
Research Article
Breast Mass Detection in Digital Mammogram Based on
Gestalt Psychology

HongyuWang ,1 Jun Feng ,1 QirongBu,1 Feihong Liu,1MinZhang,2 YuRen,3 andYi Lv4

1Department of Information Science and Technology, Northwest University, Xi’an 710127, China
2School of Mathematics, Northwest University, Xi’an 710127, China
3Department of Breast Surgery, School of Medicine,(e First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
4National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an Jiaotong University,
Xi’an 710061, China

Correspondence should be addressed to Jun Feng; fengjun@nwu.edu.cn

Received 28 September 2017; Revised 18 January 2018; Accepted 14 March 2018; Published 2 May 2018

Academic Editor: Yong Xia

Copyright © 2018HongyuWang et al..is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image
analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into
three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist’s
mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and
quantified by mathematical methods. .e framework can be seen as an effective trade-off between bottom-up sensation and top-
down recognition methods. .is is a new exploratory method for the automatic detection of lesions. .e experiments are
performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data
sets. .e sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our
framework has achieved a better performance compared with other algorithms.

1. Introduction

Breast cancer is responsible for 23% of all cancer cases and
14% of cancer-related deaths amongst women worldwide
[1]. Mammography is a reliable and trustworthy tool for
early detection of breast cancer [2, 3]. Early detection of
potential abnormalities could generate a recommendation
for further examination [4]. Current progress has shown that
computer-aided detection (CAD) systems can assist doctors
in finding breast masses from digitized mammograms at an
early stage, which greatly improves doctor’s working effi-
ciency [5]. Efficient CAD systems have potential to reduce
the breast biopsies and release radiologists from heavy
workload [6, 7].

However, CAD for breast mass detection is a challenging
task due to the varying sizes, shapes, and appearances as well
as densities of masses [8, 9]. Conventional methods for
breast mass detection mainly rely on the threshold values
[10] or mass templates [11] based on various kinds of filter

operators. However, the false-positive results are still very
high [12, 13]. .e threshold methods based on gray-level
images or various filtered images consider only the simple
brightness of masses. Although there are ongoing research
studies trying to model templates that use the general geo-
metric properties of themasses [11], these are always complex,
multiparameter models which are not applicable to all masses
with various sizes and shapes.

In order to cope with the problems above, some re-
searchers get inspirations from the doctors’ detection pro-
cess. .ey use the visual salience to locate the suspicious
lesions [14, 15]. Visual saliency models human beings’ ability
that perceives salient features in an image. In computer
vision, these visual saliency-based methods compute proba-
bilistic maps of an image where the pixels are very different
from surrounding regions [16]..ese methods greatly simplify
the process of mass detection. For example, Tourassi et al. [14]
proposed a novel similarity measure by incorporating the
Gaussian salient map of image pixels. Agrawal et al. [16]
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proposed an automatic mass detection algorithm using the
graph-based vision saliency (GBVS) map. However, most of
these methods are derived from natural scene statistics while
the characteristics of medical images are different. In fact, they
only consider the size and brightness of suspicious regions,
which is not enough for mass detection, as shown in Figure 1.
Some masses are so small or they adhere tightly to glandular
tissue. .e visual significance is relatively low, resulting in
a high false positive.

At present, deep learning [18] has been shown to be
consistently producing higher performance compared with
traditional machine learning methods [19]. Directly distilling
information from training samples and convolutional neural
networks (CNNs) [20] have been successfully applied to some
medical tasks: for example, breast mass detection/diagnosis
[21, 22], segmentation of the left ventricle [23], and classi-
fication of skin cancer [19]. Dhungel et al. [24] presented an
automated mass detection method using a cascade of deep
learning and random forest classifiers. Kooi et al. [25] have
shown that a CNN trained on a large data set of around 45,000
images outperforms a state-of-the-art system in CAD.Most of
these methods work well on large data sets but exhibit certain
limitations on small data sets because they need to decide
a large number of parameters [26]. .erefore, the traditional
machine learning method is still valuable in some aspects, like
data mining based on small samples [27], integration of
multiple knowledge [28], and so on.

Studies have shown that the recognition of doctors plays
an important role in lesion detection of radiology [29, 30].
Gestalt psychology tries to understand the laws of our ability
to acquire and maintain meaningful perceptions in an ap-
parently chaotic world [31]. Meanwhile, the theory has been
validated on extensive experiments, which are performed on
neatly organized dot lattices on a screen. .ese dots share
many similarities with pixels in medical images [32, 33].

