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It is well known that the pollution and environmental fluctuations may seriously affect the outbreak of infectious diseases (e.g.,
measles). Therefore, understanding the association between the periodic outbreak of an infectious disease and noise and pollution
still needs further development. Here we consider a stochastic susceptible-infective (SI) epidemicmodel in a polluted environment,
which incorporates both environmental fluctuations as well as pollution. First, the existence of the global positive solution is
discussed. Thereafter, the sufficient conditions for the nontrivial stochastic periodic solution and the boundary periodic solution
of disease extinction are derived, respectively. Numerical simulation is also conducted in order to support the theoretical results.
Our study shows that (i) large intensity noise may help the control of periodic outbreak of infectious disease; (ii) pollution may
significantly affect the peak level of infective population and cause adverse health effects on the exposed population. These results
can help increase the understanding of periodic outbreak patterns of infectious diseases.

1. Introduction

In Northern China, coal fire-power industries and heating
systems, as well as vehicle emissions, all conduce to air
pollution (airborne fine particulate matter PM2.5, PM10, and
SO2, etc.), which has threatened the survival of exposed
human population and affected the transmission of infectious
diseases [1, 2]. Numerous studies have provided cumulative
evidence of the health effects of particulate air pollution
on the spread of infectious diseases (e.g., measles) [3, 4].
Therefore, investigating the role of pollution on the outbreak
of infectious diseases is one of the most interesting and
meaningful issues in the recent past [5].

Dynamic mathematical models have provided a deeper
understanding of the transmission process of infectious
diseases [6, 7]. There are many interesting results (see, e.g.,
[8–10]), which show that the simple susceptible-infective
(SI) model can fit the transmission process of some dis-
eases (measles, chicken pox, etc.) well. Thus, based on the
interaction between the environment and the population

(see Figure 1), we incorporate the environmental pollution
into the SI epidemic model. Let 𝑆(𝑡), 𝐼(𝑡), 𝐶0(𝑡), and 𝐶𝑒(𝑡)
denote the number of people in the susceptible population,
the number of people in the infective population, and
the concentration of pollution in the organism and in the
environment at time 𝑡, respectively. The SI epidemic model
in a polluted environment is as follows:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝛾𝑆 (𝑡) (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 ) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)
− 𝑟10𝐶0 (𝑡) 𝑆 (𝑡) − 𝜉𝑆 (𝑡) ,

𝑑𝐼 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑟20𝐶0 (𝑡) 𝐼 (𝑡) − V𝐼 (𝑡) ,
𝑑𝐶0 (𝑡)𝑑𝑡 = 𝛼𝐶𝑒 (𝑡) − (𝑔 + 𝑚)𝐶0 (𝑡) ,
𝑑𝐶𝑒 (𝑡)𝑑𝑡 = 𝑢 (𝑡) − ℎ𝐶𝑒 (𝑡) ;

(1)
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Figure 1: Flow chart of the interaction between environmental pollution and population, and the disease transmits from the susceptible
subpopulation to infected subpopulation.

all of the parameters are positive constants and the corre-
sponding biological meanings are listed in Table 1. Liu et al.
[8] obtained the sufficient conditions of the ultimate bound-
edness of solutions and the global asymptotical stability of the
equilibria.

In real situations, as was pointed by Britton et al. [11],
the transmission of infectious diseases is inevitably disrupted
by unpredictable environmental conditions (e.g., absolute
humidity [12], temperature [13]) making it more appropriate
to use a stochastic model for biological parameters. For
example, Yang et al. [14] observed the nonlinear effects
of temperature and relative humidity on the incidence of
measles. Thus, it is reasonable to model the environmental
fluctuation as a stochastic transmission coefficient [15, 16]. If
the transmission parameter 𝛽 in the model (1) is subjected to
some random environmental effects (temperature, humidity,
etc.), then it is natural to consider that the transmission rate𝛽 is replaced by a random variable:

𝛽 = 𝛽 + 𝜎𝜍 (𝑡) , (2)

where 𝜍(𝑡) is the Gaussian white noise with mean zero and
variance one, 𝜍(𝑡) = 𝑑𝐵(𝑡)/𝑑𝑡, and 𝐵(𝑡) is a scalar Wiener
Process defined in (Ω,F, {F𝑡}𝑡≥0, 𝑃), which is a complete
probability space with a filtration {F𝑡}𝑡≥0 satisfying the usual

conditions (i.e., it is right continuous and F0 contains all P-
null sets). 𝜎 is the intensity of the white noise. Thus, we can
incorporate the environmental white noises into model (3):

𝑑𝑆 (𝑡) = 𝑆 (𝑡)
⋅ [𝛾 (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 ) − 𝛽𝐼 (𝑡) − 𝑟10𝐶0 (𝑡) − 𝜉] 𝑑𝑡
− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = 𝐼 (𝑡) [𝛽𝑆 (𝑡) − 𝑟20𝐶0 (𝑡) − V] 𝑑𝑡 + 𝜎𝑆 (𝑡)
⋅ 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐶0 (𝑡)𝑑𝑡 = 𝛼𝐶𝑒 (𝑡) − (𝑔 + 𝑚)𝐶0 (𝑡) ,
𝑑𝐶𝑒 (𝑡)𝑑𝑡 = 𝑢 (𝑡) − ℎ𝐶𝑒 (𝑡) .

