance features to train 

vertex regressors and identify more critical model vertices.

Wang et al. Page 14

IEEE Trans Image Process. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given a testing image, the cascaded multilevel regressions { j | j = 1, 2, ⋯, J} are 

successively applied to ultimately generate displacement maps of all critical model vertices 

𝕐 j
test.

In our study, both the number of critical model vertices (identified in each iteration) and the 

number of iterations used are selected by manually checking the prediction accuracy Em.

H. Classification Using Displacement Maps as Shape Context

With the hierarchical vertex regression, we obtain the 3D displacement maps of all critical 

model vertices. In practice, to control the computational cost within a reasonable range, the 

critical model vertices are often placed sparsely on the organ surface, and thus the 

segmentation by simply connecting the neighboring critical model vertices to construct 

organ boundary is not accurate.

To refine the segmentation, we still use the RF based learning procedure, as shown in Fig. 7. 

In this learning stage, we train a classifier to output binary label for each voxel in the image. 

The features used to train classifier are the same as those used for joint learner of shape and 

appearance (Section II.F). Specifically, the previously-trained hierarchical vertex regressors 

{ j | j =, 1, 2, ⋯, J} are first applied to each training CT image Iwarp
n (n = 1, 2, ⋯, N) to predict 

3D displacement maps for all critical model vertices, i.e., 

𝕐 J = Ym, j
n ∣ m = 1, 2, ⋯, M; n = 1, 2, ⋯, N , and then, for each training voxel, both the 

appearance features from the CT image and the shape features from 𝕐̂
J are extracted for 

training the classifier FC, according to the manual segmentation labels such as 1 for target 

organ and 0 for background.

In the testing stage, for a registered testing CT image Iwarp
test , the previously-learned 

hierarchical vertex regressors { j | j = 1, 2, ⋯, J} are sequentially applied to Iwarp
test  to 

generate 3D displacement maps 𝕐 J
test. Then, the trained classifier FC is voxel-wisely applied 

to Iwarp
test  to estimate a likelihood map L̂

warp by combining both the appearance features from 

Iwarp
test  and the shape prior from 𝕐 J

test.

III. Experimental Results

We evaluate our proposed method on segmentation of the brainstem, mandible, left and right 

parotid glands on a H&N dataset (Section III.A). To carry out quantitative comparison, four 

measurements (Section III.B) are calculated. The parameter setting for our proposed method 

is then detailed in Section III.C. We further quantitatively compare our proposed method 

with 1) the appearance based segmentation method and 2) the conventional deformable 

model based segmentation method (Section III.D and E). To show the effectiveness of our 

proposed strategy, i.e., hierarchical vertex regression, quantitative comparison with equal 

vertex regression is also provided in Section III.F. In Section III.G, the influence of shape 

correspondence to the performance of our proposed method is discussed. Finally, we list the 
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segmentation results achieved by the state-of-the-art methods and our proposed method in 

Section III.H, for further comparison.

A. Data Set

We evaluate the performance of our proposed method on a Public Domain Database for 

Computational Anatomy (PDDCA) (http://www.imagenglab.com/newsite/pddca/). The 

original CT data is derived from the radiation therapy oncology group (RTOG) 0522 study, a 

multi-institutional clinical trial led by Ang [54]. The version 1.3 of PDDCA comprises 33 

patient CT images from the original set, together with manual segmentations of brainstem, 

left and right parotid glands, mandible, optic chiasm, and optic nerves (both left and right). 

The images are contoured based on current best practices as described by RTOG and 

scientific literature [55].

The image size varies from 257 × 257 × 39 to 257 × 257 × 181. The in-plane resolution 

ranges from 0.76 mm to 1.25 mm, and the inter-slice thickness ranges from 1.25 mm to 3.0 

mm.

In the following experiments, we mainly focus on the segmentation of brainstem, mandible, 

left parotid gland and right parotid gland from CT images, but our method can also be 

applied on optic chiasm and optic nerves.

B. Evaluation

In our experiments, we exclude one subject with incomplete region of interest and use two-

fold cross validation on the rest 32 subjects to evaluate our method and compare with other 

methods. We use four measurements to quantitatively assess the accuracy of automatic 

segmentation, as defined below.