Hence, we consider incorporating visual perception prop-
erties described by the Gestalt psychology framework into
mass detection. Inspired by Gestalt psychology, the Gestalt
framework covers sensation (bottom-up) and perception
(top-down), which are also collectively called recognition
[34]. .e theory aims to formulate visual rules according to
which perceptual input is organized into unitary forms. .e
Gestalt theory includes the following principles: proximity,
similarity, continuity, symmetry, closure, simplicity, and so
on [34]. .ese visual rules can be used to help doctors to
distinguish cancer masses from normal tissues.

Inspired by the framework of Gestalt theory, we pro-
pose to apply visual rules to medical image analysis. More
exactly, we present an automatic mass detection framework
based on Gestalt psychology. It contains three modules:
sensation integration, semantic integration, and validation.
In each module, a series of mathematical and calculation
models for visual rules are presented. .e proposed au-
tomatic mass detection method integrates human cogni-
tion properties and the visual characteristics of breast
masses. To the best of our knowledge, combining bottom-
up sensation and top-down recognition of the radiologist
has not been attempted before. Experimental results
demonstrated that the proposed method has yielded better
performance than other algorithms.

2. Mass Detection Framework Inspired by
Gestalt Psychology

In this paper, we propose to incorporate the visual perception
properties into breast mass detection. First, the characteris-
tics of mammogram reading by radiologists are analyzed as
per Gestalt psychology. Second, a framework for automatic
detection of masses is proposed. All visual rules in the
framework are quantified through mathematical methods.

(a) (b) (c)

Figure 1: Sample images from MIAS data set [17].
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2.1. Analysis of Mammogram Screening under the Gestalt
Framework. In most cases, screening mammogram is
a process of discovery, detection, and diagnosis by the
radiologist [35]. .e diversity of mammogram tissues
brings many problems to mass detection. Radiologists are
professional analysts who spend thousands of hours re-
fining their abilities of detecting lesions in medical images.
.ey gain a lot of experience in the learning process.
According to Gestalt psychology research, radiologists
read the images with the eyes and the brain..e visual rule
plays an important role in recognizing masses from mam-
mogram screening.

In clinical practice, radiologists tend to analyze medical
images from overall impression down to individual parts
for single-read mammography (or top-down), as shown in
Figure 2. At the beginning, radiologists go through the
mammogram and then focus on the highly suspicious
areas. In vision psychology, the eyes can only accept a small
number of associated units. If a Gestalt framework contains
too many unrelated units, the eyes try to simplify it and
combine the units into a big unit that can be processed
easily. .at is, our brain tends to combine and simplify the
units [31]. .en, all the suspicious areas (called regions of
interest, ROIs) will be further analyzed to get the masses.
Many factors need to be considered by radiologists, such as
morphology, density, and correlation with surrounding
tissue. Generally speaking, a mass is a generic term in-
dicating a localized swelling protuberance or lump in the
breast [11].

2.2. (e Framework of Automatic Mass Detection Based on
Gestalt Framework. Inspired by the clinical practice, a mass
detectionmethod based onGestalt framework is proposed in
this paper (Figure 3). We divide the framework into three
stages including sensation integration, semantic integration,
and verification. It can be viewed as a combination of
bottom-up sensation and top-down recognition methods.
For each part, there are various visual rules based on Gestalt
psychology and morphological characteristics.

2.2.1. Stage 1: Sensation Integration. In the initial stage, the
visual sense of the radiologist plays an important role in mass
detection. .e attention is a process of selecting and getting
visual information from pixels of the image (bottom-up) [36].

Observation 1: From doctors’ experience, the mass areas are
located in the breast zone and are always more salient than the
surrounding area. Inspired by the Gestalt framework, three rules
are defined for image simplification, including figure-ground
segregation, visual patches generation, and visual attention.

(1) Figure-Ground Segregation. .e principle of figure-
ground segregation is one of the basic cognitive principles
[37]. When applied to a mammogram, this principle sup-
poses that the background does not contain any valuable
information and is neglected by radiologists, obviously
a simplified treatment. As a result, some existing methods
propose to separate the figure from the background [38]. .e

Mass detection

Visual rules & knowledge

Overall
observation

Simplified
treatment

Medical visual
attention

Lesion
analysis

Figure 2: .e clinical diagnosis of breast mass by the radiologist.

Input image A: figure-ground
segregation 

B: visual
attention 

C: visual patches
generation 

D: densification
of mass 

E: shape of mass
Detection result

ELM classifier

Stage 1:
sensation integration

Stage 2:
semantic integration

Stage 3:
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Figure 3:.e framework of the proposed approach. It can be divided into three stages including sensation integration, semantic integration,
and verification. Visual rules used in the framework are modeled and indicated with the labels A, B, C, D, and E.
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mammograms have low contrast and still have noise in the
background such as tape markings and labels (as shown in
Figure 3). We use an adaptive global threshold to compute the
outline of the breast region [39]. Based on the morphological
analysis, an image enhancement method is adopted [40],
which can effectively suppress the background and enhance
the features of masses on mammograms simultaneously.
Meanwhile, the pectoral muscle is removed [41].