(3)

Moreover, outbreaks of infectious diseases always fluctu-
ate over time and exhibit seasonal patterns of incidence [17].
Ferrari et al. [18] pointed out that outbreaks of measles in
the tropics have more variable seasonal patterns driven by
accumulation and decline of susceptible individuals. Regular
oscillatory patterns of measles outbreaks in Baltimore (USA)
with an average period of three years have also been reported
[19]. To describe the seasonal effect in the model, many
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Table 1: Biological meanings of the parameters in model (1).

Parameters Biological meanings Unit
𝛾 The intrinsic growth rate in absence of the toxicant t−1

𝐾 Carrying capacity of the population in absence of the toxicant Person
𝛽 Probability of infection -
𝜉 The population natural death rate t−1

V The death rate caused by disease t−1

𝑟10 The dose-response rate due to uptake of pollution for the susceptible t−1

𝑟20 The dose-response rate due to uptake of pollution for the infected t−1

𝛼 The organisms net uptake rate of pollution from environment t−1

𝑔 The egestion rate of pollution in the organism (metabolism) t−1

𝑚 The depuration rate of pollution in the organism t−1

ℎ The environmental pollution loss rate due to natural degradation t−1

𝑢(𝑡) The exogenous rate of pollutant input into the environment t−1

existing studies [20–23] assume that the system parameters
are subjected to a periodic rhythm. Therefore, we can fur-
ther consider the following nonautonomous stochastic SI
epidemic model as follows:

𝑑𝑆 (𝑡) = 𝑆 (𝑡) [𝛾 (𝑡) (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 (𝑡) ) − 𝛽 (𝑡) 𝐼 (𝑡)
− 𝑟10 (𝑡) 𝐶0 (𝑡) − 𝜉 (𝑡)] 𝑑𝑡 − 𝜎 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = 𝐼 (𝑡) [𝛽 (𝑡) 𝑆 (𝑡) − 𝑟20 (𝑡) 𝐶0 (𝑡) − V (𝑡)] 𝑑𝑡
+ 𝜎 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐶0 (𝑡)𝑑𝑡 = 𝛼𝐶𝑒 (𝑡) − (𝑔 + 𝑚)𝐶0 (𝑡) ,
𝑑𝐶𝑒 (𝑡)𝑑𝑡 = 𝑢 (𝑡) − ℎ𝐶𝑒 (𝑡) ,

(4)

with initial data
𝑆 (0) = 𝑆0 ≥ 0,
𝐼 (0) = 𝐼0 ≥ 0,

0 ≤ 𝐶0 (0) ≤ 1,
0 ≤ 𝐶𝑒 (0) ≤ 1,

(5)

where 𝛾(𝑡), 𝐾(𝑡), 𝛽(𝑡), 𝑟10(𝑡), 𝑟20(𝑡), 𝜉(𝑡), 𝜎(𝑡) are all positive,
bounded, continuous 𝜃-periodic functions.

Considering the periodic variation and pollution expo-
sure of epidemic models and exploring the existence of
stochastic periodic solutions are meaningful to predict and
control the outbreaks of infectious diseases. Such analysis
has benefited from the theoretical contributions about the
nonautonomous stochastic system [24, 25]. We also see that
there has been some research in this respect [20, 21, 26,
27]. For example, Jiang et al. [21] considered a stochastic
nonautonomous competitive Lotka-Volterra model in a pol-
luted environment and then derived sufficient criteria for

the existence and global attractivity of a nontrivial positive
periodic solution. Xie et al. [27] presented a stochastic
hepatitis B virus infection model with logistic hepatocyte
growth and showed that the model has at least one periodic
solution. More related results can be found in [22, 28, 29].
To the best of our knowledge, there are few results about
the periodic solution of a stochastic SI epidemic model in
a polluted environment. Therefore, the main objective of
this paper is to concentrate on the effects of pollution and
environmental fluctuation on the existence of the positive
periodic solution.

The rest of this paper is organized as follows: in the next
Section 2, we present the underlying mathematical analysis:
the existence of the global positive solution, the sufficient
conditions for the nontrivial stochastic periodic solution,
and the boundary periodic solution of disease extinction are
derived. The subsequent Section 3 describes the numerical
simulation, based on the case of measles, carried out to
support the theoretical results. Finally, in the last Section 4,
the conclusion is presented.

2. Mathematical Analysis

2.1. Preliminary. Since 𝐶0(𝑡), 𝐶𝑒(𝑡) are the concentrations of
the pollution and 0 ≤ 𝐶0(𝑡) < 1 and 0 ≤ 𝐶𝑒(𝑡) < 1 must be
satisfied, we assume the following.

Assumption 1 (0 < 𝛼 ≤ 𝑔 + 𝑚, 𝑢(𝑡) ≤ ℎ). Notice that 𝑢(𝑡) is a
positive 𝜃-periodic continuous function, so we can prove the
following.

