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Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to
divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive
manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear
methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The
current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov
exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy,
and sample entropy along with their recent applications in the ECG signal analysis.

1. Introduction

In the last few decades, the ECG signals have been widely
analyzed for the diagnosis of the numerous cardiovascular
diseases [1, 2]. Apart from this, the ECG signals are processed
to extract the RR intervals, which have been reported to
divulge information about the influence of the autonomic
nervous system activity on the heart through heart rate vari-
ability (HRV) analysis [3, 4]. HRV refers to the study of the
variation in the time interval between consecutive heart beats
and the instantaneous heart rate [5]. An important step in the
analysis of the ECG signals is the extraction of the clinically
relevant features containing all the relevant information of
the original ECG signal and, hence, can act as the representa-
tive of the signal for further analysis [6, 7]. Features can be
extracted from the ECG signals using the time-domain, fre-
quency-domain, and joint time-frequency domain analysis
methods including the nonlinear methods [7-9]. The analy-
sis of the ECG signals using the nonlinear signal analysis

methods has received special attention of the researchers in
recent years [7-9]. The nonlinear methods of the ECG signal
analysis derive their motivation from the concept of nonlin-
ear dynamics [10, 11]. This may be attributed to the fact that
the biomedical signals like ECG can be generated by the non-
linear dynamical systems [12]. A dynamical system is a sys-
tem that changes over time [9]. However, a dynamical
system may also be defined as an iterative physical system,
which undergoes evolution over time in such a way that
the future states of the system can be predicted using the
preceding states [13]. Dynamical systems form the basis of
the nonlinear methods of the signal analysis [14]. The highly
explored nonlinear signal analysis methods include recon-
structed phase space analysis, Lyapunov exponents, correla-
tion dimension, detrended fluctuation analysis (DFA),
recurrence plot, Poincaré plot, approximate entropy, and
sample entropy. This study attempts to provide a theoretical
background of the above-mentioned nonlinear methods and
their recent applications (last 5 years) in the analysis of the
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FIGURE 1: Various types of application of nonlinear dynamical system analysis of ECG.

ECG signal for the diagnosis of diseases, understanding the
effect of external stimuli (e.g., low-frequency noise and
music), and human biometric authentication (Figure 1).

2. Dynamical System

Dynamical systems form the basis of the nonlinear methods
of signal analysis [15-17]. The study of the dynamical sys-
tems has found applications in a number of fields like physics
[15-17], engineering [15], biology, and medicine [16]. A
dynamical system can be defined as a system, whose state
can be described by a set of time-varying (continuous or dis-
crete) variables governed by the mathematical laws [17].
Such a system is said to be deterministic if the current values
of time and the state variables can exactly describe the state of
the system at the next instant of time. On the other hand, the
dynamical system is regarded as stochastic, if the current
values of time and the state variables describe only the prob-
ability of variation in the values of the state variables over
time [18-20]. Dynamical systems can also be categorized
either as linear or nonlinear systems. A system is regarded
as linear when the change in one of its variable is propor-
tional to the alteration in a related variable. Otherwise, it is
regarded as nonlinear [18]. The main difference between
the linear and the nonlinear systems is that the linear systems
are easier to analyze. This can be attributed to the fact that the
linear systems, unlike the nonlinear systems, facilitate the
breaking down of the system into parts, performing analysis
of the individual parts, and finally recombining the parts to
obtain the solution of the system [21]. A set of coupled
first-order autonomous differential equations ((1)) is used
to mathematically describe the evolution of a continuous
time dynamical system [22].

= F(x(0). ) (1)

where X(t) =vector representing the dynamical variables of
the system, fi=vector corresponding to the parameters, and
F=vector field whose components are the dynamical rules
governing the nature of the dynamical variables.

A system involving any nonautonomous differential
equation in R” can be transformed into an autonomous dif-
ferential equation in R"" ' [23]. The forced Duffing-Van
der Pol oscillator has been regarded as a well-known example

of a nonlinear dynamical system, which is described by a
second-order nonautonomous differential equation [14, 23].

d*y
dar’
where (4, f, and w represent the parameters.
This nonautonomous differential equation can be con-
verted into a set of coupled first-order autonomous differen-

tial equations (3), (4), and (5) by delineating 3 dynamical
variables, that is, x, =y, x, =dy/dt, and x;=wt [23].
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The discrete time dynamical systems are described
by a set of coupled first-order autonomous difference equa-
tions [14, 23, 24].

X(n+1)(n+ 1) = G(x(n), ), (6)

where G = vector describing the dynamical rules and 7 = inte-
ger representing time.

It is possible to obtain a discrete dynamical system from a
continuous dynamical system through the sampling of its
solution at a regular time interval T, in which the dynamical
rule representing the relationship between the consecutive
sampled values of the dynamical variables is regarded as a
time T map. The sampling of the solution of a continuous
dynamical system in the R” dimensional space at the consec-
utive transverse intersections with a R”~' dimensional sur-
face of the section also results in the formation of a discrete
dynamical system. In this case, the dynamical rule represent-
ing the relationship between the consecutive sampled values
of the dynamical variables is regarded as a Poincaré map or
a first return map. For the forced Duffing-Van der Pol oscil-
lator, the Poincaré map is equivalent to the time T map with
T =2m/w when a surface of section is defined by x; = 6, with
0, € (0,27) [14, 22, 23].

Generally, randomness is considered to be associated
with noise (unwanted external disturbances like power line
interference). However, it has been well reported in the last
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few decades that most of the dynamical systems are deter-
ministic nonlinear in nature and their solutions can be statis-
tically random as that of the outcomes of tossing an unbiased
coin (i.e., head or tail) [23]. This statistical randomness is
regarded as deterministic chaos, and it allows the develop-
ment of models for characterizing the systems producing
the random signals.

As per the reported literature, the random signals pro-
duced by noise fundamentally differ from the random signals
produced from the deterministic dynamical systems with a
small number of dynamical variables [25]. The differences
between them cannot be analyzed using the statistical
methods. Phase space reconstruction-based dynamical sys-
tem analysis has been recommended by the researchers for
this purpose [12].

3. Nonlinear Dynamical System
Analysis Techniques

3.1. Reconstructed Phase Space Analysis of a Dynamical
System. The phase space is an abstract multidimensional
space, which is used to graphically represent all the possible
states of a dynamical system [23]. The dimension of the
phase space is the number of variables required to completely
describe the state of the system [19, 26]. Its axes depict the
values of the dynamical variables of the system [26]. If the
actual number of variables governing the behaviour of the
dynamical system is unknown, then the phase space plots
are reconstructed by time-delayed embedding, which is based
on the concept of Taken’s theorem [19]. The theorem states
that if the dynamics of a system is governed by a number of
interdependent variables (i.e., its dynamics is multidimen-
sional), and only one variable of the system, say, x, is accessi-
ble (i.e, only one dimension can be measured), then it is
possible to reconstruct the complete dynamics of the system
from the single observed variable x by plotting its values
against itself for a certain number of times at a predefined
time delay [27]. Fang et al. [28] have reported that the recon-
structed phase spaces can be regarded as topologically equiv-
alent to the original system and, hence, can recover the
nonlinear dynamics of the system.

Let us consider that all the values of the observed variable
x is represented by the vector x.

X:<x1,x2,x3;'-~axn)) (7)

where n =number of points in the time series.

If d is the true/estimated embedding dimension of the
system (i.e., number of variables governing the dynamics of
the system), then each state of the system can be represented
in the phase space by the d-dimensional vectors of the form
v, given as follows:

vi= (xl’xl+1’xl+21’ ,x1+(d_1)7), (8)

where 7=time lag, and 1 <i<n—-(d-1)7.
A total of n—(d-1)r number of such vectors are
obtained, which can be arranged in a matrix V (9) [26, 27].

In matrix V, the row indices signify time, and the column
indices refer to a dimension of the phase space.

This set of vectors forms the entire reconstructed phase
space [12, 26].

Vi X1 Xl4r X14(d-1)t
\p) X2 Xo4r X2+(d-1)t
V= = 5
Vi (d-1)r Xn(d-1)r  Xn-(d-2)r " Xy

)

where the rows correspond to the d-dimensional phase space
vectors and the columns represent the time-delayed versions
of the initial n — (d — 1)t points of the vector X.

The two factors, namely, embedding dimension (d) and
time delay (7) play an important role during the reconstruc-
tion of the phase space of a dynamical system [29, 30]. The
embedding dimension is determined using either the method
of false nearest neighbours [12] or Cao’s method [29] or
empirically [30]. The false nearest neighbour method has
been regarded as the most popular method for the determi-
nation of the optimal embedding dimension [31]. This
method is based on the principle that the pair of points
which are located very near to each other at the optimal
embedding dimension m will remain close to each other as
the dimension m increases further. Nevertheless, if m is
small, then the points located far apart may appear to be
neighbours due to projecting into a lower dimensional space.
In this method, the neighbours are checked at increasing
embedding dimensions until a negligible number of false
neighbours are found while moving from dimension m to
m+ 1. This resulting dimension m is considered as the opti-
mal embedding dimension.

The time delay is usually determined using either the first
minimum of the average mutual information function
(AMIF) [32] or first zero crossing of the autocorrelation
function (ACF) [33] or empirically. The implementation of
ACF is computationally convenient and does not require a
large data set. However, it has been reported that the use of
ACF is not appropriate for nonlinear systems, and hence
AMIF should be used for the computation of the optimal
time delay [34, 35]. For the discrete time signals, the AMIF
can be defined as follows [36]:

Pyy (Xi’yj)
Py (x;)Py ()’j)

where X={x;} and Y={y.} are discrete time variables, Py (x;)
is the probability of occurrence of X, Py (y]) is the probability
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AMI(X, Y) = Pyy (xi, y j)log . (10)

Il
—

j

of occurrence of Y, and Pyy (x;, y;) is the probability of occur-
rence of both X and Y.

Let us consider an RR interval (RRI) time series extracted
from the 5 min ECG recording of a person (Indian male vol-
unteer of 27 years old) consuming cannabis (Figure 2). The
ECG signal was acquired using the commercially available
single lead ECG sensor (Vernier Software & Technology,
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FIGURE 2: A representative RRI time series obtained from a 5 min
ECG signal.

USA) and stored into a laptop using a data acquisition device
(NI USB 6009, National Instruments, USA). The sampling
rate of the device was set at 1000 Hz. The RRI time series
was extracted from the acquired ECG signal using Biomedi-
cal Workbench toolkit of LabVIEW (National Instruments,
USA). The determination of the optimal value of the embed-
ding dimension for this RRI time series by the method of
false nearest neighbours is shown in Figure 3. The determina-
tion of the proper value of the time delay (by the first mini-
mum of the AMIF) for the above-mentioned RRI time
series has been shown in Figure 4.

Each point in the reconstructed phase space of a system
describes a potential state of the system. The system starts
evolving from any point in the phase space (regarded as the
initial state/condition of the system), following the dynamic
trajectory determined by the equations of the system [19]. A
dynamic trajectory describes the rate of change of the system’s
state with time. All the possible trajectories, for a given initial
condition, form the flow of the system. Each trajectory
occupies a subregion of the phase space, called as an attractor.
An attractor can also be defined as a set of points (indicating
the steady states) in the phase space, through which the system
migrates over time [38]. The 3D attractor of the RRI time
series (represented in Figure 2) has been shown in Figure 5.