(2) Visual Attention in the Medical Image. As we all know,
the mass areas are always “brighter” than the surrounding
areas. .at is, the highlighted region attracts more visual
attention than the background region when doctors browse
the mammogram. It is called prominence in Gestalt psy-
chology. A simple method is to predefine a threshold value
for a breast image. However, this approach is unfavorable as
there is a large variance between tissues in mammogram.
Following [42], opening operation is adopted to find the
focal area in the mammogram:

IΦ � I ∘ Φ � (I⊗Φ)⊕Φ, (1)

where ∘ is themorphological opening operation, ⊗ is the erode
operation, and ⊕ is the dilation operation. .e morphological
opening operation consists of two steps in our method. Firstly,
the original image I is eroded (⊗) with the structural element
Φ. Φ is created by a flat disk-shaped structuring element with
the specified radius of 6 pixels in the experiments. Secondly,
dilation (⊕) is performed on the eroded image to produce the
final reconstructed image (IΦ). And then, we perform regional
maximum on the reconstructed image, which retrieves all the
salient regions without overselecting any of them.

(3) Visual Patches Generation. Gestalt theory aims to for-
mulate some rules according to which the perceptual input is
organized to unitary forms such as wholes, groups, or gestalt.
.e most common method is to group the similar or
proximate object together. Inspired by the concept of
“superpixel” [43], the basic processing units (visual patches)
are generated by using our previous work [44]. In [44], the
abdominal computed tomography (CT) image is divided into

many visual patches as per the law of similarity evaluated by
both intensity and spatial distance. Now, the proposed
method is applied on mammograms (Figure 4). Visual
patches are generated by clustering pixels based on both
intensity similarity and spatial proximity. Firstly, K cluster
centers are set to divide the image into several rectangular
patches. .en, we use the following similarity index Ds (2) to
cluster pixels in mammograms:

Ds �
μ
S
dxy + dg, (2)

where dxy is the spatial proximity, IΦ � I ∘Φ � (I⊗Φ)⊕Φ,

which is calculated by Euclidean distance on image plane, dg

is the intensity distance, and μ is the parameter of the pixel
compactness [44]. S is a constant which balances the spatial
proximity in image gray space, which is set as 25 in the
experiment. .e generated visual patches act as the basic
processing units in the mass detection.

Visual patches are generated only in the salient positions
which reduce the computation expense greatly as shown in
Figure 4. .ese visual patches are the basic processing and
analysis units in our algorithm. Suppose we have M visual
patches which meet the condition of visual attention. U �

P1, P2, . . . , PM􏼈 􏼉 is the set of M visual patches in a mammo-
gram, and we assume that all of these patches are candidate
masses in the sensation phase.Meanwhile, we define another set
N � ϕ to store the patches which is regarded as normal tissue.

2.2.2. Stage 2: Semantic Integration. After the first stage
(sensation integration), there are still many false-positive
patches in U after the first stage (sensation integration).
According to morphological characteristics of breast tissue,
we introduce the semantic integration to further distinguish
the masses patches from normal tissue. Kinds of semantic
features of visual patches are used to help separate the mass
from the normal tissue. .e semantic integration can be
regarded as a top-down recognition process [45].

Observation 2: Normal tissue is always rich in glands and has
poorer or lower density than that of the mass region. In addition,

Figure 4: Visual patches based on Gestalt psychology.
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the shape of masses tends to be round and oval [46, 47].Masses
and glandular tissues have very different shapes. Following the
Gestalt principle, we propose two rules based on morphological
characteristics of masses, including densification and shape.

(4) Densification of Mass. Eltonsy et al. [11] showed that the
growth of a mass disrupted the normal breast parenchyma
structure and formed a focal activity area called “focal seeds”
in our research. According to the Gestalt principle, the law of
similarity indicates that elements are perceptually grouped
together if they are similar. .e focal seed is regarded as an
entirety because it has a strong self-similarity as shown in
Figure 5(a), whereas normal tissue sometimes has a poor
densification and even forms some holes in the visual patch
(Figure 5(b)). .emain reason is that normal tissue contains
rich glands that affect the consistency of a given visual patch.
.e visual patches of masses exhibit homogeneity, whose
solidity values are very high [48]. Here, the densification is
defined as