Lemma 2. For model (4), we have lim𝑡→∞|𝐶0(𝑡) −𝐶∗0 (𝑡)| = 0;
here

𝐶∗0 (𝑡) = ∫𝑡+𝜃
𝑡

𝑒(𝑔+𝑚)(𝑠−𝑡)𝛼𝐶𝑒 (𝑠) 𝑑𝑠𝑒(𝑔+𝑚)𝜃 − 1 . (6)

The proof of this lemma is provided in Appendix.
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From now on, we will only consider the following system:

𝑑𝑆 (𝑡) = 𝑆 (𝑡) [𝛾 (𝑡) (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 (𝑡) ) − 𝛽 (𝑡) 𝐼 (𝑡)
− 𝑟10 (𝑡) 𝐶∗0 (𝑡) − 𝜉 (𝑡)] 𝑑𝑡 − 𝜎 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = 𝐼 (𝑡) [𝛽 (𝑡) 𝑆 (𝑡) − 𝑟20 (𝑡) 𝐶∗0 (𝑡) − V (𝑡)] 𝑑𝑡
+ 𝜎 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) .

(7)

For a bounded function on [0,∞), say, 𝑓(𝑡), define
𝑓𝑢 = sup
𝑡∈[0,∞)

𝑓 (𝑡) ,
𝑓𝑙 = inf
𝑡∈[0,∞)

𝑓 (𝑡) ,
⟨𝑓⟩𝜃 = 1𝜃 ∫

𝜃

0
𝑓 (𝑠) 𝑑𝑠.

(8)

Now, we shall give some definitions and Lemmaswith respect
to the periodic Markov process 𝑋(𝑡) as the solution of
stochastic system

𝑋(𝑡) = 𝑋 (𝑡0) + ∫𝑡
𝑡0

𝑏 (𝑠, 𝑋 (𝑠)) 𝑑𝑠

+ 𝑘∑
𝑟=1

∫𝑡
𝑡0

𝜎𝑟 (𝑠, 𝑋 (𝑠)) 𝑑𝐵𝑟 (𝑠) , 𝑥 ∈ R
𝑙.

(9)

Definition 3 (see [24]). A stochastic process 𝜉(𝑡) =𝜉(𝑡, 𝜔) (−∞ < 𝑡 < ∞) is said to be periodic with period 𝜃,
if for every finite sequence of numbers 𝑡1, 𝑡2, . . . , 𝑡𝑛 the joint
distribution of the random variables 𝜉(𝑡1 + ℎ), . . . , 𝜉(𝑡𝑛 + ℎ) is
independent of ℎ, where ℎ = 𝑘𝜃, 𝑘 = ±1, ±2, . . ..
Remark 4. It follows from [24] that a stochastic Markov pro-
cess 𝑋(𝑡) is 𝜃-periodic if and only if its transition probability
function is 𝜃-periodic and the functionP0(𝑡, 𝐴) = P{𝑋(𝑡) ∈𝐴} satisfies

P0 (𝑠, 𝐴) = ∫
R𝑙
P0 (𝑠, 𝑑𝑥)P (𝑠, 𝑥, 𝑠 + 𝜃, 𝐴)

≡ P0 (𝑠 + 𝜃, 𝐴) ,
(10)

for every 𝐴 ∈ B, whereB denotes the Borel 𝜎-algebra in R𝑙.

LetL be a linear operator defined by

L = 𝜕𝜕𝑡 +
𝑛∑
𝑖=1

𝑏𝑖 (𝑡, 𝑥) 𝜕𝜕𝑥𝑖 +
12
𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗 𝜕2𝜕𝑥𝑖𝜕𝑥𝑗 ,

𝑎𝑖𝑗 = 𝑘∑
𝑟=1

𝜎𝑖𝑟 (𝑡, 𝑥) 𝜎𝑗𝑟 (𝑡, 𝑥) .
(11)

Lemma 5 (see [24]). Suppose that the coefficients of system
(13) are 𝜃-periodic in 𝑡 and satisfy

󵄨󵄨󵄨󵄨𝑏 (𝑠, 𝑥) − 𝑏 (𝑠, 𝑦)󵄨󵄨󵄨󵄨 +
𝑘∑
𝑟=1

󵄨󵄨󵄨󵄨𝜎𝑟 (𝑠, 𝑥) − 𝜎𝑟 (𝑠, 𝑥)󵄨󵄨󵄨󵄨
≤ 𝐶 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ,

|𝑏 (𝑠, 𝑥)| + 𝑘∑
𝑟=1

󵄨󵄨󵄨󵄨𝜎𝑟 (𝑠, 𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶 (1 + |𝑥|) ,
(12)

in every cylinder 𝐼 × 𝑈, where 𝐶 is a constant; and suppose
further that there exists a function 𝑉(𝑡, 𝑥) ∈ R𝑙 which is 𝜃-
periodic in 𝑡, satisfying

inf
|𝑥|>𝑅

𝑉 (𝑡, 𝑥) 󳨀→ ∞, as 𝑅 󳨀→ ∞, (13)

L𝑉 (𝑡, 𝑥) ≤ −1, outside some compact set. (14)

Then, there exists a solution of system (9) which is a 𝜃-periodic
Markov process.

Remark 6. According to the proof of Lemma 2.1 in [24],
condition (14) is only used to guarantee the existence and
uniqueness of the solution of system (9).

Next, we have the following theorem.