1. Dice Similarity Coefficient (DSC) [56] measures the overlap degree between 

automatic and manual segmentations.

DSC =
2‖VolMan ∩ VolAuto‖

‖VolMan‖ + ‖VolAuto‖ (5)

where VolMan is the voxel set of manually segmented organ and VolAuto is the 

voxel set of automatically segmented organ.

2. Positive Predictive Value (PPV) measures the proportion of correctly segmented 

volume in the automatic segmentation.

PPV =
‖VolMan ∩ VolAuto‖

‖VolAuto‖ (6)

3. Sensitivity (SEN) measures the proportion of correctly segmented volume in the 

manually segmented organ.
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SEN =
‖VolMan ∩ VolAuto‖

‖VolMan‖ (7)

4. Average Surface Distance (ASD) measures the average distance between the 

surface of automatically segmented organ (SEG) and the surface of the manually 

segmented organ used as ground truth (GT).

ASD = 1
2

∑z ∈ SEGd (z, GT)
∣ SEG ∣ +

∑u ∈ GT d (u, SEG)
∣ GT ∣ (8)

where d (z, GT) is the minimum distance of voxel z on the automatically 

segmented organ surface SEG to the voxels on the ground-truth surface GT, d (u, 

SEG) is the minimum distance of voxel u on the ground-truth surface GT to the 

voxels on the automatically segmented organ surface SEG, and |·| is the 

cardinality of a set.

C. Parameter Settings & Computational Time

1) Parameters for Random Forest—The tree number of the forests is 20. The 

maximum tree depth is 100. The number of candidate thresholds in each node of a tree in the 

training stage is 100. The minimum number of training samples in each leaf node is 8. Note 

that RF parameters have been investigated in many applications [43]–[46], [53], [57]–[60]. 

Basically, for the number of trees, we find that more trees lead to better results, but also take 

longer time to do the training. Fig. 8 shows the influence of the number of trees on the 

segmentation performance. Although the segmentation accuracy increases with the increase 

of the number of trees, it stops significant improvement after using 20 trees. Thus, we use 20 

trees in our experiments. Besides, we also find that the segmentation performance is robust 

to both the number of thresholds used and also the minimum number of training samples in 

each leaf node.

2) Parameters for Haar-Like Features—The patch size and the number of features in 

Haar-like feature sub-space are 51 × 51 × 51 and 10000, respectively, in the first vertex 

regression forest (which is used to identify the most critical vertices in Section II.E). In other 

vertex regression forests (i.e., the joint learner of shape and appearance in Section II.F) and 

the classification forest (in Section II.H), the patch size is 21 × 21 × 21, the number of 

features extracted from intensity image is 2000, and the number of features extracted from 

each displacement map is 30. The sizes of the blocks s1 and s2 are randomly selected as 1 or 

2 voxels, respectively. The centers of the blocks c1 and c2 are uniformly and randomly 

sampled in the local patch, under the constraint that the blocks should stay within the local 

patch.

The optimal patch size is related to the complexity of the anatomical structure, which is 

evaluated in our another work [57] and also in literatures [61], [62]. In this paper, we find 

that the vertex regression accuracy increases with the increase of patch size when the size is 
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less than a specific value. In the first level R1, the regression accuracy stop improving with 

the increase of patch size if the size is greater than about 50. In the other regression level, the 

regression accuracy keeps steady when the patch size is over 20. This may be due to the case 

that, in the shape and appearance based regression, the displacement maps generated in the 

previous level can provide global localization information and thus only local information is 

needed for precise localization. In the first level R1, however, since there are no 

displacement maps can be used, only larger appearance patch can be used to provide the 

global positioning information.

It is worth noting that a larger patch must associate more features in Haar-like feature sub-

space, which will lead to more computational time.

Generally, the number of features is related with the tissue contrast. In our case, since tissue 

contrast is low in the H&N CT dataset, it is important to extract a large number of features in 

order to increase the chance of selecting discriminative features.