Dens � 􏽐
i

􏽐
j

(ij)M(i, j)− uiuj

σiσj

,

ui � 􏽐
i

􏽐
j

i · M(i, j),

uj � 􏽐
i

􏽐
j

j · M(i, j),

σ2i � 􏽐
i

􏽐
j

M(i, j) i− ui( 􏼁
2
,

σ2j � 􏽘
i

􏽘
j

M(i, j) i− uj􏼐 􏼑
2
,

(3)

where M(i, j) is the gray-level co-occurrence matrix of
the visual patch P(i, j) and u and σ are the mean value and

variance for each visual patch P, respectively. .e bigger the
Dens (densification) is, the greater the probability of it being
a tumor; otherwise, it is more likely to be the normal tissue.
.erefore, a threshold Tdens is assigned based on the results
of statistical analysis. Each visual patch in the candidate set U

is detected, and the false-positive rate of visual patches is
reduced as shown in (4), where N is the set to store visual
patches of normal tissue:

Pi ∈ N if Dens Pi( 􏼁<Tdens,

Pi ∈ U if Dens Pi( 􏼁≥Tdens,
(4)

(5) Shape of Mass. As we all know, an abundance of glands
exist in the breast. .ey are radically arranged from the
center of nipple, like a crown, occupying a large part of the
mammogram. .e brightness of the gland is most similar to
the tumor tissue, and this causes high false-positive results in
various CAD systems [16]. But the shape of visual patches
which contain glandular tissue is always a long strip as
shown in Figure 6.

Comparatively, the visual patches of tumor tend to be
round and oval [46] (Figure 5(a)). In addition, the focused
visual patch is positioned only in the center area of mass
rather than its edge. .e main reason is that many masses
have no obvious margins surrounded by glandular tissues.
.e continuity law of Gestalt states that elements of objects
tend to be grouped together and integrated into perceptual
wholes. In other words, the patches containing glandular
tissue can be easily perceived with the distribution of con-
tinuity. In that case, the linear patches can be filtered from the
candidate visual patches.

Here, we bring in the concept of eccentricity to restrict
the shape of each visual patch, which is an important index
in ellipse. An ellipse fitting algorithm is used for each visual

(a)

(b)

Figure 5: .e densification of different patches. Visual patches of (a) mass and normal tissue.
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patch edge to get the eccentricity (Figure 6). .e elliptic
equation is defined as

A′x2
+ B′xy + C′y2

+ D′x + E′y + F′ � 0. (5)

.ere are 6 parameters in (5), that is, A′, B′, C′,
D′, E′, and F′. .ey can be estimated by using the least-
squares method according to the edge points of each patch.
.en, the eccentricity is defined using the long and minor
axis of the fitted ellipse:

E Pi( 􏼁 �

������
a2

i − b2i

􏽱

ai

�

��������

1−
bi

ai

􏼠 􏼡

2

􏽶
􏽴
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�������������������������
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B′2 + A′ −C′/F′􏼁2,􏼐

􏽱

􏽶
􏽴

(6)

where ai and bi are margin axis and minor axis of the ellipse,
respectively. E(Pi) measures the circularity of the visual patch
Pi and the range is from 0 to 1. Since we assume that the
eccentricity value of a visual patch is significantly lower in
tumors than that in normal tissues. A thresholdTe is defined to
reduce the false-positive rate:

Pi ∈ N if E Pi( 􏼁≥Te,

Pi ∈ U if E Pi( 􏼁<Te.
(7)

Based on the above rules, the number of candidate patches
in setU is greatly reduced, while the sensitivity and specificity
are very high which will be explained in detail in the ex-
periment. Another advantage of our method is that the fo-
cused visual patches only lie in the center of tumors. It can lay
the foundation for the further proceeding and analysis, such
as mass segmentation and mass diagnosis.

2.2.3. Stage 3: Verification: False-Positive Reduction Based on
Texture Feature Classification

Observation 3: (e Gestalt theory shows that the information

of visual perception is affected by observer’s prior experience.
Radiologists accumulate a great deal of knowledge to identify
the texture of breast tissue. We propose a validation method
based on texture of mass and extreme learning machine (ELM)
classification method.

.e importance of texture features is obvious for mass
detection. In this research, we have extracted intensity and
gray-level co-occurrence matrix (GLCM) features on the
candidate visual patches, including N dimensions for the
patch Pi, F(Pi) � g1, g2, . . . , gN􏼈 􏼉. Among these features,
two of them are the first-order texture feature, which is the
mean of gray value and gray variance describing visual
patches. Ten features are calculated from the gray-level co-
occurrence matrix, namely, contrast, correlation, energy,
homogeneity, standard deviation, inverse difference move-
ment, kurtosis, skewness, entropy, and root mean square.