Each attractor is associated with a basin of attraction,
which represents all the initial states/conditions of the system
that can go to that particular attractor [38]. Attractors can be
points, curves, manifolds, or complicated objects, known as
strange attractors. A strange attractor is an attractor having
a noninteger dimension.

3.2. Lyapunov Exponents. The nonlinear dynamical systems
are highly sensitive to the initial conditions, that is, a small
change in the state variables at an instant will cause a large
change in the behaviour of the system at a future instant of
time. This is visualized in the reconstructed phase space as
the adjacent trajectories that diverge widely from the initial
close positions or converge. Lyapunov exponents are a
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quantitative measure of the average rate of this divergence
or convergence [40]. They provide an estimation of the dura-
tion for which the behaviour of a system is predictable before
chaotic behaviour prevails [9]. Positive Lyapunov exponent
values indicate that the phase space trajectories are diverg-
ing (i.e., the closely located points in the initial state are rap-
idly separating from each other in the ith direction) and the
system is losing its predictability, exhibiting chaotic behav-
iour [41, 42]. On the other hand, the negative Lyapunov
exponent values are representatives of the average rate of
the convergence of the phase space trajectories. For example,
in a three-dimensional system, the three Lyapunov expo-
nents provide information about the evolution of the volume
of a cube and their sum specifies how a hypercube evolves in
a multidimensional attractor. The sum of the positive Lyapu-
nov exponents represents the rate of spreading of the hyper-
cube, which in turn, indicates the increase in unpredictability
per unit time. The largest positive (dominant) Lyapunov
exponent mainly governs its dynamics [43].

If ||6x;(0) || and ||6x,(¢)|| represent the Euclidean distance
between two neighbouring points of the phase space in the
ith direction at the time instances of 0 and ¢, respectively,
then, the Lyapunov exponent can be defined as the average
growth A; of the initial distance ||8x;(0)|| [23, 44].

[[0x;(t)

At
jox oy~ ¢k -
L [[8x() ||
or A;=lim -log ——%",
P8 5w 0)

where A; is the average growth of the initial distance
16x;(0)[-

The dimensionality of the dynamical system decides
the number of Lyapunov exponents, that is, if the system
is defined in R, then it possesses m Lyapunov exponents
(A;=A,>,...,A,,). The complete set of Lyapunov expo-
nents can be described by considering an extremely small
sphere of initial conditions having m dimensions, which is
fastened to a reference phase space trajectory. If P,(t) repre-
sents the length of the ith axis, and the axes are arranged in
the order of the fastest to the slowest growing axes, then 12
denotes the complete set of Lyapunov exponents arranged
in the order of the largest to the smallest exponent [23].

A; = lim llog<Pi(t)), (12)

t—oo f P;(0)

where i=1,2,...,m.

The divergence of the vector field of a dynamical system
is identical to the sum of all its Lyapunov exponents (13).
Hence, the sum of all the Lyapunov exponents is negative
in case of the dissipative systems. Also, one of the Lyapunov
exponents is zero for the bounded trajectories, which do not
approach a fixed point.

Y A=V -F, (13)

where F represents the vector field of a dynamical system.
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F1cuRre 3: Computation of the optimal embedding dimension by the method of false nearest neighbours. The optimal embedding dimension
was 7, and the corresponding percent false neighbour was 44.83%. The method of false nearest neighbour was implemented using Visual
Recurrence Analysis freeware (V4.9, USA), developed by Kononov [37].

2.5 1

Average mutual information (bits)
&

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Time lag (units)

FIGURE 4: Optimal time delay computation by the first minimum of the AMIF. The first minimum of the AMIF was 2. The AMIF was
calculated using Visual Recurrence Analysis freeware (V4.9, USA), developed by Kononov [37].
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FIGURE 5: 3D phase space attractor of an RRI time series. The
attractor was plotted using the MATLAB Toolbox developed by
Yang [39].

Lyapunov exponents can be calculated from either the
mathematical equations describing the dynamical systems
(if known) or the observed time series [45]. Usually, two dif-
ferent types of methods are used for obtaining the Lyapunov

exponents from the observed signals. The first method is
based on the concept of the time-evolution of nearby points
in the phase space [46]. However, this method enables the
evaluation of the largest Lyapunov exponent only. The other
method is dependent on the computation of the local Jacobi
matrices and estimates all the Lyapunov exponents [47]. All
the Lyapunov exponents (in vector form) of a particular sys-
tem constitute the Lyapunov spectra [45].

3.3. Correlation Dimensions. The geometrical objects possess
a definite dimension. For example, a point, a line, and a sur-
face have dimensions of 0, 1, and 2, respectively [9]. This
notion has led to the development of the concept of fractal
dimension. A fractal dimension refers to any noninteger
dimension possessed by the set of points (representing a
dynamical system) in a Euclidean space. The determination
of the fractal dimension plays a significant role in the nonlin-
ear dynamic analysis. This may be attributed to the fact that
the strange attractors are fractal in nature and their fractal
dimension indicates the minimum number of dynamical
variables required to describe the dynamics of the strange
attractors. It also quantitatively portrays the complexity of a
nonlinear system. The higher is the dimension of the system;
the more is the complexity. The commonly employed
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FIGURE 6: Illustration of the first 3 stages during the construction of a Cantor set in 2D: (a) n=0, (b) n =1, and (c) n =2 [48].

method for the determination of the dimension of a set is the
measurement of the Kolmogorov capacity (i.e., box-counting
dimension). This method covers the set with tiny cells/boxes
(squares for sets embedded in 2D and cubes for sets embed-
ded in 3D space) having size e. The dimension D can be
defined as follows [23]:

D = lim 228M()) (14)
e=0 log(1/¢)

where M(e) is the number of the tiny boxes containing a part
of the set.

The mathematical example of a set possessing noninteger
fractal dimension is a Cantor set. A Cantor set can be defined
as the limiting set in a sequence of sets [48]. Let us consider a
Cantor set in 2D, characterized by the below mentioned
sequence of sets. At stage n = 0 (Figure 6(a)), let S, designates
a square having sides of length I The square S, is divided
into 9 uniform squares of size /3, and the middle square is
removed at stage n=1 (Figure 6(b)). This set of squares is
regarded as S,. At stage n = 2, each square of set S, is further
divided into 9 squares of size I/9 and the middle squares are
removed, which constitute the set S, (Figure 6(c)). When
this process of subdivision and removal of squares is contin-
ued to get the sequence of sets S, S;, and S,, then the Canter
set is the limiting set defined by S = HILIIQO S,,. The Kolmogorov

capacity-based dimension of this Cantor set can be calcu-
lated easily using the principle of mathematical induction
as described below. When n =0, S, consists of a square of
size I, and hence, e=] and M(e)=1. When n=1, S; com-
prises of 8 squares of size /3. Therefore, e=1/3 and
M(e)=8. At n=2,S, is made of 64 squares of size //9. There-
fore, €= (1/3)*> and M(e) = 8% Thus, the fractal dimension of
the Cantor set is given as follows:

D =lim 228(M(©) _ log(8")

—_— = ——= =1.892,
0 log(1/e) b3 log(1/3")

(15)

where the fractal dimension < 2 suggests that the Cantor
set does not completely fill an area in the 2D space.

However, the Kolmogorov capacity-based dimension
measurement does not describe whether a box contains
many points or few points of the set. To describe the inhomo-
geneities or correlations in the set, Hentschel and Procaccia
defined the dimension spectrum [49].

, 9=0,1,2,...,

(16)

where M(r) =number of m-dimensional boxes of size r
required to cover the set, p;=N,/N is the probability that
the ith box contains a point of the set, N is the total number
of points in the set, and N; is the number of points of the set
contained by the ith box.

It can be readily inferred that the Kolmogorov capacity is
equivalent to D,. The dimension D, defined by taking the
limit ¢ — 1 in 16 is regarded as the information dimension.

M(r)
_'P;log P;
D, =limD, = lim zl=l4g

q—1 r—0

, 17
log r (17)

where the dimension D, is the known as the correlation
dimension.
The correlation dimension can be expressed as follows:

(18)

where C(r) = Zﬂ”pf is the correlation sum. It represents
the probability of occurrence of two points of the set in
a single box.

The correlation dimension signifies the number of the
independent variables required to describe the dynamical
system [50]. A widely used algorithm for the computation
of the correlation dimension (D,) from a finite, discrete
time series was introduced by Grassberger and Procaccia
[51]. It was based on the assumption that the probability
of occurrence of two points of the set in a box of size r
is approximately same as the probability that the two
points of the set are located at a distance p<r. Using this
assumption, the correlation sum can be computed as given
as follows:

N
Zi:l,j>i®(r - p(xi’yi))

12N(N-1) ’ (19)

C(r) =

where © is the Heaviside function and can be defined as

{

0, ifu<o,

o(u) (20)

1, ifu>0.
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FiGure 7: Correlation dimensions of the reconstructed phase space plot of RRI time series at different embedding dimensions. The correlation
dimensions were calculated using Visual Recurrence Analysis freeware (V4.9, USA), developed by Kononov [37].

Practically, it is not possible to achieve the limit r — 0
that is used in the definition of the correlation dimension
(18). Hence, Grassberger and Procaccia [51] proposed the
approximate calculation of the correlation sum C(r) (19)
for a number of values of r and then deducing the correlation
dimension from the slope of the linear fitting in the linear
region of the plot of log(C(r)) versus log(r). The correlation
dimension of the reconstructed phase space plot of a dynam-
ical system varies with its embedding dimension. The corre-
lation dimensions of the reconstructed phase space plot of
the aforementioned RRI time series at different embedding
dimensions have been shown in Figure 7.

3.4. Detrended Fluctuation Analysis (DFA). The detection of
long-range correlation of a nonstationary time series data
requires the distinction between the trends and long-range
fluctuations innate to the data. Trends are resulted due to
external effects, for example, the seasonal alteration in the
environmental temperature values, which exhibits a smooth
and monotonous or gradually oscillating behaviour. Strong
trends in the time series can cause the false discovery of
long-range correlations in the time series if only one nonde-
trending technique is used for its analysis or if the outcomes
of a method are misinterpreted. In recent years, DFA is
explored for identifying long-range correlations (autocorre-
lations) of the nonstationary time series data (or the corre-
sponding dynamical systems) [52]. This may be attributed
to the ability of DFA to systematically eliminate the trends
of different orders embedded into the data [52]. It provides
an insight into the natural fluctuation of the data as well as
into the trends in the data. DFA estimates the inherent
fractal-type correlation characteristics of the dynamical
systems, where the fractal behaviour corresponds to the scale
invariance (or self-similarity) among the various scales
[9]. The method of DFA was first proposed by Peng et al.
[53] for the identification and the quantification of long-
range correlations in DNA sequences. It was developed for
detrending the variability in a sequence of events, which
in turn, can divulge information about the long-term var-
iations in the dataset. Since its inception, DFA has found

applications in the study of HRV [54], gait analysis [55, 56],
stock market prediction [57, 58], meteorology [59], and
geology [60-62]. DFA method has also been given alterna-
tive terminologies [61] by various researchers like “linear
regression detrended scaled windowed variance” [63] and
“residuals of regression” [64].

In order to implement DFA, the bounded time series x,
(t € N) is converted into an unbounded series X, [65].

X=X (), (1)

where X, = cumulative sum and (x;) = mean of the time series
X, in the window t.