Theorem 7. For any given initial value (5), model (7) has a
unique positive solution (𝑆(𝑡), 𝐼(𝑡)) on 𝑡 ≥ 0, and the solution
will remain in R2+ with probability one.

The proof of this Theorem is provided in Appendix.

2.2. Existence of the Positive Stochastic Periodic Solution.
In this section, we shall prove the existence of a positive
stochastic periodic solution of models (4) and (7). Firstly, we
define

𝜆𝜃 = 1𝜃 ∫
𝜃

0
{𝛾 (𝑠) − [𝑟10 (𝑠) + 𝑟20 (𝑠)] 𝐶∗0 (𝑠)

− 12 (𝛾
𝑢𝐾𝑢
𝛾𝑙 )2 𝜎2 (𝑠) − 𝜉 (𝑠) − V (𝑠)} 𝑑𝑠.

(15)

Now, we obtain the following result regarding the existence
of a positive periodic solution of model (7).

Theorem 8. If 𝜆𝜃 > 0, then model (7) at least has one positive𝜃-periodic solution (𝑆∗(𝑡), 𝐼∗(𝑡)).
Proof. To prove the existence of a positive 𝜃-periodic solution
of model (7), it follows from Lemma 2 and Remark 6 that
we need to find a 𝐶2-function 𝑉(𝑡, 𝑆, 𝐼) and a closed setΘ ∈ R2+ such that (13) and (14) hold. Firstly, we assume that𝛾𝑢 + 𝛾𝑢/𝐾𝑙 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 > 0 and define a nonnegative
function as follows:

𝑉 (𝑡, 𝑆, 𝐼) = 𝑉1 (𝑡, 𝑆) + 𝑉2 (𝑡, 𝑆, 𝐼) + 𝑉3 (𝑡) , (16)
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where

𝑉1 (𝑡, 𝑆) = −𝑀 ln 𝑆 (𝑡) − 𝑀 ln 𝐼 (𝑡) ,
𝑉2 (𝑡, 𝑆, 𝐼) = 12 (𝑆 (𝑡) + 𝐼 (𝑡))2 +𝑀(𝑆 (𝑡) + 𝐼 (𝑡)) ,
𝑉3 (𝑡) = 𝑀𝜔 (𝑡) ,
𝑀 = 2𝜆𝜃 max{1,

sup
(𝑆,𝐼)∈R2

+

{− 𝛾𝑙𝐾𝑢 𝑆3 + [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2]

⋅ 𝑆2 + [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼
− (𝑟20𝐶∗0 + V)𝑙 𝐼2 +𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆
+𝑀[𝛾𝑢𝐾𝑙 + 𝛽𝑢 − (𝑟20𝐶∗0 + V)𝑙] 𝐼}} .

(17)

It is easy to see that 𝑀𝜆𝜃/2 ≥ 1 and 𝜔(𝑡) satisfies the
following:

𝜔̇ (𝑡) = −𝜆𝜃 + 𝛾 (𝑡) − [𝑟10 (𝑡) + 𝑟20 (𝑡)] 𝐶∗0 (𝑡)
− 12 (𝛾

𝑢𝐾𝑢
𝛾𝑙 )2 𝜎2 (𝑡) − 𝜉 (𝑡) − V (𝑡) ,

𝜔 (0) = 0.
(18)

Integrating (18) from 𝑡 to 𝑡 + 𝜃 yields
𝜔 (𝑡 + 𝜃) − 𝜔 (𝑡) = ∫𝑡+𝜃

𝑡
𝜔̇ (𝑠) 𝑑𝑠 = ∫𝑡+𝜃

𝑡
[−𝜆𝜃 + 𝛾 (𝑠)

− [𝑟10 (𝑠) + 𝑟20 (𝑠)] 𝐶∗0 (𝑠) − 12 (𝛾
𝑢𝐾𝑢
𝛾𝑙 )2 𝜎2 (𝑠)

− 𝜉 (𝑠) − V (𝑠)] 𝑑𝑠 − ∫𝜃
0
[−𝜆𝜃 + 𝛾 (𝑠)

− [𝑟10 (𝑠) + 𝑟20 (𝑠)] 𝐶∗0 (𝑠) − 12 (𝛾
𝑢𝐾𝑢
𝛾𝑙 )2 𝜎2 (𝑠)

− 𝜉 (𝑠) − V (𝑠)] 𝑑𝑠 = 0.

(19)

Thus, we can see that 𝜔(𝑡) is a 𝜃-periodic function on [0,∞)
and

lim inf
𝜖→0,(𝑆,𝐼)∈R2

+
\Θ𝜖

𝑉 (𝑡, 𝑆, 𝐼) = ∞, (20)

whereΘ𝜖 = {(𝑆, 𝐼) : (𝑆, 𝐼) ∈ (𝜖, 1/𝜖)×(𝜖, 1/𝜖)}.Thus,𝑉(𝑡, 𝑆, 𝐼)
is 𝜃-periodic with respect to 𝑡.