Note that the voxel values in a ground-truth displacement field are strongly dependent on 

each other. In other words, once given the displacement vector of a voxel, the displacement 

vectors of other voxels can be easily computed. However, since the displacement vector of 

each voxel in the displacement map is predicated independently from nearby voxels, the 

estimated displacement maps are often noisy. Thus, the voxel values in a predicted 

displacement map are less dependent on each other than those in a ground-truth 
displacement field. In our study, we take a compromise solution by sampling a small number 

of Haar-like features from each predicted displacement map.

3) Other Parameters—The number of vertices on shape surface is determined by the 

volume of the target organ. A larger organ often needs a large number of vertices for better 

representation, although this will cause more training and testing time. The number of 

vertices is 128 for both brainstem and mandible and 64. for both left parotid gland and right 

parotid gland. The number of critical model vertices identified in each iteration and the 

number of iterations is selected by manually checking the accuracy of prediction to the 

training subjects. For brainstem and mandible, which are bigger, the number of iterations is 

4 and the numbers of critical model vertices identified in 4 iterations are 16, 32, 64 and 128, 

respectively. For left and right parotid glands, the number of iterations is 3 and the numbers 

of critical model vertices identified in 3 iterations are 16, 32 and 64, respectively.

In our study, we use 4-fold cross-validation to identify critical vertex. To evaluate prediction 

error using Equation (3), the radius of spherical region Ω is set to 20mm, which is 

determined by cross-validation experiments.

Fig. 9 shows the most critical vertices of two typical subjects for the case of brainstem 

segmentation. As can be seen in the figure, the 11 most critical vertices are located on the 

middle-front region of brainstem, and other 5 most critical vertices are located on the mid-

posterior region. The main reason is that the organ borders in these region are relatively clear 

in the H&N CT images.
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As described in Section II.F, to extract shape prior information from the predicted 

displacement maps, we seek a certain number of the closest critical model vertices. Here, the 

number of the closest critical model vertices is determinded according to the target organ 

volume. For example, for both the brainstem and mandible, we set it to 7, while, for the 

parotid gland, we set it to 5.

4) Runtime—The computational cost of the proposed framework is related with the 

number of trees used, as well as the number of vertices included in the organ shape model. 

For the number of trees, we find that more trees lead to better results, but also take longer 

time for the training. For our method, using a 64-bit system computer with an Intel i7-4570 

CPU of 3.2GHz and 16GB memory, it takes about 27 mins for training a tree (using 128000 

training samples extracted from 16 training images, i.e., 8000 training samples per training 

image), and about 36 mins to segment brainstem for a new testing subject. It is worth noting 

that we always need to train all vertices and then select critical vertices in every regression 

level, so the training time for our hierarchical method is often longer than other non-

hierarchical approaches.

D. Comparison With Appearance Based Segmentation

To validate the effectiveness of shape constraint provided by our hierarchical vertex 

regression, we compare our method with the (only) appearance based segmentation method. 

In the appearance based segmentation, Haar-like features used for training and testing are 

extracted only from intensity images. The patch size and the number of features in Haar-like 

feature sub-space are 51 × 51 × 51 and 10000, respectively.

Table I presents a quantitative comparison between the appearance based segmentation 

method and our proposed method. Fig. 10 (columns c and f) gives visual comparison of the 

two methods. We can see from these results that the performance of our method is 

significantly better than that of the appearance based segmentation method. Without any 

guidance from shape prior, the results by appearance based segmentation are very poor. By 

using shape prior, our method can more accurately locate organ boundary than the 

appearance based segmentation method.

E. Comparison With Conventional Deformable Model

To show the effectiveness of hierarchical vertex regression, we compare it with a 

conventional deformable model proposed in the literature [37]. In that method, a 3D 

boundary displacement map and an organ likelihood map are first estimated by a multi-task 

RF with auto-context. Then, a mean shape model sequentially translates, rigidly rotates, and 

affine transforms under the guidance from the boundary displacement map. Finally, the 

conventional local search strategy is used to refine the shape model based on the organ 

likelihood map provided by the image classifier. This method was used to segment the male 

pelvic organs from CT image and gained high performance.

Table II shows the segmentation accuracies obtained by the boundary regression based 

deformable method and our hierarchical vertex regression based segmentation method. Fig. 