The unbounded time series X, is then split into a number
of portions of equal length 7, and a straight line fitting is per-
formed to the data using the method of least square fitting.
The fluctuation (i.e., the root-mean-square variation) for
every portion from the trend is calculated using [9]

R =y [+ (% a,-b)" (22)

where g, and b indicate the slope and intercept of the straight
line fitting, respectively, and # is the split-unbounded time
series portion length.

Finally, the log-log graph of F(n) versus n is drawn
(Figure 8), where the statistical self-similarity of the signal
is represented by the straight line on this graph, and the scal-
ing exponent « is obtained from the slope of the line. The
self-similarity is indicated as F(n) ocn® The fluctuation
exponent « has different values for different types of data
(e.g., a~1/2 for the uncorrelated white noise and « > 1/2 for
the correlated processes) [66, 67].

3.5. Recurrence Plot and Recurrence Quantification Analysis.
The dynamical features (e.g., entropy, information dimen-
sion, dimension spectrum, and Lyapunov exponents) of a
time series can be computed using various methods [68].
However, most of these methods assume that the time series
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data is obtained from an autonomous dynamical system. In
other words, the evolution equation of the time series data
does not involve the time explicitly. Further, the time series
data should be longer than the characteristic time of the
underlying dynamical system. In this regard, the recurrence
plot reported by Eckmann et al. [68] has emerged as an
important method for the analysis of the dynamical systems
and provides useful information even when the aforemen-
tioned assumptions are not satisfied. If {)’(i}fil represents
the phase-space trajectory of a dynamical system in a d-
dimensional space, then the recurrence plot can be defined
as an array of points positioned at the places (i, j) in a
N x N square matrix (23) such that X; is approximately equal
to X; as described by 24 [68-70].

1, x; =X
Ri,j( )=
0, x;#x, (23)
i,j=1,2,...,N,
X - % <¢, (24)

where & = acceptable distance (error) between X; and X;. This

€ is required because many systems often do not recur exactly
to a previous state but just approximately.

Recurrence plot divulges natural time correlation infor-
mation at times i and j. In other words, it evaluates the states
of a system at times 7 and j and indicates the existence of sim-
ilarity by placing a dot (corresponding to R;;=1) in the
recurrence plot. The recurrence plot of the RRI time series
present in Figure 2 has been shown in Figure 9.

The main advantage of the recurrence plot is that it does
not require any mathematical transformation or assumption
[69]. But the drawback of this method lies in the fact that the
information provided is qualitative. To overcome this limita-
tion, several measures of complexity that quantify the small-
scale structures in the recurrence plot have been proposed by
many researchers, regarded as recurrence quantification
analysis (RQA) [71]. These measures are derived from the
recurrence point density as well as the diagonal and the ver-
tical line structures of the recurrence plot. The calculation of
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FIGURE 9: Recurrence plot of an RRI time series. The recurrence plot
was generated using the MATLAB Toolbox developed by Yang [39].

these measures in small windows, passing along the line of
identity (LOI) of the recurrence plot, provides information
about the time-dependent behaviour of these variables. Sev-
eral studies have reported that the RQA variables can detect
the bifurcation points like the chaos-order transitions [72].
The vertical structures in the recurrence plot have been
reported to represent the intermittency and the laminar
states. The RQA variables, corresponding to the vertical
structures, enable the detection of the chaos-chaos transition
[71]. The following discussion introduces the RQA parame-
ters along with their potentials in the identification of the
changes in the recurrence plot.

(i) Recurrence rate (RR) or percent recurrences: RR is
the simplest variable of the RQA. It is a measure of
the density of the recurrence points in the recur-
rence plot. Mathematically, it can be defined as
25, which is related to the correlation sum (19)
except LOI, which is not included.
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(ii)

(iil)

(iv)

(v)

where R, ;(e) is the recurrence matrix and N is the
length of the data series.

Average number of neighbours: It is defined by 26
and represents the average number of neighbours
possessed by each point of the trajectory in its e-
neighbourhood.

No(e)= 5 O Ry, (26)
i,j=1

where N, is the number of (nearest) neighbours.

Determinism: The recurrence plot comprises of
diagonal lines. The uncorrelated, stochastic, or
chaotic processes exhibit either no diagonal lines
or very short diagonal lines. On the other hand,
the deterministic processes are associated with
longer diagonals and less number of isolated
recurrence points. The ratio of the number of
recurrence points forming diagonal structures
(having length>1_. ) to the total number of recur-
rence points is regarded as determinism (DET) or
predictability of the system (27). The threshold
I in is used to exclude the diagonal lines which
are produced by the tangential motion of the phase
space trajectory.

DET = M (27)
IP(I)

I=1

where  P(I)= Y% (1~ Ry 4 (6))(1 - Ry ()
'R, +k,j+k(€) represents the histogram of diago-
nal lines of length [.

Divergence: Divergence (DIV) is the inverse of the
longest diagonal line appearing in the recurrence
plot (28). It corresponds to the exponential diver-
gence of the phase space trajectory, that is, when
the divergence is more, the diagonal lines are
shorter, and the trajectory diverges faster.

DIV = S E— (28)

where L
line.

is the length of the longest diagonal

max

Entropy: Entropy (ENTR) is the Shannon entropy
of the probability p(I) of finding a diagonal line of
length [ in the recurrence plot (29). It indicates
the complexity of the recurrence plot in respect of
the diagonal lines. For example, the uncorrelated
noise possesses a small value of entropy, which sug-
gests its low complexity.

ENTR=- Y p(l)ln(p(l)), (29)

=i

where p(l) is the probability of finding a diagonal
line of length I.

(vi) RATIO: It is the ratio of the determinism and the
recurrence rate (30). It has been reported to be use-
ful for identifying the transitions in the dynamics of
the system.

N
IP(1
RATIO = N? M (30)

(X o)

where P(I) = number of diagonal lines of length 1.

(vii) Laminarity: Laminarity (LAM) is the ratio of the
number of recurrence points forming vertical lines
to the total number of recurrence points in the
recurrence plot (31). LAM has been reported to
provide information about the occurrence of the
laminar states in the system. However, it does not
describe the length of the laminar states. The value
of LAM decreases if more number of single recur-
rence points are present in the recurrence plot than
the vertical structures.

Ziv v vP(v)
LAM = — (31)

where P(v) = Zzﬂ(l -R))(1-R;;,,) Z;(I)Ri,j+k is
number of vertical lines of length v.

(viii) Trapping time: Trapping time (T'T) is an estimate
of the average length of the vertical structures,
defined by 32. It indicates the average time for
which the system will abide by a specific state.
The computation of TT requires the consideration
of a minimum length v, ;.

Zl\i vP(v)
TT= "o, (32)

N
szvmin P(V)
where v, is the predefined minimum length of a
vertical length.

(ix) Maximum length of the vertical lines: The maxi-

mum length of the vertical lines (V,,) in the
recurrence plot can be defined as follows:
NV
Vmax = max({vl}l:1> , (33)

where N, is the absolute number of vertical lines.

3.6. Poincaré Plot. A Poincaré plot is a plot that enables the
visualization of the evolution of a dynamical system in the
phase space and is useful for the identification of the hidden
patterns. It facilitates the reduction of dimensionality of the
phase space and simultaneously converts the continuous
time flow into a discrete time map [9]. The Poincaré plot
varies from the recurrence plot in the sense that Poincaré



10 Journal of Healthcare Engineering
0.809 ]
0.75 —
- 0.7 4
"
=1
e
&
0.65 —
0.6 -
SD1 18 ms
0.56 - | | | SD2 28 ms
0.56 0.6 0.7 0.809
RR, (s)
A\ SDI1
-~ SD2
-~ Ellipse

FiGurk 10: The Poincaré plot of the RRI time series represented in Figure 2. The plot was generated using Biomedical Workbench toolkit of
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plot is defined in a phase space, whereas, the recurrence
plot is created in the time space. In the recurrence plot,
the points represent the instances when the dynamical sys-
tem traverses approximately the same section of the phase
space [9]. On the other hand, the Poincaré plot is gener-
ated by plotting the current value of the RR interval (
RR,) against the RR interval value preceding it (RR,,;)
[73, 74]. Hence, the Poincaré plot takes into account only
the length of the RR intervals but not the amount of the
RR intervals that occur [75]. The Poincaré plot is also
named as scatter plot or scattergram, return map, and
Lorentz plot [76]. The Poincaré plot of the aforementioned
RRI time series has been shown in Figure 10.

Two important descriptors of the Poincaré plot are SD1
and SD2. SD1 refers to the standard deviation of the projec-
tion of the Poincaré plot on the line normal to the line of
identity (i.e., y=—x), whereas, the projection on the line of
identity (i.e, y=x) is regarded as SD2 [77]. The ratio of
SD1 and SD2 is named as SD12. The Poincaré plot has been
reported to divulge information about the cardiac autonomic
activity [78, 79]. This can be attributed to the fact that
SD1 provide information on the parasympathetic activity,
whereas, SD2 is inversely related to sympathetic activity [80].

Apart from the above-mentioned dynamical system
analysis methods, entropy-based measures such as approxi-
mate entropy (ApEn) and sample entropy (SaEn) have also
been studied for the analysis of nonstationary signals [9].
These measures have been proposed to reduce the number
of points required to obtain the dimension or entropy of
low-dimensional chaotic systems and to quantify the changes
in the process entropy. However, the methodological
drawbacks of ApEn have been pointed out by Richman

and Moorman and Costa et al. [9, 81, 82]. SaEn has also suf-
fered from criticism for not completely characterizing the
complexity of the signal [9, 83].

4. Applications of Nonlinear Dynamical System
Analysis Methods in ECG Signal Analysis

4.1. Applications of Phase Space Reconstruction in ECG Signal
Analysis. The phase space reconstruction has found a wide
range of applications in the field of research, such as wind
speed forecasting for wind farms [84], analyzing molecular
dynamics of polymers [85], river flow prediction in urban
area [86], and biosignal (such as ECG and EEG) analysis
[28]. Among the applications related to biosignal analysis,
many extensive studies have been performed for the analysis
of ECG signals [87].