Now, we have the requisite information to verify (14) in
Lemma 5. Applying the Itô formula to 𝑉(𝑡, 𝑆, 𝐼), one can
obtain

L𝑉1 = −𝑀[𝛾 (𝑡) − 𝛾 (𝑡)𝑘 (𝑡) (𝑆 + 𝐼) − 𝑟10 (𝑡) 𝐶∗0 (𝑡)
− 𝛽 (𝑡) 𝐼 − 𝜉 (𝑡) − 𝜎2 (𝑡) 𝐼22 + 𝛽 (𝑡) 𝑆 − 𝑟20 (𝑡) 𝐶∗0 (𝑡)
− V (𝑡) − 𝜎2 (𝑡) 𝑆22 ] ≤ 𝑀{− [𝛾 (𝑡)
− (𝑟10 (𝑡) + 𝑟20 (𝑡)) 𝐶∗0 (𝑡) − 𝜉 (𝑡) − V (𝑡)] + 𝛾𝑢

𝐾𝑙 𝑆
+ (𝛾𝑢𝐾𝑙 + 𝛽𝑢) 𝐼 + (𝛾𝑢𝐾𝑢𝛾𝑙 )2 𝜎2 (𝑡) − 𝛽𝑙𝑆}
= 𝑀{−[𝛾 (𝑡) − (𝑟10 (𝑡) + 𝑟20 (𝑡)) 𝐶∗0 (𝑡)
− 12 (𝛾

𝑢𝐾𝑢
𝛾𝑙 )2 𝜎2 (𝑡) − 𝜉 (𝑡) − V (𝑡)] + 𝛾𝑢

𝐾𝑙 𝑆 + (𝛾𝑢𝐾𝑙
+ 𝛽𝑢) 𝐼 − 𝛽𝑙𝑆} ,

L𝑉2 = (𝑆 + 𝐼) [𝛾 (𝑡) 𝑆 (1 − 𝑆 + 𝐼𝐾 (𝑡)) − (𝑟10 (𝑡) 𝐶∗0 (𝑡)
+ 𝜉 (𝑡)) 𝑆 − (𝑟20 (𝑡) 𝐶∗0 (𝑡) + V (𝑡)) 𝐼] +𝑀[𝛾 (𝑡)
⋅ 𝑆 (1 − 𝑆 + 𝐼𝐾 (𝑡)) − (𝑟10 (𝑡) 𝐶∗0 (𝑡) + 𝜉 (𝑡)) 𝑆
− (𝑟20 (𝑡) 𝐶∗0 (𝑡) + V (𝑡)) 𝐼] + 𝜎2 (𝑡) 𝑆2𝐼2 ≤ 𝛾𝑢𝑆2

− 𝛾𝑙𝐾𝑢 𝑆3 − 𝛾𝑙𝐾𝑢 𝑆2𝐼 − (𝑟10𝐶∗0 + 𝜉)𝑙 𝑆2 − (𝑟20𝐶∗0 + V)𝑙

⋅ 𝑆𝐼 − 𝛾𝑙𝐾𝑢 𝑆2𝐼 − 𝛾𝑙𝐾𝑢 𝑆𝐼2 − (𝑟10𝐶∗0 + 𝜉)𝑙 𝑆𝐼 − (𝑟20𝐶∗0
+ V)𝑙 𝐼2 + 𝛾𝑢𝑆𝐼 + (𝜎𝑢)2 𝑆2𝐼2 +𝑀𝛾𝑢𝑆 −𝑀 𝛾𝑙𝐾𝑢 𝑆2

−𝑀 𝛾𝑙𝐾𝑢 𝐼𝑆 −𝑀(𝑟10𝐶∗0 + 𝜉)𝑙 𝑆 −𝑀(𝑟20𝐶∗0 + V)𝑙 𝐼
≤ {− 𝛾𝑙𝐾𝑢 𝑆3 + [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢
+ (𝜎𝑢)2 𝐼2] 𝑆2 − (𝑟20𝐶∗0 + V)𝑙 𝐼2 + [𝛾𝑢

− (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼 +𝑀[𝛾𝑢

− (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆 −𝑀(𝑟20𝐶∗0 + V)𝑙 𝐼} .

(21)
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From (18) and (21), we can get that

L𝑉
= −𝑀𝜆𝜃 +𝑀(𝛾𝑢𝐾𝑙 − 𝛽𝑙) 𝑆 +𝑀(𝛾𝑢𝐾𝑙 + 𝛽𝑢) 𝐼

− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼
+𝑀[𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆 −𝑀(𝑟20𝐶∗0 + V)𝑙 𝐼.

(22)

Define a closed set

Θ𝜖 = {(𝑆, 𝐼) ∈ R
2
+ : 𝜖 ≤ 𝑆 ≤ 1𝜖 , 𝜖 ≤ 𝐼 ≤ 1𝜖} , (23)

where 0 < 𝜖 < 1 is a sufficiently small number such that

−𝑀𝜆𝜃 +𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝜖 + 𝐶1
≤ −1,

(24)

−𝑀𝜆𝜃 −𝑀[𝛽𝑙 + (𝑟10𝐶∗0 + 𝜉)𝑙] 1𝜖 + 𝐶2 ≤ −1, (25)

−𝑀𝜆𝜃 − (𝑟20𝐶∗0 + V)𝑙 1𝜖 + 𝐶3 ≤ −1, (26)

where 𝐶𝑖, 𝑖 = 1, 2, 3 are positive constants defined in (29),
(32), and (34) later. Moreover, we denote

Θ1𝜖 = {(𝑆, 𝐼) ∈ R
2
+ : 0 < 𝑆 < 𝜖} ,

Θ2𝜖 = {(𝑆, 𝐼) ∈ R
2
+ : 0 < 𝐼 < 𝜖} ,

Θ3𝜖 = {(𝑆, 𝐼) ∈ R
2
+ : 𝑆 > 1𝜖} ,

Θ4𝜖 = {(𝑆, 𝐼) ∈ R
2
+ : 𝐼 > 1𝜖} .