.e candidate patches left in U serve as the seeds of
region growing algorithm. ROIs are obtained by clustering
these visual patches based on texture features F. .e features
of each ROI are represented by the average value of asso-
ciated patches as shown in (8), where Mj is the total number
of visual patches in ROIj:

F ROIj􏼐 􏼑 �
􏽐Pi⊆ROIjF Pi( 􏼁

Mj

. (8)

Recently, extreme learning machine (ELM) has been
extensively studied, and important progress has been made
in both theories and practical applications. .e ELM theory
in [49] has proved that random feature mapping can provide
universal approximation capability. .e ELM has built some
tangible links between machine learning techniques and
biological learning mechanisms. It is an emerging learning
algorithm for the generalized hidden layer feedforward
neural network [49, 50]. Here, the ELM is used to simulate
the final decision of doctors. Furthermore, it classifies the
ROIs into normal and abnormal cases based on the texture
feature extraction.

3. Experimental Results

3.1.DataSet andParameter Setting. Our proposed method is
tested on two publicly available data sets: MIAS [17] and
DDSM [51]. A set of 257 mammograms of MIAS is used in
the research. Among these images, 207 images do not

Figure 6: Visual patches with the glandular.
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contain any lesions while other 50 images have masses. .e
spatial resolution of image in MIAS is 50 µm × 50 µm, and
grayscale intensity is quantized to 8 bits. .e DDSM data set
contains 210 images, in which 130 images contain masses
and the other ones are normal mammograms. .e images of
DDSM have been resized to 1024 × 1024 pixels, and gray-
scale intensity is quantized to 8 bits in accordance with
images in MIAS. In both MIAS and DDSM data sets, the
mammograms containing masses have been annotated by
expert radiologists, which are used for reporting the de-
tection performance in our experiments. .e ELM classi-
fication method divides visual patches into mass and
nonmass candidates using 10-fold cross validation.

In our research, a series of indexes are used to quanti-
tatively evaluate the effectiveness of our method. .e per-
formance indexes include sensitivity (Sens), false positives
per image (FPI), homogeneity (Dens), and free-response
receiver operating characteristic (FROC). .ese indexes are
described below.

(a) Sens and FPI are computed as a region-based
evaluation. If the ratio of the overlapping region
of the ground truth and the computer-segmented
mass region is larger than 50%, the region is con-
sidered as “True Positive Marks” or “Positive ROIs”
[52]. Otherwise, it is considered as “False Positive
Marks,” which is also called “Negative ROIs” in our
experiments. For computer-aided systems, we would
like the value of sensitivity to be as high as possible.
Meanwhile, FPI should be low while guaranteeing
high sensitivity [53].

Sens �
number of true positive marks

number of regions

FPI �
number of false positive marks

number of images
.

(9)

(b) In Section 3.2, we use homogeneity (Dens) to
characterize the distribution of visual patches, which
is defined as (3). It is based on the fact that every
visual patch is an independent processing unit that
should be homogeneous as per Gestalt rules [44]..e
value of Dens ranges from 0 to 1. When patches are
uniform, the value of Dens tends to be 1, while for
nonuniform patches, the value tends to be 0.

(c) In Section 3.5, free-response receiver operating
characteristic (FROC) [52] curve is used. .e FROC
curve is defined as the plot of sensitivity (Sens) versus
the average number of false positives per image (FPI).

All numerical methods are performed using MATLAB
2012b software running on a desktop PC with a 2.50GHZ
CPU and 2G RAM. Different from data-driven algorithms
like deep learning, our method does not need a large amount
of data. .e major reason is that it is designed based on
human visual characteristic and radiologists’ experience.
.ere are all together three types of parameters in our

method, which are (descending order of importance) the
thresholds for visual rules, the parameters for generating
visual patch, and some other parameters of the ELM classifier.

.e medical images from different hospitals or different
apparatuses may be completely different. .us, the pa-
rameters of the method should be modified on different
apparatuses or data sets. .e thresholds for visual rules
(medical image attention, densification of mass, and shape of
mass) are crucial in the proposed method, which determine
the number of suspicious regions, because three key pa-
rameters in the method are independent. By comparing the
Sens and FPI in different thresholds, three parameters can be
determined for new validation data. In addition, the pa-
rameters for visual patches generation and ELM classifier
have less impact on detection performance than that for
visual rules. If the input size of image is [M, N], then the
initial size of the visual patch can be calculated by M∗N/K,
where K is the cluster parameter for visual patches gener-
ation. .at is to say, the bigger the value of K is, the smaller
the size of visual patches is, and vice versa. .e initial size of
the visual patch is preferably less than the size of the entire
breast mass. In this manuscript, both M and N is 1024, and
K is set as 2000. ELM has been extensively studied, and it
shows a good convergence speed and stability [49]. In our
research, the parameters of ELM do not require careful
adjustment. All parameters used in the experiments are
shown in Table 1.