The different types of cardiac arrhythmias include ven-
tricular tachycardia, atrial fibrillation, and ventricular fibril-
lation. Al-Fahoum and Qasaimeh [12] have reported the
development of a simple ECG signal processing algorithm
which employs reconstructed phase space for the classifica-
tion of the different types of arrhythmia. The regions occu-
pied by the ECG signals (belonging to the different types of
arrhythmias) in the reconstructed phase space were used to
extract the features for the classification of the arrhythmias.
The authors reported the occurrence of 3 regions in the
reconstructed phase space, which were representative of
the concerned arrhythmias. Hence, 3 simple features were
computed for the purpose of arrhythmia classification. The
performance of the proposed algorithm was verified by
classifying the datasets from the MIT database. The algo-
rithm was able to achieve a sensitivity of 85.7-100%, a
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TaBLE 1: Recent studies performed for arrhythmia detection using phase space analysis of ECG.
Types of arrhythmia Classification method Performance Ref.
— 0, 1tivi
Atrial fibrillation, ventricular tachycardia, Distribution of the attractor in 857 1004) se.:n51t1v1ty,
. s 86.7-100% specificity, and 95.55% [12]
and ventricular fibrillation the reconstructed phase space !
overall efficiency
Vegtngu lar tachycardlla, ventricular . Box-counting in phase 96.88% sensitivity, 100% specificity,
fibrillation, and ventricular tachycardia space diagrams and 98.44% accurac [89]
followed by ventricular fibrillation P & D Y
Ventricular fibrillation and normal Neural network with weighted 79.12% sensitivity, 89.58% specificity, [90]
sinus rhythm fuzzy membership functions and 87.51% accuracy
Atrial premature contraction, premature
ventricular contraction, normal sinus K-nearest neichbour 99.42% sensitivity, 98.19% specificity, [88]
rhythm, left bundle branch block, and & and 98.7% accuracy
right bundle branch block
Soon-terminating atrial fibrillation and A genetic algorithm in 100% sensitivity, 100% specificity, [91]

immediately terminating atrial fibrillation

combination with SVM

and 100% accuracy

specificity of 86.7-100%, and an overall efficiency of 95.55%.
Sayed et al. [88] have proposed the use of a novel distance
series transform domain, which can be derived from the
reconstructed phase space of the ECG signals, for the classi-
fication of the five types of arrhythmias. The transform space
represents the manner in which the successive points of
the original reconstructed phase space travel nearer or far-
ther from the origin of the phase space. A combination of
the raw distance series values and the parameters of the
autoregressive (AR) model, the amplitude of the discrete
Fourier transform (DFT), and the coefficients of the wave-
let transform was used as the features for classification using
K-nearest neighbour (K-NN) classifier. The authors have
reported that the proposed method outperformed the state-
of-the-art methods of classification with an extraordinary
accuracy of 98.7%. The sensitivity and the specificity of the
classifier were 99.42% and 98.19%, respectively. Based on
the results, the authors suggested that their proposed method
can be used for the classification of the ECG signals. The
recent studies performed in the last 5 years for arrhythmia
detection using phase space analysis of the ECG signals have
been tabulated in Table 1.

Sleep apnoea is a kind of sleep disorder, where a distinct
short-term cessation of breathing for >10sec is observed
when the person is sleeping [92]. It can be categorized into
3 categories, namely, obstructive sleep apnoea, central sleep
apnoea, and mixed sleep apnoea. Sleep apnoea results in
symptoms like daytime sleeping, irritation, and poor concen-
tration [93]. Jafari reported the extraction of the features
from the reconstructed phase space of the ECG signals and
the frequency components of the heart rate variability
(HRV) (i.e., very low-frequency (VLF), low-frequency (LF),
and high-frequency (HF) components) for the detection
of the sleep apnoea [93]. The extracted features were sub-
jected to SVM-based classification. For the sleep apnoea
dataset provided by Physionet database, the proposed feature
set exhibited a classification accuracy of 94.8%. Based on
the results, the author concluded that the proposed method
can help in improving the efficiency of sleep apnoea
detection systems.

Syncope, also known as fainting, refers to the unantici-
pated and the temporary loss of consciousness [94]. This is
due to the malfunctioning of the autonomic nervous system
(ANS), which is responsible for the regulation of the heart
rate and blood pressure [95]. Syncope is characterized by a
reduction in blood pressure and bradycardia [95]. It is diag-
nosed using a medical procedure known as head-up tilt test
(HUTT) that varies from 45 to 60 min [96]. Since the test
has to be carried out for a long time, it is unsuitable for the
physically weak patients as they cannot complete the test.
Thus, methods have been proposed to reduce the duration
of the test through the prediction of the HUTT results by
analyzing cardiovascular signals (e.g., ECG and blood pres-
sure) acquired during HUTT. Khodor et al. [96] proposed a
novel phase space analysis algorithm for the detection of syn-
cope. HUTT was carried out for 12 min, and the ECG signals
were acquired simultaneously. RR intervals were extracted
from the ECG signals, and the phase space plots were recon-
structed. Features were extracted from the phase space plot
(such as phase space density) and recurrence quantification
analysis. Statistically significant parameters were determined
using Mann-Whitney test, which were further used for the
SVM-based classification. Sensitivity and specificity of 95%
and 47% were achieved. In 2015, the same group further
reported the acquisition of arterial blood pressure signal
along with the ECG signal during the HUTT for the detection
of syncope [95]. Features were derived from the phase space
analysis of the acquired signals, and important predictors
were identified using the relief method [97]. The K-NN-
based classification was performed, and a sensitivity of 95%
and a specificity of 87% were achieved. Based on the results,
the authors suggested that a bivariate analysis may be per-
formed instead of univariate analysis to predict the outcome
of HUTT with improved performance.

In recent years, ECG is being widely explored as a bio-
metric to secure body sensor networks, human identification,
and verification [98]. As compared to the other biometrics, it
provides the advantage that it has to be acquired from a living
body. In many previous studies related to the ECG-based
biometric, features extracted from the ECG signals were
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amplitudes, durations, and areas of P, Q, R, S, and T waves
[99-101]. However, the extraction of these features becomes
difficult when the ECG gets contaminated by noise [102].
Wavelet analysis of the ECG signals was also attempted for
the extraction of the ECG features for the identification of
persons [103]. But, it required shifting of one ECG waveform
with respect to the other for obtaining the best fit [104].
Recently, Fang and Chan proposed the development of an
ECG biometric using the phase space analysis of the ECG sig-
nals [102]. The phase space plots were reconstructed from
the 5sec ECG signals, and the trajectories were condensed,
single course-grained structure. The distinction between the
course-grained structures was performed using the normal-
ized spatial correlation (nSC), the mutual nearest point
match (MNPM), and the mutual nearest point distance
(MNPD) methods. The proposed strategy was tested on
100 volunteers using both single-lead and 3-lead ECG sig-
nals. The use of single-lead ECG signals resulted in the per-
son identification accuracies of 96%, 95%, and 96% for
MNPD, nSC, and MNDP methods, respectively, whereas,
the accuracies increased up to 99%, 98%, and 98% for 3-
lead ECG signals. Earlier, the same group had proposed
the ECG biometric-based identification of humans by mea-
suring the similarity or dissimilarity among the phase space
portraits of the ECG signals [105]. In the experiment involv-
ing 100 volunteers, the person identification accuracies of
93% and 99% were achieved for single-lead and 3-lead
ECG, respectively.

4.2. Applications of Lyapunov Exponents in ECG Signal
Analysis. The concept of Lyapunov exponents has been
employed to describe the dynamical characteristics of many
biological nonlinear systems including cardiovascular sys-
tems. The versatility of the dominant Lyapunov exponents
(DLEs) of the ECG signals was effectively applied by Valenza
etal. [43] to characterize the nonlinear complexity of HRV in
stipulated time intervals. The aforementioned study evalu-
ated the HRV signal during emotional visual elicitation by
using approximate entropy (ApEn) and dominant Lyapunov
exponents (DLEs). A two-dimensional (valence and arousal)
conceptualization of emotional mechanisms derived from
the circumplex model of affects (CMAs) was adopted in this
study. A distinguished switching mechanism was correlated
between regular and chaotic dynamics when switching from
neutral to arousal elicitation states [43]. Valenza et al. [106]
reported the use of Lyapunov exponents to understand the
instantaneous complex dynamics of the heart from the RR
interval signals. The proposed method employed a high-
order point-process nonlinear model for the analysis. The
Volterra kernels (linear, quadratic, and cubic) were expanded
using the orthonormal Laguerre basis functions. The instan-
taneous dominant Lyapunov exponents (IDLE) were esti-
mated and tracked for the RRI time series. The results
suggested that the proposed method was able to track the
nonlinear dynamics of the autonomic nervous system-
(ANS-) based control of the heart. Du et al. [107] reported
the development of a novel Lyapunov exponent-based diag-
nostic method for the classification of premature ventricular
contraction from other types of ECG beats.
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HRV has been reported to be sensitive to both physiolog-
ical and psychological disorders [108]. In recent years, HRV
has been used as a tool in the diagnosis of the cardiac dis-
eases. HRV is estimated by analyzing the RR intervals
extracted from the ECG signals. The HRV analysis requires
a sensitive tool, as the nature of the RR interval signal is
chaotic and stochastic, and it remains very much contro-
versial [108]. Researchers have proposed Lyapunov expo-
nents as a means for improving the sensitivity of the
HRV analysis. In earlier studies, Wolf et al. and Tayel
and AlSaba had developed two algorithms for the estima-
tion of the Lyapunov exponents [46, 108]. However, those
methods were found to diverge while determining the HRV
sensitivity. Recently, Tayel and AlSaba [108] proposed an
algorithm known as Mazhar-Eslam algorithm that increases
the sensitivity of the HRV analysis with improved accuracy.
The accuracy was increased up to 14.34% as compared to
Wolf’'s method. Ye and Huang [109] reported the estima-
tion of Lyapunov exponents of the ECG signals for the
development of an image encryption algorithm, which can
provide security to images from all sorts of differential
attacks. In the same year, Silva et al. [110] proposed the
largest Lyapunov exponent-based analysis of the RR inter-
val time series extracted from ECG signals for predicting
the outcomes of HUTT.

4.3. Applications of Correlation Dimension in ECG Signal
Analysis. The correlation dimension provides a measure of
the amount of correlation contained in a signal. It has been
used by a number of researchers for analyzing the ECG and
the derived RRI time series in order to detect various patho-
logical conditions [111, 112]. Bolea et al. proposed a method-
ological framework for the robust computation of correlation
dimension of the RRI time series [113]. Chen et al. [114] used
correlation dimension and Lyapunov exponents for the
extraction of the features from the ECG signals for develop-
ing ECG-based biometric applications. The extracted ECG
features could be classified with an accuracy of 97% using
multilayer perceptron (MLP) neural networks [114]. Rawal
et al. [115] proposed the analysis of the HRV during men-
strual cycle using an adaptive correlation dimension method.
In the conventional correlation dimension method, the time
delay is calculated using the autocorrelation function, which
does not provide the optimum time delay value. In the pro-
posed method, the authors calculated the time delay using
the information content of the RR interval signal. The pro-
posed adaptive correlation dimension method was able to
detect the HRV variations in 74 young women during the dif-
ferent stages of the menstrual cycle in the lying and the stand-
ing positions with a better accuracy than the conventional
correlation dimension and the detrended fluctuation analysis
methods. Lerma et al. [50] investigated the relationship
between the abnormal ECG and the less complex HRV using
correlation dimension. ECG signals (24 h Holter ECG signals
as well as standard ECG signals) were acquired from 100 vol-
unteers (university workers), among which 10 recordings
were excluded due to the detection of >5% of false RR
intervals. Examination of the rest 90 standard ECG signals
by two cardiologists suggested 29 standard ECG signals to
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be abnormal. Estimation of the correlation dimensions
suggested that the abnormal ECG signals were associated
with reduced HRV complexity. Moeynoi and Kitjaidure ana-
lyzed the dimensional reduction of sleep apnea features by
using the canonical correlation analysis (CCA). The sleep
apnea features were extracted from the single-lead ECG sig-
nals. The linear and nonlinear techniques to estimate the var-
iance of heart rhythm and HRV from electrocardiography
signal were applied to extract the corresponding features.
This study reported a noninvasive way to evaluate sleep
apnea and used CCA method to establish a relationship
among the pair data sets. The classification of the extracted
features derived from apnea annotation was comparatively
better than the classical techniques [116].