10 (columns (d) and (f)) gives visual comparison of the two methods. We can see that our 
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method achieves more accurate segmentation for the four organs. The reason is that, in our 

method, the use of both the strategy of hierarchical vertex regression and the mechanism of 

joint learning of shape and appearance allows more accurate vertex regressions. Moreover, 

in each iteration, the locations of model vertices are always implicitly moved to their most 

probable positions, guided by both the shape prior from the neighboring model vertices and 

the appearance features from intensity image. On the other hand, for the boundary regression 

based deformable method, its last refinement step just allows local search for each vertex of 

deformable model along the normal direction, to find the new position with the maximum 

likelihood gradient. However, the ground-truth position of model vertex is likely not exactly 

on the normal direction, which leads to segmentation error.

F. Hierarchical Versus Equal Vertex Regression

One advantage of our method is to hierarchically estimate the locations of critical model 

vertices with the guidance of the critical model vertices located previously. To evaluate the 

effectiveness of this strategy, the comparison experiment for hierarchical and equal vertex 

regressions is also conducted.

In the case of equal vertex regression, we do not identify critical model vertex, but use all 

the model vertices equally in guiding the segmentation. In the training stage, for each vertex 

of the shape model, an appearance based regressor is first learned; then, all the trained 

regressors are applied to all the training CT images to generate the 3D displacement maps, 

which are finally used as shape context to train an organ classifier. In the testing stage, given 

a testing CT image, for each vertex of the shape model, a 3D displacement map is first 

predicted, and then all the 3D displacement maps are used as shape context and inputted to 

the trained classifier for segmentation.

Table III presents the results of this experiment. Fig. 10 (columns (e) and (f)) also gives 

visual comparison of the two methods. We can see that the hierarchical vertex regression can 

significantly improve the segmentation accuracy.

G. Influence of Shape Correspondence

We can also see from the Tables I and II that the segmentation improvement by our method 

varies from organ to organ. The main reason is that the performance of our method is 

dependent on the accuracy of shape correspondences detected across training subjects in the 

training dataset. Only the vertices with accurately-detected correspondences across training 

subjects can be accurately located by the regressor in the application stage, thus leading to 

accurate organ segmentation.

In our experiments, a public software named “ShapeWorks” (https://www.sci.utah.edu/

software/shapeworks.html) is used to construct shape correspondence. This software uses a 

method, called entropy-based particle systems, for shape correspondence detection [41], 

[42].

For the brainstem and mandible, their organ shapes in different training subjects are similar 

to each other, and “ShapeWorks” can construct better vertex correspondences. Thus, when 

segmenting the brainstem, by using the hierarchical guidance of critical model vertices, our 
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method overcomes the effect of low tissue contrast in the CT images and gains obviously 

more accurate performance than both the appearance based method and the conventional 

deformable model. Also, when segmenting the mandible, although the conventional 

deformable model can achieve good results due to clear boundaries of bony tissue, our 

method still gains 1.4% improvement in DSC.

For the left and right parotid glands, due to huge shape difference across individual subjects, 

“ShapeWorks” cannot construct good correspondences across different subjects and thus the 

regressors cannot locate critical vertices accurately. Thus, due to insufficient guidance from 

these critical model vertices, our method achieves just a small improvement in segmentation 

of parotid glands.

H. Comparison With State-of-the-art Methods

Since different methods were validated by different datasets, metrics and target organs, as 

well as none of them published their source codes or binary executables, a fair comparison 

with other methods is difficult. We compare our method with 6 methods [29], [63]–[67] 

evaluated on the dataset PDDCA in the Table IV. Note that the method [29] was just 

evaluated on a subset of dataset PDDCA with only 18 high-resolution CT images. The 

method [63] won the MICCAI 2015 Head and Neck Auto Segmentation Grand Challenge. 

The comparison results show that our method obtains the best performance, compared to all 

these state-of-the-art methods.