3.2. (e Effectiveness of Visual Patches. .e mass region
patches on mammogram are called “positive patches,” and
the normal tissue ones are “negative patches” in the fol-
lowing content. Figure 7 shows the statistical histogram of
homogeneity of visual patches both for negative and positive
patches. It is obvious that the homogeneity of all patches is
above 0.85, with positive patches having a homogeneity
value above 0.9, center around the value 0.95. We can draw
a conclusion that the use of visual patches ensures the se-
mantic consistency of objects in ROIs, which lays a solid
foundation for further research. Besides, the homogeneity of
positive patches is a bit higher than that of negative patches,
which supports the description of similarity rules defined in
Section 2.2.2. As shown in Figure 7, the homogeneity dis-
tribution curves of positive and negative patches are similar

Table 1: .ree types of parameters in the experiments.

Type Parameters Setting value

Visual rules

Medical visual attention
threshold range: [0 1] 0.5

Densification of the mass
threshold range: [0 1] 0.93

Shape of mass threshold
range: [0 1] 0.86

Generation of
visual patch

Image size [1024, 1024]
Cluster parameter, K 2000

ELM
Tradeoff parameters C � 10

Kernel type RBF
Kernel parameter 0.01

Journal of Healthcare Engineering 7



to normal distribution. .e two curves are distinguishable
owing to the higher homogeneity of positive patches than
that of the negative ones.

3.3. Mass Detection Performance. In the proposed frame-
work, a series of visual rules have been defined, and finally,
all the salient patches are saved (in set U). We compare the
performance of our framework to three existing visual sa-
liency algorithms: Agrawal et al. [16] (graph-based vision
saliency), Achanta and Süsstrunk [54] (maximum sym-
metric surround saliency), and Murray et al. [55] (saliency
estimation using a nonparametric low-level vision model),
as shown in Figure 8.

In Figure 8, each row corresponds to the output of four
algorithms, and the correspondingmammograms are shown
in the first column. .e detection results of three stages in
the proposed method have been listed in Figure 8(d). It is
obvious that our method outperforms other saliency algo-
rithms for mammogram mass detection. At the stage of
verification, the false-positive rate is further reduced and
there is a bit impact on the mass region compared with
normal tissue. We experimentally observe that Agrawal et al.
[16] yielded a relatively good result that is in accordance with
what is reported in [16]. However, it computes the saliency
of a region with respect to its local neighborhood using the
directional contrast. But it is invalid when the mass is
surrounded by dense gland tissues as shown in the last row
of Figure 8. However, the positive aspect of our method is
that it combines visual cognitive theory with various mor-
phological characteristics of masses. .e advantages can be
summarized as follows: (1) .e detection method based on
gestalt rules is able to detect masses of varying sizes, resulting
in a low false-positive rate (the green region in Figure 8). (2)
.e salient visual patches of our method mostly lie in center
of the ground truth regions. .e detected results based on
the proposed method can be used for further analysis, such
as mass segmentation and diagnosis.

Table 2 shows the overall performance of our proposed
method on MIAS and DDSM data set. As shown in Table 2,
the performances of three stages of our method are given.
Masses are detected effectively, and Sens reaches 92% at
1.94 FPI and 93.84% at 2.21 on MIAS and DDSM data sets,
respectively. As shown in Table 3, we can get extended
statistic information on both the total number and

percentage of patches and ROIs. Meanwhile, the perform-
ance curves are plotted in Figure 9. From Table 3 and
Figure 9, the number of positive patches and positive ROIs
remains largely unchanged, whereas the number of negative
examples is greatly reduced as the detection stages are in-
troduced..e performance curves show the similar change of
detection performance for MIAS and DDSM. We can draw
a conclusion that the positive visual patches can be preserved,
and false-positive results are declined dramatically under the
gestalt rules constraint.

3.4. Influence of the Breast Density for Mass Detection
Performance. In general, masses in low-density breast are
easily detected than masses in high-density breast [56]. To
further evaluate the ability of our method, mass images
with different densities are separated to test on the MIAS
and DDSM data sets..e results are summarized in Table 4.
.ere are three types of densities for MIAS, that is, fatty
(F), fatty-glandular (G), and dense-glandular (D). Dif-
ferent from MIAS, the images in DDSM data set are di-
vided into four categories based on breast density, that is,
1, 2, 3, and 4.

.e quantity proportions of each subset with different
densities are listed in the first row of Table 4..is table shows
Sens and FPI of mass images with different densities. It
shows that the algorithm has good performance and works
well on different mass images. Looking at the MIAS results,
the proposed method has superior performance on fatty (F)
and fatty-glandular (G) breast images compared to the
dense-glandular (D) images. Similarly, the method performs
better in low-density (level 1 and level 2) images than high-
density (level 3 and level 4) images on DDSM. Masses in
low-density images usually have distinctive visual features
compared with the tissue around it. Conversely, some visual
patches with high density may cause erroneous judgment at
the final recognition stage. So, the false-positive rates would
increase when the data set includes many breast images with
high density. In this section, the sensitivities for all lesions
are 92% at 1.94 FPI on MIAS and 93.84% at 2.21 FPI on
DDSM.