4.4. Applications of DFA in ECG Signal Analysis. It is a well-
reported fact that the exposure to the environmental noise
can result in annoyance, anxiety, depression, and various
psychiatric diseases [117, 118]. However, noise exposure
has also been reported to cause cardiovascular problems
[118]. Chen et al. [114] proposed the DFA of the RR intervals
during exposure to low-frequency noise for 5min to detect
the changes in the cardiovascular activity [119]. From the
results, it could be summarized that an exposure to the low-
frequency noise might alter the temporal correlation of
HRV, though there was no significant change in the mean
blood pressure and the mean RR interval variability. Kamath
et al. reported the implementation of DFA for the classifica-
tion of congestive heart failure (CHF) disease [120]. Short-
term ECG signals of 20 sec duration, from normal persons
and CHF patients, were subjected analysis using DFA. The
receiver operating characteristics (ROC) curve suggested
the suitability of the proposed method with an average effi-
ciency of 98.2%. Ghasemi et al. reported the DFA of RR inter-
val time series to predict the mortality of the patients in
intensive care units (ICUs) suffering from sepsis [121]. In
the proposed study, DFA was performed on the RR interval
time series of the last 25h duration of the survived and non-
survived patients, who were admitted to the ICUs. The
results suggested that the scaling exponent (&) was signifi-
cantly different for the survived and the nonsurvived patients
from 9h before the demise and can be used to predict the
mortality. Chiang et al. tested the hypothesis that cardiac
autonomic dysfunction estimated by DFA can also be a
potential prognostic factor in patients affected by end-stage
renal disease and undertaking peritoneal dialysis. Total mor-
tality and increased cardiac varied significantly with a
decrease in the corresponding prognostic predictor DFA«1.
DFAal (>95%) was related to lower cardiac mortality (haz-
ard ratio (HR) 0.062, 95% CI=0.007-0.571, P=0.014) and
total mortality [122].

4.5. Applications of RQA in ECG Signal Analysis. RQA has
found many applications in ECG signal analysis [123-125].
Chen et al. investigated the effect of the exposure to low-
frequency noise of different intensities (for 5 min) on the car-
diovascular activities using recurrence plot analysis [126].
The RR intervals were extracted from the ECG signals
acquired during the noise exposure of intensities 70 dBC,
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80 dBC, and 90 dBC. The change in the cardiovascular activ-
ity was estimated using RQA of the RR intervals. Based on
the results, the authors concluded that RQA-based parame-
ters can be used as an effective tool for analyzing the effect
of the low-frequency noise even with a short-term RR inter-
val time series.

Acharya et al. reported the use of RQA and Kolmogorov
complexity analysis of RRI time series for the automated pre-
diction of sudden cardiac death (SCD) risk [127]. In this
study, the authors designed a sudden cardiac death index
(SCDI) using the RQA and the Kolmogorov complexity
parameters for the prediction of SCD. The statistically
important parameters were identified using t-test. These
statistically important parameters were used as inputs for
classification using K-NN, SVM, decision tree, and probabi-
listic neural network. The K-NN classifier was able to clas-
sify the normal and the SCD classes with 86.8% accuracy,
80% sensitivity, and 94.4% specificity. The probabilistic
neural network also provided 86.8% accuracy, 85% sensitiv-
ity, and 88.8% specificity. Based on the results, the authors
proposed that RQA and Kolmogorov complexity analysis
can be performed for the efficient detection of SCD. Apart
from these studies, the RQA of the ECG signals has been
widely studied for the detection of different types of dis-
eases. A few RQA-based studies performed in the last 5
years for the diagnosis of different clinical conditions have
been summarized in Table 2.

4.6. Applications of Poincaré Plot in ECG Signal Analysis.
Ventricular fibrillation has been reported to be the most
severe type of cardiac arrhythmia [131]. It results from the
cardiac impulses that have gone berserk within the ventricu-
lar muscle mass and is indicated by complex ECG patterns
[131]. Electrical defibrillation is used as an effective technique
to treat ventricular fibrillation. Gong et al. reported the appli-
cation of Poincaré plot for the prediction of occurrence of
successful defibrillation in the patients suffering from ven-
tricular fibrillation [132]. The Euclidean distance of the suc-
cessive points in Poincaré plot was used to calculate the
stepping median increment of the defibrillation, which in
turn, was used to estimate the possibility of successful defi-
brillation. The testing of the proposed method was analyzed
using the ROC curve, and the results suggested that the per-
formance was comparable to the established methods for
successfully estimating defibrillation.

Polycystic ovary syndrome (PCOS) is a common endo-
crine disease found in 5-10% of the reproductive women
[133]. PCOS has been reported to be associated with car-
diovascular risks due to its connection with obesity [134].
Saranya et al. performed the Poincaré plot-based nonlinear
dynamical analysis of the HRV signals acquired from the
PCOS patients to predict the associated cardiovascular risk
[135]. The authors found that the PCOS patients had reduced
HRYV and autonomic dysfunction (in terms of increased sym-
pathetic activity and reduced vagal activity), which might
herald cardiovascular risks. Based on the results, the authors
suggested that the Poincaré plot analysis may be used
independently to measure the extent of autonomic dysfunc-
tion in PCOS patients. Some Poincaré plot-based studies
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TaBLE 2: Recent studies performed for the diagnosis of clinical conditions using RQA-based ECG analysis.

Clinical conditions Classification method Performance Ref.

Atrial fibrillation, atrial flutter, Decision tree. random 98.37%, 96.29%, and 94.14% accuracy for

ventricular fibrillation, and normal ’ rotation forest, random forest, and decision [123]

sinus rhythm

Effect of the exposure to low-frequency Statistical analysis of

forest, and rotation forest

tree, respectively

Statistically significant parameters obtained

noise of different intensities on the RQA-based measures with p value <0.05 [126]
cardiovascular activities
A soft decision fusion o o 0 o
Obstructive sleep apnea rule combining SVM 86.37% sens%l;ﬂztzz)/S3a.c4c7ufaipec1ﬁc1ty, and [128]
and neural network o Y
Arrhythmia L(:rrll;g, r(c)zaslzilg?r’ 94.83 +0.37% accuracy [129]
K-NN. SVM. decision 86.8% accuracy, 80% sensitivity, and 94.4%
, , e . N
Sudden cardiac death tree, and probabilistic specificity with OK NN.C.I as sifier and 8?'8 % [127]
neural network accuracy, 85% sensitivity, and 88.8%
specificity with PNN
Atrial fibrillation rgcnlf?rre(:?:ﬁz(tis 72% accuracy [130]
TaBLE 3: Recent studies performed for the diagnosis of clinical conditions using Poincaré plot analysis.
Clinical conditions Classification method Performance Ref.
. . - N . 92.9% sensitivity, 85.7% specificity,
Dilated cardiomyopathy Multivariate discriminant analysis and 92.1% AUC [136]
Preeclampsia Multivariate discriminant analysis 91.2% accuracy [137]
. Statistical analysis of Poincaré Statistically significant parameters

Polycystic ovary syndrome plot-based measures obtained with p value <0.05 [135]
Atrial fibrillation SVM optimized with particle swarm optimization 92.9% accuracy [138]

performed in the last 5 years for the diagnosis of different
clinical conditions have been given in Table 3.

4.7. Applications of Multiple Nonlinear Dynamical System
Analysis Methods in ECG Signal Analysis. In the last few
years, some researchers have also implemented multiple
nonlinear methods simultaneously for the analysis of the
ECG signals [42]. In some cases, the nonlinear methods
have been used in combination with the linear methods
[139]. Acharya et al. performed analysis of ECG signals
using time domain, frequency domain, and nonlinear (i.e.,
Poincaré plot, RQA, DFA, Shannon entropy, ApEn, SaEn,
higher-order spectrum (HOS) methods, empirical mode
decomposition (EMD), cumulants, and correlation dimen-
sion) techniques for the diagnosis of coronary artery disease
[140]. Goshvarpour et al. studied the effect of the pictorial
stimulus on the emotional autonomic response by analyzing
the nonlinear methods, that is, DFA, ApEn, and Lyapunov
exponent-based parameters along with statistical measures
of ECG, pulse rate, and galvanic skin response signals
[141]. Karegar et al. extracted the nonlinear ECG features
using the methods, namely, rescaled range analysis, Higuchi’s
fractal dimension, DFA, generalized Hurst exponent (GHE),
and RQA for ECG-based biometric authentication [142].
The combination of different nonlinear methods for obtain-
ing better performance was observed in the previously
reported literature, but the studies prescribing superiority

of one method in comparison to the other methods could
not be found.

5. Conclusion

Most of the biosignals are nonstationary in nature, which
often makes their analysis cumbersome using the conven-
tional linear methods of signal analysis. This led to the devel-
opment of nonlinear methods, which can perform a robust
analysis of the biosignals [9]. Among the biosignals, the anal-
ysis of the ECG signals using nonlinear methods has been
highly explored. The nonlinear analysis of the ECG signals
has been investigated by many researchers for early diagnosis
of diseases, human identification, and understanding the
effect of different stimuli on the heart and the ANS. The cur-
rent review dealt with the relevant theory, potential, and
recent applications of the nonlinear ECG signal analysis
methods. Although the nonlinear methods of ECG signal
analysis have shown promising results, it is envisaged that
the existing methods may be extended and new methods
can be proposed to improve the performance and handle
large and complex datasets.

Conflicts of Interest

The authors declare that they have no conflicts of interest.



Journal of Healthcare Engineering

Acknowledgments

The authors thank the National Institute of Technology
Rourkela, India, for the facilities provided for the successful
completion of the manuscript.

References

(1]

(6]

(10]

(11]

(12]

(13]

(14]

Y. Birnbaum, J. M. Wilson, M. Fiol, A. B. de Luna, M. Eskola,
and K. Nikus, “ECG diagnosis and classification of acute cor-
onary syndromes,” Annals of Noninvasive Electrocardiology,
vol. 19, no. 1, pp. 4-14, 2014.

C. Stengaard, J. T. Sgrensen, M. B. Rasmussen, M. T. Bgtker,
C. K. Pedersen, and C. J. Terkelsen, “Prehospital diagnosis of
patients with acute myocardial infarction,” Diagnosis, vol. 3,
no. 4, 2016.

J. Koenig, M. N. Jarczok, M. Warth et al., “Body mass index is
related to autonomic nervous system activity as measured by
heart rate variability — a replication using short term mea-
surements,” The Journal of Nutrition, Health & Aging,
vol. 18, no. 3, pp- 300-302, 2014.

D. Petkovi¢, Z. Cojbaéic’, and S. Luki¢, “Adaptive neuro fuzzy
selection of heart rate variability parameters affected by auto-
nomic nervous system,” Expert Systems with Applications,
vol. 40, no. 11, pp. 4490-4495, 2013.

Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology,
“Heart rate variability: standards of measurement, physiolog-
ical interpretation, and clinical use,” Circulation, vol. 93,
no. 5, pp. 1043-1065, 1996.

I. Guyon and A. Elisseeff, “An introduction to feature extrac-
tion,” Feature Extraction, vol. 207, pp. 1-25, 2006.

T. Li and M. Zhou, “ECG classification using wavelet
packet entropy and random forests,” Entropy, vol. 18,
no. 12, p. 285, 2016.

S. Poli, V. Barbaro, P. Bartolini, G. Calcagnini, and F. Censi,
“Prediction of atrial fibrillation from surface ECG: review of
methods and algorithms,” Annali dellIstituto Superiore di
Sanita, vol. 39, no. 2, pp. 195-203, 2003.

K. J. Blinowska and J. Zygierewicz, Practical Biomedical Sig-
nal Analysis Using MATLAB®, CRC Press, Boca Raton, FL,
USA, 2011.