(27)

ThenΘ𝑐𝜖 = R2+ \Θ𝜖 = Θ1𝜖 ∪Θ2𝜖 ∪Θ3𝜖 ∪Θ4𝜖 . Next, we shall prove
L𝑉(𝑡, 𝑆, 𝐼) ≤ −1 on [0,∞] × Θ𝑐𝜖.

Case 1. On Θ1𝜖 , we have 0 < 𝑆 < 𝜖:
L𝑉
= −𝑀𝜆𝜃 +𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆

− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼
+𝑀[𝛾𝑢𝐾𝑙 + 𝛽𝑢 − (𝑟20𝐶∗0 + V)𝑙] 𝐼

≤ −𝑀𝜆𝜃 +𝑀[𝛾𝑢𝐾𝑙 − 𝛽𝑙 + 𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝜖
+ 𝐶1,

(28)

where

𝐶1 = sup
(𝑆,𝐼)∈R2

+

{− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼

−𝑀[(𝑟20𝐶∗0 + V)𝑙 − 𝛾𝑢
𝐾𝑙 − 𝛽𝑢] 𝐼} .

(29)

Therefore, we can say thatL𝑉(𝑡, 𝑆, 𝐼) ≤ −1 on [0,∞]×Θ1𝜖 in
lieu of (24).

Case 2. On Θ2𝜖 , we have 0 < 𝐼 < 𝜖:
L𝑉 ≤ −𝑀𝜆𝜃2 + {−𝑀𝜆𝜃2 + sup

(𝑆,𝐼)∈R2
+

{− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼



Computational and Mathematical Methods in Medicine 7

+𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆

+𝑀[𝛾𝑢𝐾𝑙 + 𝛽𝑢 − (𝑟20𝐶∗0 + V)𝑙] 𝐼}} .
(30)

It follows from the definition of𝑀 thatL𝑉 ≤ −𝑀𝜆𝜃/2 ≤ −1,
which impliesL𝑉(𝑡, 𝑆, 𝐼) ≤ −1 on [0,∞] × Θ2𝜖 .
Case 3. On Θ3𝜖 , we have 𝑆 > 1/𝜖:

L𝑉 = −𝑀𝜆𝜃 −𝑀[𝛽𝑙 + (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆 + {− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2

− (𝑟20𝐶∗0 + V)𝑙 𝐼2

+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼

+𝑀[𝛾𝑢𝐾𝑙 + 𝛽𝑢 − (𝑟20𝐶∗0 + V)𝑙] 𝐼

+𝑀(𝛾𝑢𝐾𝑙 + 𝛾𝑢) 𝑆} ≤ −𝑀𝜆𝜃 −𝑀[𝛽𝑙

+ (𝑟10𝐶∗0 + 𝜉)𝑙] 1𝜖 + 𝐶2,

(31)

where

𝐶2 = sup
(𝑆,𝐼)∈R2

+

{− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2

− (𝑟20𝐶∗0 + V)𝑙 𝐼2

+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼

+𝑀[𝛾𝑢𝐾𝑙 + 𝛽𝑢 − (𝑟20𝐶∗0 + V)𝑙] 𝐼

+𝑀(𝛾𝑢𝐾𝑙 + 𝛾𝑢) 𝑆} .

(32)

According to (25), one can get that L𝑉(𝑡, 𝑆, 𝐼) ≤ −1 on[0,∞] × Θ3𝜖 .

Case 4. On Θ4𝜖 , we have 𝐼 > 1/𝜖:
L𝑉 = −𝑀𝜆𝜃 − (𝑟20𝐶∗0 + V)𝑙 𝐼 + {− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼
+𝑀(𝛾𝑢𝐾𝑙 + 𝛽𝑢) 𝐼
+𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆} ≤ −𝑀𝜆𝜃
− (𝑟20𝐶∗0 + V)𝑙 1𝜖 + 𝐶3,

(33)

where

𝐶3 = sup
(𝑆,𝐼)∈R2

+

{− 𝛾𝑙𝐾𝑢 𝑆3

+ [𝛾𝑢 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢 + (𝜎𝑢)2 𝐼2] 𝑆2
− (𝑟20𝐶∗0 + V)𝑙 𝐼2
+ [𝛾𝑢 − (𝑟20𝐶∗0 + V)𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 −𝑀 𝛾𝑙𝐾𝑢] 𝑆𝐼
+𝑀(𝛾𝑢𝐾𝑙 + 𝛽𝑢) 𝐼
+𝑀[𝛾𝑢𝐾𝑙 + 𝛾𝑢 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙] 𝑆} .