A common method for evaluating true-positive detection
is free-response receiver operating characteristic (FROC)
analysis [57]. It is a plot of operating points showing a tradeoff
between the sensitivity rate and the average number of false
positives per image. .e complete FROC curves of our
method are presented in Figure 10. .e blue and red curves
denote the detection results on MIAS and DDSM, re-
spectively.We can get a favorable detection result when a false
positive reaches 2 per image on the two data sets.

3.5. Comparison of Experimental Results. .e mass saliency
is introduced in the proposed framework. In order to
evaluate the ability of our method, experiments were con-
ducted with 10-fold cross validation on MIAS and DDSM.
.e performance is compared with other popular algorithms
in terms of Sens and FPI. It is clearly shown in Table 5 that
the proposed method has equivalent or even better accuracy
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Figure 7: .e statistical histogram of homogeneity of negative and
positive visual patches.
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(a) (b) (c) (d)

Figure 8: Sample results of the saliency algorithms. Green denotes the saliency region detected by these algorithms, pink represents the
ground truth region containing mass, and white denotes the crossing region between green and pink. (a) Agrawal et al. [16], (b) Achanta and
Süsstrunk [55], (c) Murray et al. [56], and (d) the three stages of our method. Stage 1: the fifth column is the detection result of sensation
integration. Stage 2: the sixth column is the detection result of semantic integration. Stage 3: the last column is the final detection result
(verification) of our method.

Table 2: Mass detection performance (Sens and FPI) of different stages in our method.

Data Index Stage 1 Stage 2 Stage 3
Visual attention Densification Shape Texture

MIAS Sens 100% 98% 96% 92%
FPI 4.12 4.21 2.82 1.94

DDSM Sens 99.23% 96.92% 96.15% 93.84%
FPI 4.78 4.19 3.01 2.21

Table 3: Mass detection performance (number and percentage of patches/ROIs) of different stages in the proposed method.

Data Unit
Stage 1 Stage 2 Stage 3

Visual attention Densification Shape Texture

MIAS

Total patches 864 100% 684 79.10% 518 59.95% 218 25.23%
Positive patches 82 100% 77 93.9% 75 91.46% 71 86.59%
Negative patches 782 100% 607 77.62% 443 56.67% 147 18.80%

Total ROIs 256 100% 248 96.88% 189 73.83% 143 55.86%
Positive ROIs 50 100% 50 100% 48 96% 46 92%
Negative ROIs 206 100% 198 96.12% 141 68.45% 97 47.09%

DDSM

Total patches 2300 100% 1397 60.74% 1074 46.70% 671 29.17%
Positive patches 198 100% 185 93.43% 180 90.91% 161 81.31%
Negative patches 2102 100% 1212 57.66% 894 42.53% 510 24.26%

Total ROIs 766 100% 690 90.08% 528 68.93% 418 54.57%
Positive ROIs 144 100% 142 98.61% 137 95.14% 131 90.97%
Negative ROIs 622 100% 548 88.10% 391 62.86% 287 46.14%

Journal of Healthcare Engineering 9



than other algorithms. High sensibility and low FPI rep-
resent the good performance of an algorithm. We can get
a series of Sens at different FPIs as shown in Figure 10.
.e sensibility reaches 92% at 1.94 FPI or 94% at 2.16 FPI on
MIAS. Accordingly, the sensibility reaches 93.84% at
2.21 FPI or 94.6% at 2.66 FPI on DDSM. .e comparative
studying methods [52, 53, 58], following the similar pipeline,
include two parts: image preprocessing and suspicious mass

regions identification with different adaptive thresholds. In
contrast, a sliding window scheme is utilized in [59], and
texture features are modeled by kernel-based supervised
hashing to get the mass location. Different from the sliding
window in [59], visual attention of radiologists is used in our
method. In the end, our method not only utilizes the ad-
vantages of machine learning approaches, but the visual
saliency of mass is also modeled which achieves significant
improvement in reducing false positives and sensitivity.

4. Conclusion

In this paper, we have proposed an automatic mass detection
framework for digitized mammograms. .e main contri-
butions of our research can be summarized as follows: (1)
.e visual characteristic of radiologists is modeled based on
the Gestalt theory. (2) An automatic mass detection frame-
work is proposed which is in accordance with the doctors’
visual perception. Some constraints are defined such as density
and shape of visual patches. .ese parameters are probably
used by experienced radiologists in detection/diagnosismasses
and so on. (3) Our framework achieves a good performance
both on MIAS and DDSM data sets.

Table 4: Influence of the breast density on the proposed detection
algorithm.