A. Schumacher, “Linear and nonlinear approaches to the
analysis of R-R interval variability,” Biological Research for
Nursing, vol. 5, no. 3, pp. 211-221, 2004.

U. R. Acharya, E. C. P. Chua, O. Faust, T. C. Lim, and
L. F. B. Lim, “Automated detection of sleep apnea from
electrocardiogram signals using nonlinear parameters,”
Physiological Measurement, vol. 32, no. 3, pp. 287-303,
2011.

A. S. Al-Fahoum and A. M. Qasaimeh, “A practical recon-
structed phase space approach for ECG arrhythmias classifi-
cation,” Journal of Medical Engineering & Technology, vol. 37,
no. 7, pp. 401-408, 2013.

E. Thelen and L. B. Smith, “Dynamic systems theories,” in
Handbook of Child Psychology, pp. 258-312, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 1998.

A. A. Toor, R. T. Sabo, C. H. Roberts et al., “Dynamical sys-
tem modeling of immune reconstitution after allogeneic stem
cell transplantation identifies patients at risk for adverse

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

15

outcomes,” Biology of Blood and Marrow Transplantation,
vol. 21, no. 7, pp. 1237-1245, 2015.

V. Gintautas, G. Foster, and A. W. Hiibler, “Resonant forcing
of chaotic dynamics,” Journal of Statistical Physics, vol. 130,
no. 3, pp. 617-629, 2008.

E. Kreyszig, Advanced Engineering Mathematics, John Wiley
& Sons, Inc., Hoboken, NJ, USA, 2010.

T. Jackson and A. Radunskaya, Applications of Dynamical
Systems in Biology and Medicine, vol. 158, John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2015.

Q. Din, “Stability analysis of a biological network,” Network
Biology, vol. 4, no. 3, pp. 123-129, 2014.

J. Jaeger and N. Monk, “Bioattractors: dynamical systems the-
ory and the evolution of regulatory processes,” The Journal of
Physiology, vol. 592, no. 11, pp. 2267-2281, 2014.

1. Stewart, In Pursuit of the Unknown: 17 Equations That
Changed the World, pp. 283-294, John Wiley & Sons, Inc.,
New York, NY, USA, 2012.

T. D. Pham, “Possibilistic nonlinear dynamical analysis for
pattern recognition,” Pattern Recognition, vol. 46, no. 3,
pp. 808-816, 2013.

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry, and Engineering, Harper-
Collins Publishers, New York, NY, USA, 2014.

B. Henry, N. Lovell, and F. Camacho, “Nonlinear dynamics
time series analysis,” Nonlinear Biomedical Signal Processing,
Dynamic Analysis and Modeling, vol. 2, pp. 1-39, 2012.

W. Szemplinska-Stupnicka and J. Rudowski, “Neimark bifur-
cation, almost-periodicity and chaos in the forced van der
Pol-Duffing system in the neighbourhood of the principal
resonance,” Physics Letters A, vol. 192, no. 2-4, pp. 201-206,
1994.

J. Ford, “How random is a coin toss?,” Physics Today, vol. 36,
no. 4, pp. 40-47, 1983.

S. Wallot, A. Roepstorft, and D. Mgnster, “Multidimensional
recurrence quantification analysis (MdRQA) for the analysis
of multidimensional time-series: a software implementation
in MATLAB and its application to group-level data in joint
action,” Frontiers in Psychology, vol. 7, 2016.

F. Takens, “Detecting strange attractors in turbulence,” Lec-
ture Notes in Mathematics, vol. 898, pp. 366-381, 1981.

Y. Fang, M. Chen, and X. Zheng, “Extracting features from
phase space of EEG signals in brain-computer interfaces,”
Neurocomputing, vol. 151, pp. 1477-1485, 2015.

A. Krakovska, K. Mezeiovd, and H. Budicova, “Use of false
nearest neighbours for selecting variables and embedding
parameters for state space reconstruction,” Journal of Com-
plex Systems, vol. 2015, Article ID 932750, 12 pages, 2015.

S. H. Chai andJ. S. Lim, “Forecasting business cycle with cha-
otic time series based on neural network with weighted fuzzy
membership functions,” Chaos, Solitons ¢ Fractals, vol. 90,
pp. 118-126, 2016.

H. Ye, E. R. Deyle, L. J. Gilarranz, and G. Sugihara, “Distin-
guishing time-delayed causal interactions using convergent
cross mapping,” Scientific Reports, vol. 5, no. 1, article
14750, 2015.

A. V. Glushkov, O. Y. Khetselius, S. V. Brusentseva, P. A.
Zaichko, and V. B. Ternovsky, “Studying interaction dynam-
ics of chaotic systems within a non-linear prediction method:
application to neurophysiology,” Advances in Neural



16

(33]

(34]

(35]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

Networks, Fuzzy Systems and Artificial Intelligence, vol. 21,
pp. 69-75, 2014.

B. Paul, R. C. George, and S. K. Mishra, “Phase space interro-
gation of the empirical response modes for seismically excited
structures,” Mechanical Systems and Signal Processing,
vol. 91, pp. 250-265, 2017.

A. M. Fraser and H. L. Swinney, “Independent coordinates
for strange attractors from mutual information,” Physical
Review A, vol. 33, no. 2, pp. 1134-1140, 1986.

H. S. Kim, R. Eykholt, and J. D. Salas, “Nonlinear dynamics,
delay times, and embedding windows,” Physica D: Nonlinear
Phenomena, vol. 127, no. 1-2, pp. 48-60, 1999.

N. Mars and G. Van Arragon, “Time delay estimation in non-
linear systems,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 3, pp. 619-621, 1981.

E. Kononov, “Visual recurrence analysis,” 2006, http://visual-
recurrence-analysis.software.informer.com/download/.

A. Colombelli and N. von Tunzelmann, “The persistence of
innovation and path dependence,” Handbook on the Eco-
nomic Complexity of Technological Change, pp. 105-119,
Edward Elgar Publishing Limited, Cheltenham, UK, 2011.
H. Yang, “Tool box of recurrence plot and recurrence
quantification analysis,” http://visual-recurrence-analysis
.software.informer.com/download/.

E. D. Ubeyli, “Adaptive neuro-fuzzy inference system for
classification of ECG signals using Lyapunov exponents,”
Computer Methods and Programs in Biomedicine, vol. 93,
no. 3, pp. 313-321, 2009.

S. Haykin and X. B. Li, “Detection of signals in chaos,” Pro-
ceedings of the IEEE, vol. 83, no. 1, pp. 95-122, 1995.

M. I. Owis, A. H. Abou-Zied, A. B. M. Youssef, and Y. M.
Kadah, “Study of features based on nonlinear dynamical
modeling in ECG arrhythmia detection and classification,”
IEEE Transactions on Biomedical Engineering, vol. 49, no. 7,
Pp. 733-736, 2002.

G. Valenza, P. Allegrini, A. Lanata, and E. P. Scilingo, “Dom-
inant Lyapunov exponent and approximate entropy in heart
rate variability during emotional visual elicitation,” Frontiers
in Neuroengineering, vol. 5, 2012.

E. D. Ubeyli, “Recurrent neural networks employing Lyapu-
nov exponents for analysis of ECG signals,” Expert Systems
with Applications, vol. 37, no. 2, pp. 1192-1199, 2010.

N. F. Giiler, E. D. Ubeyli, and I. Giiler, “Recurrent neural
networks employing Lyapunov exponents for EEG signals
classification,” Expert Systems with Applications, vol. 29,
no. 3, pp. 506-514, 2005.

A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Deter-
mining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, 1985.

M. Sano and Y. Sawada, “Measurement of the Lyapunov
spectrum from a chaotic time series,” Physical Review Letters,
vol. 55, no. 10, pp. 1082-1085, 1985.

B. Henry, N. Lovell, and F. Camacho, “Nonlinear dynamics
time series analysis,” Nonlinear Biomedical Signal Processing,
Dynamic Analysis and Modeling, vol. 2, pp. 1-39.

H. G. E. Hentschel and I. Procaccia, “The infinite number of
generalized dimensions of fractals and strange attractors,”
Physica D: Nonlinear Phenomena, vol. 8, no. 3, pp. 435-444,
1983.

C. Lerma, M. A. Reyna, and R. Carvajal, “Association
between abnormal electrocardiogram and less complex heart

[51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

[61]

[62]

(63]

[64]

[65]

Journal of Healthcare Engineering

rate variability estimated by the correlation dimension,”
Revista Mexicana de Ingenieria Biomédica, vol. 36, pp. 55—
64, 2015.

P. Grassberger and I. Procaccia, “Measuring the strangeness
of strange attractors,” Physica D: Nonlinear Phenomena,
vol. 9, no. 1-2, pp. 189-208, 1983.

J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego,
S. Havlin, and A. Bunde, “Detecting long-range correlations
with detrended fluctuation analysis,” Physica A: Statistical
Mechanics and its Applications, vol. 295, no. 3-4, pp. 441-
454, 2001.

C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley,
and A. L. Goldberger, “Mosaic organization of DNA nucleo-
tides,” Physical Review E, vol. 49, no. 2, pp. 1685-1689, 1994.

S. E. Perkins, H. F. Jelinek, H. A. al-Aubaidy, and B. de Jong,
“Immediate and long term effects of endurance and high
intensity interval exercise on linear and nonlinear heart rate
variability,” Journal of Science and Medicine in Sport,
vol. 20, no. 3, pp. 312-316, 2017.

J. M. Hausdorff, S. L. Mitchell, R. Firtion et al., “Altered frac-
tal dynamics of gait: reduced stride-interval correlations with
aging and Huntington’s disease,” Journal of Applied Physiol-
ogy, vol. 82, no. 1, pp. 262-269, 1997.

R. D. Stout, M. W. Wittstein, C. T. LoJacono, and C. K. Rhea,
“Gait dynamics when wearing a treadmill safety harness,”
Gait & Posture, vol. 44, pp. 100-102, 2016.

R. Gu, W. Xiong, and X. Li, “Does the singular value
decomposition entropy have predictive power for stock
market?—evidence from the Shenzhen stock market,”
Physica A: Statistical Mechanics and its Applications,
vol. 439, pp. 103-113, 2015.

B. R. Auer, “Are standard asset pricing factors long-range
dependent?,” Journal of Economics and Finance, vol. 42,
no. 1, pp. 66-88, 2018.

K. Ivanova and M. Ausloos, “Application of the detrended
fluctuation analysis (DFA) method for describing cloud
breaking,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 274, no. 1-2, pp. 349-354, 1999.

B. D. Malamud and D. L. Turcotte, “Self-affine time series:
measures of weak and strong persistence,” Journal of Statisti-
cal Planning and Inference, vol. 80, no. 1-2, pp. 173-196, 1999.

C. Heneghan and G. McDarby, “Establishing the relation
between detrended fluctuation analysis and power spectral
density analysis for stochastic processes,” Physical Review E,
vol. 62, no. 5, pp. 6103-6110, 2000.

S. Ménard, M. Darveau, and L. Imbeau, “The importance of
geology, climate and anthropogenic disturbances in shaping
boreal wetland and aquatic landscape types,” Ecoscience,
vol. 20, no. 4, pp. 399-410, 2013.