IV. Conclusions

In this paper, we have proposed a hierarchical vertex regression based segmentation method 

to segment OARs from H&N CT images for radiotherapy planning. Specifically, by 

developing three novel strategies, i.e., hierarchical critical model vertex identification, joint 

learning of shape and appearance, and hierarchical vertex regression, our method can 

essentially solve the drawback of sensitivity to shape initialization in the conventional 

deformable models. Experimental results also show that our proposed method achieves 

higher segmentation accuracy than both the appearance based method and the conventional 

deformable model, and also obtains competitive performance compared to the state-of-the-

art methods.

However, there are still two potential issues with our proposed method. 1) The shape model 

is constructed based on the shape correspondences detected across all atlases, and thus our 

proposed method is heavily dependent on the accuracy of the shape correspondence 

detection method used. 2) The shape prior information is extracted from the predicted 

displacement maps of the closest critical model vertices. Consequently, the prediction 

accuracy current critical vertices affects the subsequent regression or classification. 

Although our mechanism for identifying critical vertices works well in our current database, 

it is still possible that, in the extreme cases, the testing image is noisy at the position of 

certain critical vertex, thus leading to poor prediction of the critical vertex. The prediction 

error will propagate and eventually lead to poor segmentation. In the future, we will do some 

research to automatically identify those poorly-predicted critical vertices and then minimize 

their influences on the subsequent segmentation steps.
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Besides, the computational cost of our proposed method is also intensive. We expect that the 

parallel computing techniques can be used to reduce the computational time of our proposed 

method.

In this work, the implementation of our idea is based on random forest, incorporated with 

Haar-like features. Other handcrafted features may also be used, which will be investigated 

in our future work. In addition, we will also investigate deep learning frameworks, such as 

FCN, U-Net and GANs, as well as deep shape features [68], to automatically learn effective 

features and incorporate them into our model.
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Fig. 1. 
The overview flowchart for our proposed hierarchical vertex regression based organ 

segmentation. 1, 2, J and FC are the 1st, 2nd, Jth regression forests and the classification 

forest, respectively, which are learned in the training procedure.
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Fig. 2. 
Schematic diagram of constructing 3D shape model and establishing correspondences.
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Fig. 3. 
Illustration of calculation of Haar-like features. Left: One-block Haar-like features. Right: 

Two-block Haar-like features. Blue, red and green rectangles denote the local intensity 

patch, the positive block, and the negative block, respectively.
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Fig. 4. 
Flowchart for training and identification of the most critical model vertices.
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Fig. 5. 
Flowchart of joint learner of shape and appearance.
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Fig. 6. 
Framework of hierarchical vertex regression.
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Fig. 7. 
Flowchart of training a classifier for organ segmentation by using displacement maps as 

shape context.
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Fig. 8. 
Influence of the number of trees on brainstem segmentation.
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Fig. 9. 
The most critical vertices of 2 typical subjects for the case of brainstem segmentation. The 

first line shows for Subject 1 and the second line shows for Subject 2. The left two columns 

show the front view, and the right two columns show the back view. The 16 most critical 

vertices are shown in the first and third columns. All those 128 vertices are shown in the 

second and fourth columns.
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Fig. 10. 
Visual comparison of performances of different segmentation methods. The first row shows 

a sagittal CT slice of the brainstem. The second row shows an axial slice of the mandible. 

The third row shows an axial slice of the left parotid gland. The six columns in each row 

show the original CT slice and five segmentation results (in contours) overlaid on the 

original CT slice. Contours with different colors denote the results of different methods: 

green -ground truth; blue - appearance based method; pink - conventional shape model 

method [19]; yellow – equal vertex regression based method; red - proposed hierarchical 

vertex regression based method.
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TABLE IV

Comparison Between State-of-the-Art Method and Our Proposed Methods

Organ Method DSC(%)

Brain Stem

Mannion [62] 88±3

Arteaga [65] 86±5

Albrecht [63] 85±5

Chen [66] 80±7

Fritscher [28] 86±(−)

Proposed 90±4

Mandible

Mannion [62] 91±2

Arteaga [65] 93±2

Albrecht [63] 88±6

Chen [66] 92±2

Aghdasi [64] 79±5

Proposed 94±1

Parotid Glands (Left and Right)

Mannion [62] 82±1

Arteaga [65] 76±8

Albrecht [63] 82±5

Chen [66] 81±5

Fritscher [28] 82±(−)

Proposed 83±6
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