MIAS
Density F G D — All
Proportion 44% 36% 20% — 100%
Sens 90.9% 94.44% 90% — 92%
FPI 1.77 2.05 2.1 — 1.94
DDSM
Density 1 2 3 4 All
Proportion 7.69% 23.84% 36.92% 31.53% 100%
Sens 90% 96.77% 93.75% 92.68% 93.84%
FPI 1.2 2.0 2.08 2.75 2.21
.e first row shows the quantity proportion of each subset with different
densities on both MIAS and DDSM data sets. .e metrics are Sens and FPI.
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Figure 9: .e number and percentage of patches/ROIs are counted for each step of our method: (a) plotted on the MIAS data set and
(b) plotted on the DDSM data set.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Average number of false positives/image

0

0.2

0.4

0.6

0.8

1

Tr
ue

-p
os

iti
ve

 fr
ac

tio
n

MIAS
DDSM

Figure 10: FROC curves of the proposed method on MIAS and
DDSM data sets.

Table 5: Comparing the performance (Sens and FPI) of the
proposed method with existing algorithms on the MIAS and
DDSM data sets.

Algorithm Data set Sens FPI
Wavelet processing and adaptive
threshold [51] MIAS 90.9% 2.35

Havrda and Charvat entropy and
OSTU [52] MIAS 93.2% 7.6

Adaptive median filtering and texture
analysis [58] MIAS 92.3% 2.75

Our method (Gestalt psychology) MIAS 94% 2.16
Wavelet processing and adaptive
threshold [51] DDSM 91% 2.1

Kernelized supervised hashing [59] DDSM 94% 4.1
Our method (Gestalt psychology) DDSM 94.6% 2.66
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Different from existing detection techniques, our
methods use the visual patches as the basic processing unit.
We focus on providing a more efficient and more innovative
data analysis method for lesions detection than traditional
methods. In our future work, more mammograms from
different apparatuses will be tested to evaluate the perfor-
mance of our proposal. We will further improve our method
as per the feedback reports from more radiologists. More-
over, we would like to focus on expanding this research to
the deep learning method.
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[31] F. Jäkel, M. Singh, F. A. Wichmann, and M. H. Herzog, “An
overview of quantitative approaches in gestalt perception,”
Vision Research, vol. 126, pp. 3–8, 2016.

[32] Y. Kinoshita, M. Koppen, and K. Yoshida, “Perception of
image similarity considering gestalt theory,” in Proceedings of
the International Conference of Soft Computing and Human
Sciences, pp. 171–177, Kitakysuhu, Japan, August 2007.

[33] S. H. Kang, “From gestalt theory to image analysis: a proba-
bilistic approach [book review of mr2365342],” Siam Review,
vol. 52, no. 2, pp. 399-400, 2010.

[34] J. Wagemans, J. Feldman, S. Gepshtein et al., “A century of
gestalt psychology in visual perception: II. Conceptual and
theoretical foundations,” Psychological Bulletin, vol. 138, no. 6,
pp. 1172–1217, 2012.

[35] H. Weedon-Fekjær, P. R. Romundstad, and L. J. Vatten,
“Modern mammography screening and breast cancer mor-
tality: population study,” British Medical Journal, vol. 348,
pp. g3701–g3708, 2014.

[36] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is
bottom-up attention useful for object recognition?,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 37–44, Washington, DC, USA, Juy 2004.

[37] S. L. Fischer, “.e gestalt research tradition: figure and
ground,” Gestalt Review, vol. 16, no. 1, pp. 3–6, 2012.

[38] C.-C. Jen and S.-S. Yu, “Automatic detection of abnormal
mammograms in mammographic images,” Expert Systems
with Applications, vol. 42, no. 6, pp. 3048–3055, 2015.

[39] P. Casti, A. Mencattini, M. Salmeri et al., “Estimation of the
breast skin-line in mammograms using multidirectional
Gabor filters,” Computers in Biology and Medicine, vol. 43,
no. 11, pp. 1870–1881, 2013.

[40] D. S. Gowri and T. Amudha, “A review on mammogram
image enhancement techniques for breast cancer detection,”
in International Conference on Intelligent Computing Appli-
cations (ICICA), pp. 47–51, Pune, India, December 2014.

[41] R. J. Ferrari, R. M. Rangayyan, J. L. Desautels, R. Borges, and
A. F. Frere, “Automatic identification of the pectoral muscle
in mammograms,” IEEE Transactions on Medical Imaging,
vol. 23, no. 2, pp. 232–245, 2004.

[42] R. Bharath, L. Z. J. Nicholas, and X. Cheng, “Scalable scene
understanding using saliency-guided object localization,” in

10th IEEE International Conference on Control and Auto-
mation (ICCA), pp. 1503–1508, Hangzhou, China, June 2013.

[43] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
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