M. J. Cannon, D. B. Percival, D. C. Caccia, G. M. Raymond,
and J. B. Bassingthwaighte, “Evaluating scaled windowed var-
iance methods for estimating the Hurst coefficient of time
series,” Physica A: Statistical Mechanics and its Applications,
vol. 241, no. 3-4, pp. 606-626, 1997.

M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators
for long-range dependence: an empirical study,” Fractals,
vol. 3, no. 4, pp. 785-798, 1995.

A. A. Pranata, J. M. Lee, and D. S. Kim, “Detecting smoking
effects with detrended fluctuation analysis on ECG device,”
in St FAITS] St S| =-F], pp. 425-426, Korea,
2017.


http://visual-recurrence-analysis.software.informer.com/download/
http://visual-recurrence-analysis.software.informer.com/download/
http://visual-recurrence-analysis.software.informer.com/download/
http://visual-recurrence-analysis.software.informer.com/download/

Journal of Healthcare Engineering

[66]

(67]

(68]

[69]

(70]

(71]

(72]

(73]

(74]

[75]

(76]

(771

(78]

(79]

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde,
S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal
detrended fluctuation analysis of nonstationary time series,”
Physica A: Statistical Mechanics and its Applications,
vol. 316, no. 1-4, pp. 87-114, 2002.

T. Penzel, J. W. Kantelhardt, L. Grote, J. Peter, and A. Bunde,
“Comparison of detrended fluctuation analysis and spectral
analysis for heart rate variability in sleep and sleep apnea,”
IEEE Transactions on Biomedical Engineering, vol. 50,
no. 10, pp. 1143-1151, 2003.

J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle, “Recur-
rence plots of dynamical systems,” Europhysics Letters (EPL),
vol. 4, no. 9, pp. 973-977, 1987.

J. P. Zbilut, N. Thomasson, and C. L. Webber, “Recurrence
quantification analysis as a tool for nonlinear exploration of
nonstationary cardiac signals,” Medical Engineering ¢ Phys-
ics, vol. 24, no. 1, pp. 53-60, 2002.

S. G. Firooz, F. Almasganj, and Y. Shekofteh, “Improvement
of automatic speech recognition systems via nonlinear
dynamical features evaluated from the recurrence plot of
speech signals,” Computers & Electrical Engineering, vol. 58,
pp. 215-226, 2017.

N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and
J. Kurths, “Recurrence-plot-based measures of complexity
and their application to heart-rate-variability data,” Physical
Review E, vol. 66, no. 2, 2002.

L. L. Trulla, A. Giuliani, J. P. Zbilut, and C. L. Webber Jr,
“Recurrence quantification analysis of the logistic equation
with transients,” Physics Letters A, vol. 223, no. 4, pp. 255-
260, 1996.

S. Chandra, A. K. Jaiswal, R. Singh, D. Jha, and A. P. Mittal,
“Mental stress: neurophysiology and its regulation by Sudar-
shan Kriya yoga,” International Journal of Yoga, vol. 10, no. 2,
pp. 67-72, 2017.

M. Nardelli, A. Greco, J. Bolea, G. Valenza, E. P. Scilingo, and
R. Bailon, “Reliability of lagged Poincaré plot parameters in
ultra-short heart rate variability series: application on affec-
tive sounds,” IEEE Journal of Biomedical and Health Infor-
matics, p. 1, 2017.

M. Das, T. Jana, P. Dutta et al., “Study the effect of music on
HRYV signal using 3D Poincare plot in spherical co-ordinates
- a signal processing approach,” in 2015 International Confer-
ence on Communications and Signal Processing (ICCSP),
pp. 1011-1015, Melmaruvathur, India, April 2015.

K. Muralikrishnan, K. Balasubramanian, S. M. Ali, and B. V.
Rao, “Poincare plot of heart rate variability: an approach
towards explaining the cardiovascular autonomic function
in obesity,” Indian Journal of Physiology and Pharmacology,
vol. 57, no. 1, pp. 31-37, 2013.

B. Roy, R. Choudhuri, A. Pandey, S. Bandopadhyay,
S. Sarangi, and S. Kumar Ghatak, “Effect of rotating acoustic
stimulus on heart rate variability in healthy adults,” The Open
Neurology Journal, vol. 6, no. 1, pp. 71-77, 2012.

P. W. Kamen, H. Krum, and A. M. Tonkin, “Poincaré plot of
heart rate variability allows quantitative display of parasym-
pathetic nervous activity in humans,” Clinical Science,
vol. 91, no. 2, pp. 201-208, 1996.

M. Toichi, T. Sugiura, T. Murai, and A. Sengoku, “A new
method of assessing cardiac autonomic function and its com-
parison with spectral analysis and coeflicient of variation of
R-R interval,” Journal of the Autonomic Nervous System,
vol. 62, no. 1-2, pp. 79-84, 1997.

(80]

(81]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

17

M. M. Corrales, B. . . C. Torres, A. G. Esquivel, M. A. G.
Salazar, and ]. Naranjo Orellana, “Normal values of heart
rate variability at rest in a young, healthy and active Mexican
population,” Health, vol. 4, no. 07, pp. 377-385, 2012.

J. S. Richman and J. R. Moorman, “Physiological time-series
analysis using approximate entropy and sample entropy,”
American Journal of Physiology-Heart and Circulatory Physi-
ology, vol. 278, no. 6, pp. H2039-H2049, 2000.

M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale
entropy analysis of complex physiologic time series,” Physical
Review Letters, vol. 89, no. 6, 2002.

R. B. Govindan, J. D. Wilson, H. Eswaran, C. L. Lowery, and
H. Preifl], “Revisiting sample entropy analysis,” Physica A:
Statistical Mechanics and its Applications, vol. 376, pp. 158-
164, 2007.

Y. Wang, J. Wang, and X. Wei, “A hybrid wind speed fore-
casting model based on phase space reconstruction theory
and Markov model: a case study of wind farms in northwest
China,” Energy, vol. 91, pp. 556-572, 2015.

S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F.
Miller III, “Ring-polymer molecular dynamics: quantum
effects in chemical dynamics from classical trajectories in an
extended phase space,” Annual Review of Physical Chemistry,
vol. 64, no. 1, pp. 387-413, 2013.

N. H. Adenan, N. Z. A. Hamid, Z. Mohamed, and M. S. M.
Noorani, “A pilot study of river flow prediction in urban area
based on phase space reconstruction,” AIP Conference Pro-
ceedings, 040011, 2017, pp. 1-4, Malaysia, 2017.

G. Koulaouzidis, S. Das, G. Cappiello, E. B. Mazomenos,
K. Maharatna, and J. Morgan, “A novel approach for the
diagnosis of ventricular tachycardia based on phase space
reconstruction of ECG,” International Journal of Cardiology,
vol. 172, no. 1, pp. €31-e33, 2014.

K. S. Sayed, A. F. Khalaf, and Y. M. Kadah, “Arrhythmia
classification based on novel distance series transform of
phase space trajectories,” in 2015 37th Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 5195-5198, Milan, Italy,
August 2015.

G. Cappiello, S. Das, E. B. Mazomenos et al., “A statistical
index for early diagnosis of ventricular arrhythmia from the
trend analysis of ECG phase-portraits,” Physiological Mea-
surement, vol. 36, no. 1, pp. 107-131, 2014.

S.-H. Lee, K. Y. Chung, and J. S. Lim, “Detection of ventricu-
lar fibrillation using Hilbert transforms, phase-space recon-
struction, and time-domain analysis,” Personal and
Ubiquitous Computing, vol. 18, no. 6, pp. 1315-1324, 2014.

S. Parvaneh, M. R. H. Golpaygani, M. Firoozabadi, and
M. Haghjoo, “Analysis of Ecg in phase space for the predic-
tion of spontaneous atrial fibrillation termination,” Journal
of Electrocardiology, vol. 49, no. 6, pp. 936-937, 2016.

A. Malhotra and D. P. White, “Obstructive sleep apnoea,”
The Lancet, vol. 360, no. 9328, pp. 237-245, 2002.

A. Jafari, “Sleep apnoea detection from ECG using features
extracted from reconstructed phase space and frequency
domain,” Biomedical Signal Processing and Control, vol. 8,
no. 6, pp. 551-558, 2013.

Developed in collaboration with, A. Moya, R. Sutton et al.,
“Guidelines for the diagnosis and management of syncope
(version 2009): the task force for the diagnosis and manage-
ment of syncope of the European Society of Cardiology



18

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

(107]

[108]

[109]

(ESC),” European Heart Journal, vol. 30, no. 21, pp. 2631-
2671, 2009.

N. Khodor, G. Carrault, D. Matelot, N. Ville, F. Carre, and
A. Hernandez, “A comparison study between fainter and
non-fainter subjects during head-up tilt test using recon-
structed phase space,” in 2015 Computing in Cardiology Con-
ference (CinC), pp. 1117-1120, Nice, France, September 2015.

N. Khodor, G. Carrault, D. Matelot et al., “A new phase space
analysis algorithm for the early detection of syncope during
head-up tilt tests,” in Computing in Cardiology 2014,
pp. 141-144, Cambridge, MA, USA, September 2014.

K. Kira and L. A. Rendell, “The feature selection problem: tra-
ditional methods and a new algorithm,” Aaai, pp. 129-134,
AAAI Press, San Jose, CA, USA, 1992.

F. M. Bui, F. Agrafioti, and D. Hatzinakos, “Chapter 16. Elec-
trocardiogram (ECG) biometric for robust identification and
secure communication,” in Biometrics: Theory, Methods, and
Applications, vol. 2, pp. 383-427, AAAI Press, Hoboken, N7,
USA, 2009.

L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG anal-
ysis: a new approach in human identification,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 50, no. 3,
pp- 808-812, 2001.

M. Kyoso and A. Uchiyama, “Development of an ECG iden-
tification system,” in 2001 Conference Proceedings of the 23rd
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, vol. 4, pp. 3721-3723, Istanbul,
Turkey, Turkey, October 2001.

Y. Gahi, M. Lamrani, A. Zoglat, M. Guennoun, B. Kapralos,
and K. El-Khatib, “Biometric identification system based on
electrocardiogram data,” in 2008 New Technologies, Mobility
and Security, pp. 1-5, Tangier, Morocco, November 2008.

S.-C. Fang and H.-L. Chan, “QRS detection-free electrocar-
diogram biometrics in the reconstructed phase space,” Pat-
tern Recognition Letters, vol. 34, no. 5, pp. 595-602, 2013.

A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee,
“Wavelet distance measure for person identification using
electrocardiograms,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 2, pp. 248-253, 2008.

G. Wiibbeler, M. Stavridis, D. Kreiseler, R. D. Bousseljot,
and C. Elster, “Verification of humans using the electro-
cardiogram,” Pattern Recognition Letters, vol. 28, no. 10,
pp. 1172-1175, 2007.

S.-C. Fang and H.-L. Chan, “Human identification by quanti-
tying similarity and dissimilarity in electrocardiogram phase
space,” Pattern Recognition,vol.42,1n0.9, pp. 1824-1831,2009.

G. Valenza, L. Citi, and R. Barbieri, “Estimation of instanta-
neous complex dynamics through lyapunov exponents: a
study on heartbeat dynamics,” PLoS ONE, vol. 9, no. 8, article
€105622, 2014.

H. Du, Y. Bai, S. Zhou, H. Wang, and X. Liu, “A novel method
for diagnosing premature ventricular contraction beat based
on chaos theory,” in 2014 11th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD), pp. 497-
501, Xiamen, China, Augus 2014.

M. B. Tayel and E. I. AlSaba, “Robust and sensitive method of
lyapunov exponent for heart rate variability,” pp. 1-19, 2015,
https://arxiv.org/abs/1508.00996.

G. Ye and X. Huang, “An image encryption algorithm based
on autoblocking and electrocardiography,” IEEE Multimedia,
vol. 23, no. 2, pp. 64-71, 2016.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Journal of Healthcare Engineering

F. M. H. S. P. Silva, M. A. Leite, J. C. Crescencio, A. C. S. Filho,
and L. Gallo, “Looking for changes in the heart rate of
patients with neurocardiogenic syncope,” in 2016 Computing
in Cardiology Conference (CinC), pp. 1005-1008, Vancouver,
BC, Canada, September 2016.

C. Bogaert, F. Beckers, D. Ramaekers, and A. E. Aubert,
“Analysis of heart rate variability with correlation dimen-
sion method in a normal population and in heart trans-
plant patients,” Autonomic Neuroscience, vol. 90, no. 1-2,
pp. 142-147, 2001.

R. Carvajal, N. Wessel, M. Vallverdy, P. Caminal, and
A. Voss, “Correlation dimension analysis of heart rate vari-
ability in patients with dilated cardiomyopathy,” Computer
Methods and Programs in Biomedicine, vol. 78, no. 2,
pp. 133-140, 2005.

J. Bolea, P. Laguna, J. M. Remartinez, E. Rovira, A. Navarro,
and R. Bailon, “Methodological framework for estimating
the correlation dimension in HRV signals,” Computational
and Mathematical Methods in Medicine, vol. 2014, Article
1D 129248, 11 pages, 2014.

C.-K. Chen, C.-L. Lin, S.-L. Lin, Y.-M. Chiu, and C.-
T. Chiang, “A chaotic theoretical approach to ECG-based
identity recognition [application notes],” IEEE Computa-
tional Intelligence Magazine, vol. 9, no. 1, pp. 53-63, 2014.

K. Rawal, B. S. Saini, and I. Saini, “Adaptive correlation
dimension method for analysing heart rate variability during
the menstrual cycle,” Australasian Physical & Engineering
Sciences in Medicine, vol. 38, no. 3, pp. 509-523, 2015.

P. Moeynoi and Y. Kitjaidure, “Canonical correlation analysis
for dimensionality reduction of sleep apnea features based on
ECG single lead,” in 2016 9th Biomedical Engineering Inter-
national Conference (BMEiCON), pp. 1-5, Laung Prabang,
Laos, December 2016.

W. Passchier-Vermeer and W. F. Passchier, “Noise exposure
and public health,” Environmental Health Perspectives,
vol. 108, Supplement 1, pp. 123-131, 2000.

G. Leventhall, P. Pelmear, and S. Benton, A Review of
Published Research on Low Frequency Noise and Its Effects,
pp- 38-42, Defra Publications, London, UK, 2003.

S.T. Chen, L. H. Tseng, Y. P. Lee, H. Z. Wu, and C. Y. Chou,
“Detrended fluctuation analysis of heart rate variability in
noise exposure,” Advanced Materials Research, vol. 1044-
1045, pp. 1129-1134, 2014.

C. Kamath, “A new approach to detect congestive heart fail-
ure using detrended fluctuation analysis of electrocardiogram
signals,” Journal of Engineering Science and Technology,
vol. 10, no. 2, pp. 145-159, 2015.

P. Ghasemi and M. R. Raoufy, “Prediction of mortality in
patients with sepsis using detrended fluctuation analysis of
heart rate variability,” in 2016 23rd Iranian Conference on
Biomedical Engineering and 2016 Ist International Iranian
Conference on Biomedical Engineering (ICBME), pp. 150-
154, Tehran, Iran, November 2016.

J.-Y. Chiang, J. W. Huang, L. Y. Lin et al., “Detrended fluctu-
ation analysis of heart rate dynamics is an important prog-
nostic factor in patients with end-stage renal disease
receiving peritoneal dialysis,” PloS one, vol. 11, no. 2, article
e0147282, 2016.

U. Desai, R. J. Martis, U. R. Acharya, C. G. Nayak,
G. Seshikala, and S. K. Ranjan, “Diagnosis of multiclass
tachycardia beats using recurrence quantification analysis


https://arxiv.org/abs/1508.00996

Journal of Healthcare Engineering

[124]

[125]

[126]

[127]

[128]

[129]

(130]

[131]

[132]

(133]

[134]

[135]

[136]

and ensemble classifiers,” Journal of Mechanics in Medicine
and Biology, vol. 16, no. 01, article 1640005, 2016.

J. Rolink, M. Kutz, P. Fonseca, X. Long, B. Misgeld, and
S. Leonhardt, “Recurrence quantification analysis across sleep
stages,” Biomedical Signal Processing and Control, vol. 20,
pp. 107-116, 2015.

L. Y. Di Marco, D. Raine, J. P. Bourke, and P. Langley,
“Recurring patterns of atrial fibrillation in surface ECG pre-
dict restoration of sinus rhythm by catheter ablation,” Com-
puters in Biology and Medicine, vol. 54, pp. 172-179, 2014.
S.-T. Chen, C. Y. Chou, and L. H. Tseng, “Recurrence plot
analysis of HRV for exposure to low-frequency noise,”
Advanced Materials Research, vol. 1044-1045, pp. 1251-
1257, 2014.

U. Rajendra Acharya, H. Fujita, V. K. Sudarshan, D. N.
Ghista, W.]. E. Lim, and J. E. W. Koh, “Automated prediction
of sudden cardiac death risk using Kolmogorov complexity
and recurrence quantification analysis features extracted
from HRV signals,” in 2015 IEEE International Conference
on Systems, Man, and Cybernetics, pp. 1110-1115, Kowloon,
China, October 2015.

H. D. Nguyen, B. A. Wilkins, Q. Cheng, and B. A. Benjamin,
“An online sleep apnea detection method based on recur-
rence quantification analysis,” IEEE Journal of Biomedical
and Health Informatics, vol. 18, no. 4, pp. 1285-1293, 2014.
Q.-Z. Liang, X. M. Guo, W. Y. Zhang, W. D. Daij, and X. H.
Zhu, “Identification of heart sounds with arrhythmia based
on recurrence quantification analysis and Kolmogorov
entropy,” Journal of Medical and Biological Engineering,
vol. 35, no. 2, pp. 209-217, 2015.

O. Meste, S. Zeemering, J. Karel et al, “Noninvasive
recurrence quantification analysis predicts atrial fibrilla-
tion recurrence in persistent patients undergoing electrical
cardioversion,” in 2016 Computing in Cardiology Conference
(CinC), pp. 677-680, Vancouver, BC, Canada, September
2016.

M. D. Vaz, T. D. Raj, and K. D. Anura, Guyton & Hall Text-
book of Medical Physiology-E-Book: A South Asian Edition,
Reed Elsevier India Private Limited, Gurgaon, Haryana,
India, 2014.

Y. Gong, Y. Lu, L. Zhang, H. Zhang, and Y. Li, “Predict defi-
brillation outcome using stepping increment of Poincare plot
for out-of-hospital ventricular fibrillation cardiac arrest,”
BioMed Research International, Article ID 493472, 2017
pages, 2015.

H. A. Zacur, “Epidemiology, clinical manifestations and
pathophysiology of polycystic ovary syndrome,” Advanced
Studies in Medicine, vol. 3, pp. 733-739, 2003.

A.J. Cussons, B. G. A. Stuckey, and G. F. Watts, “Cardiovas-
cular disease in the polycystic ovary syndrome: new insights
and perspectives,” Atherosclerosis, vol. 185, no. 2, pp. 227-
239, 2006.

K. Saranya, G. K. Pal, S. Habeebullah, and P. Pal, “Analysis of
Poincare plot of heart rate variability in the assessment of
autonomic dysfunction in patients with polycystic ovary syn-
drome,” International Journal of Clinical and Experimental
Physiology, vol. 2, no. 1, pp. 34-39, 2015.

A. Voss, C. Fischer, R. Schroeder, H. R. Figulla, and
M. Goernig, “Lagged segmented Poincaré plot analysis for
risk stratification in patients with dilated cardiomyopathy,”
Medical & Biological Engineering ¢ Computing, vol. 50,
no. 7, pp. 727-736, 2012.

(137]

[138]

[139]

[140]

[141]

[142]

19

C. Fischer and A. Voss, “Three-dimensional segmented
Poincaré plot analyses SPPA3 investigates cardiovascular
and cardiorespiratory couplings in hypertensive pregnancy
disorders,” Frontiers in Bioengineering and Biotechnology,
vol. 2, p. 51, 2014.

J. P. Sepulveda-Suescun, J. Murillo-Escobar, R. D. Urda-Beni-
tez, D. A. Orrego-Metaute, and A. Orozco-Duque, “Atrial
fibrillation detection through heart rate variability using a
machine learning approach and Poincare plot features,” in
VII Latin American Congress on Biomedical Engineering
CLAIB 2016, Bucaramanga, Santander, Colombia, October
26th -28th, 2016, pp. 565-568, Springer Nature Singapore
Pte Ltd., Springer, Singapore, 2017.

F. A. Elhaj, N. Salim, A. R. Harris, T. T. Swee, and T. Ahmed,
“Arrhythmia recognition and classification using combined
linear and nonlinear features of ECG signals,” Computer
Methods and Programs in Biomedicine, vol. 127, pp. 52-63,
2016.

U. R. Acharya, O. Faust, V. Sree et al., “Linear and nonlinear
analysis of normal and CAD-affected heart rate signals,”
Computer Methods and Programs in Biomedicine, vol. 113,
no. 1, pp. 55-68, 2014.

A. Goshvarpour, A. Abbasi, and A. Goshvarpour, “Affective
visual stimuli: characterization of the picture sequences
impacts by means of nonlinear approaches,” Basic and Clini-
cal Neuroscience, vol. 6, no. 4, pp. 209-222, 2015.

F. P. Karegar, A. Fallah, and S. Rashidi, “Using recurrence
quantification analysis and generalized Hurst exponents of
ECG for human authentication,” in 2017 2nd Conference on
Swarm Intelligence and Evolutionary Computation (CSIEC),
pp. 66-71, Kerman, Iran, March 2017.



	A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal
	1. Introduction
	2. Dynamical System
	3. Nonlinear Dynamical System Analysis Techniques
	3.1. Reconstructed Phase Space Analysis of a Dynamical System
	3.2. Lyapunov Exponents
	3.3. Correlation Dimensions
	3.4. Detrended Fluctuation Analysis (DFA)
	3.5. Recurrence Plot and Recurrence Quantification Analysis
	3.6. Poincaré Plot

	4. Applications of Nonlinear Dynamical System Analysis Methods in ECG Signal Analysis
	4.1. Applications of Phase Space Reconstruction in ECG Signal Analysis
	4.2. Applications of Lyapunov Exponents in ECG Signal Analysis
	4.3. Applications of Correlation Dimension in ECG Signal Analysis
	4.4. Applications of DFA in ECG Signal Analysis
	4.5. Applications of RQA in ECG Signal Analysis
	4.6. Applications of Poincaré Plot in ECG Signal Analysis
	4.7. Applications of Multiple Nonlinear Dynamical System Analysis Methods in ECG Signal Analysis

	5. Conclusion
	Conflicts of Interest
	Acknowledgments