(34)

In view of (26), we can deduce that L𝑉(𝑡, 𝑆, 𝐼) ≤ −1 on[0,∞] × Θ4𝜖 .
In summary, we can draw the conclusion that

L𝑉 (𝑡, 𝑆, 𝐼) ≤ −1 for every [0,∞] × Θ𝑐𝜖. (35)

Thus, the condition (14) of Lemma 5 is satisfied. Conse-
quently, model (7) at least has one positive stochastic 𝜃-
periodic solution.

Remark 9. Theorem 8 implies that the intrinsic growth rate of
population should overcome the extinction risks of infected
disease and pollution in order to guarantee the survival of
the population. In addition, the condition 𝜆𝜃 means that the
susceptible population evolution dynamic (𝛾, 𝐾), the dose-
response rates (𝑟𝑖0, 𝑖 = 1, 2), and intensity of noise (𝜎) play
an important role in determining the periodic outbreak of
infectious disease; that is, reducing the possibility of 𝜆𝜃 > 1 is
beneficial to the control of the periodic outbreak of infectious
diseases.
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Remark 10. In contrast to the authors in [8] assume that the
exogenous rate of pollutant input 𝑢(𝑡) has constant limit(i.e.,
lim𝑡→∞𝑢(𝑡) = 𝑢∗) and derived the stability of equilibria,
which ignored the periodicity of model. In this paper, we
consider the limit periodic system with attractiveness (i.e.,
lim𝑡→∞|𝐶0(𝑡) −𝐶∗0 (𝑡)| = 0) and obtain the positive stochastic
periodic solution, which extends the results in [8] to a
stochastic nonautonomous situation.

Combining Lemma 2 and Theorem 8, we can have
the following result on the existence of positive stochastic
periodic solution of model (4).

Theorem 11. Under the conditions of Theorem 8, model
(4) at least has one positive stochastic 𝜃-periodic solution(𝑆∗(𝑡), 𝐼∗(𝑡), 𝐶∗0 (𝑡), 𝐶∗𝑒 (𝑡)).
2.3. The Boundary Periodic Solution of Disease Extinction.
In this section, we shall obtain the sufficient conditions for
disease extinction. Firstly, we define

𝜆0𝜃 = 1𝜃 ∫
𝜃

0
[ 𝛽2 (𝑠)2𝜎2 (𝑠) − 𝑟20 (𝑠) 𝐶∗0 (𝑠) − V (𝑠)] 𝑑𝑠. (36)

Next, we prove the following theorem.

Theorem 12. For model (7), if 𝜆0𝜃 < 0, then the disease 𝐼(𝑡)
goes to extinct almost surely.

Proof. Define 𝑊(𝐼) = ln 𝐼(𝑡) for 𝐼 ∈ [0, 𝛾𝑢𝐾𝑢/𝛾𝑙]. Utilizing
the Itô formula to model (7) yields

𝑑𝑊 (𝐼 (𝑡)) = 𝐿𝑊 (𝐼 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡) 𝑆 (𝑡) 𝑑𝐵 (𝑡) , (37)
where

𝐿𝑊 (𝐼 (𝑡)) = 𝛽 (𝑡) 𝑆 (𝑡) − 𝑟20 (𝑡) 𝐶∗0 (𝑡) − V (𝑡)
− 𝜎2 (𝑡)2 𝑆2 (𝑡)

≤ 𝛽2 (𝑡)2𝜎2 (𝑡) − 𝑟20 (𝑡) 𝐶∗0 (𝑡) − V (𝑡) .
(38)

Substituting (38) into (37) and integrating both sides of (37),
one can deduce that

1𝑡 ∫
𝑡

0
ln 𝐼 (𝑡)𝐼 (0)

≤ 1𝑡 ∫
𝑡

0
{ 𝛽2 (𝑠)2𝜎2 (𝑠) − 𝑟20 (𝑠) 𝐶∗0 (𝑠) − V (𝑠)} 𝑑𝑠

+ 𝑀 (𝑡)𝑡 ,
(39)

where 𝑀(𝑡) = ∫𝑡
0
𝜎(𝑠)𝑆(𝑠)𝑑𝐵(𝑠) is a martingale with the

following quadratic variation:

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩𝑡 = ∫𝑡
0
[𝜎 (𝑢) 𝑆 (𝑢)]2 𝑑𝑢

≤ sup
𝑠≥0

{(𝜎𝑢𝛾𝑢𝐾𝑢𝛾𝑙 )2} , a.s.
(40)

According to the strong law of large numbers for martingales
[32], we can get

lim
𝑡→∞

𝑀(𝑡)𝑡 = 0, a.s. (41)

Combining (39), (41), and the coefficients’ periodicity of
model (7), we get

lim
𝑡→∞

1𝑡 ∫
𝑡

0
ln 𝐼 (𝑡)𝐼 (0)

≤ lim
𝑡→∞

1𝑡 ∫
𝑡

0
{ 𝛽2 (𝑠)2𝜎2 (𝑠) − 𝑟20 (𝑠) 𝐶∗0 (𝑠) − V (𝑠)} 𝑑𝑠

+ lim
𝑡→∞

𝑀(𝑡)𝑡
= 1𝜃 ∫

𝜃

0
{ 𝛽2 (𝑠)2𝜎2 (𝑠) − 𝑟20 (𝑠) 𝐶∗0 (𝑠) − V (𝑠)} 𝑑𝑠 = 𝜆0𝜃

< 0,

(42)

and hence lim𝑡→∞𝐼(𝑡) = 0, a.s.
Note the fact that when lim𝑡→∞𝐼(𝑡) = 0, model (7)

reduces to the following nonautonomous system:

𝑑 (𝑆 (𝑡)) = 𝑆 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑆 (𝑡)] , (43)

where 𝑎(𝑡) = 𝛾(𝑡) − 𝑟10(𝑡)𝐶∗0 (𝑡) − 𝜉(𝑡), 𝑏(𝑡) = 𝛾(𝑡)/𝐾(𝑡) are all𝜃-periodic functions. Define
𝜆𝑆𝜃 = 1𝜃 ∫

𝜃

0
[𝛾 (𝑠) − 𝑟10 (𝑠) 𝐶∗0 (𝑠) − 𝜉 (𝑠)] 𝑑𝑠. (44)

Therefore, we have the following 𝜃-periodic solution result of
system (43).

Lemma 13 (see Globalism [33]). For system (43), if 𝜆𝑆𝜃 > 0
then it has a stable positive 𝜃-periodic solution 𝑆0𝜃(𝑡) which
satisfies

1𝑆0
𝜃 (𝑡) =

∫𝑡+𝜃
𝑡

exp {∫𝑠
𝑡
𝑎 (𝜏) 𝑑𝜏} 𝑏 (𝑠) 𝑑𝑠

exp {∫𝜃
0
𝑎 (𝜏) 𝑑𝜏} − 1 , 𝑡 ≥ 0. (45)

In summary, we obtain the following.

Theorem 14. For model (7), if 𝜆0𝜃 < 0 and 𝜆𝑆𝜃 > 0, then it has
a boundary periodic solution of disease extinction (𝑆0𝜃(𝑡), 0).
Remark 15. The transmission coefficient 𝛽, intensity of noise𝜎, and pollution level 𝑟20𝐶∗0 may determine the fate of the
evolution of infected population.

3. Numerical Simulation

In this section, we shall verify the above theoretical results
and illustrate the effects of environmental fluctuation and
pollution on the periodic outbreak of infectious disease.With
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help from MATLAB (Mathworks, Inc., Natick, MA, USA)
and Milsteins higher order method [34], which is a powerful
tool for solving stochastic differential equations, we consider
the following discretized equation of model (7) at 𝑡 = (𝑘 +1)Δ𝑡, 𝑘 = 0, 1, . . .:
𝑆𝑘+1 = 𝑆𝑘 + 𝑆𝑘 [𝛾 (𝑘Δ𝑡)(1 − (𝑆𝑘 + 𝐼𝑘)

𝐾 (𝑘Δ𝑡) )

− 𝛽 (𝑘Δ𝑡) 𝐼𝑘 − 𝑟10 (𝑘Δ𝑡) 𝐶∗0 (𝑘Δ𝑡) − 𝜉 (𝑘Δ𝑡)]Δ𝑡

− 𝑆𝑘𝐼𝑘 [𝜎 (𝑘Δ𝑡)√𝑘Δ𝑡𝜉𝑘 + 𝜎2 (𝑘Δ𝑡)2 (𝜉2𝑘Δ𝑡 − Δ𝑡)] ,
𝐼𝑘+1 = 𝐼𝑘 + 𝐼𝑘 [𝛽 (𝑘Δ𝑡) 𝑆𝑘 − 𝑟20 (𝑘Δ𝑡) 𝐶∗0 (𝑘Δ𝑡)

− V (𝑘Δ𝑡)] Δ𝑡 + 𝑆𝑘𝐼𝑘 [𝜎 (𝑘Δ𝑡)√𝑘Δ𝑡𝜉𝑘
+ 𝜎2 (𝑘Δ𝑡)2 (𝜉2𝑘Δ𝑡 − Δ𝑡)] ,

(46)

where 𝜉𝑘 are the 𝑁(0, 1)-distribution independent Gaussian
random variables. Let us assume that

𝛾 (𝑡) = 3.5 + 0.5 cos( 𝑡12) ,
𝐾 (𝑡) = 100 + 5 cos( 𝑡12) ,
𝜉 (𝑡) = 0.34 + 0.05 cos( 𝑡12) ,
V (𝑡) = 0.05 + 0.01 cos( 𝑡12) ,

𝐶∗0 (𝑡) = 0.5 + 0.05 cos( 𝑡12) ,
𝜎 (𝑡) = 0.01 + 0.005 cos( 𝑡12) ,
𝛽 (𝑡) = 0.25 + 0.05 cos( 𝑡12) .

(47)

Example 16. To illustrate the effect of pollution on the peri-
odic outbreaks of infectious disease, we look at the following
two cases that differ with respect to the average pollution
level.

Case (i). Assume that 𝑟10(𝑡) = 0.15 + 0.05cos(𝑡/12), 𝑟20(𝑡) =0.2 + 0.05cos(𝑡/12). After some simple calculations, we can
see that 𝛾𝑢 + 𝛾𝑢/𝐾𝑙 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 = 1.8711 > 0 and

𝜆𝜃 = 3.3871 > 0. (48)

Thus, it follows from Theorem 8 that model (7) has at
least one positive 24𝜋-periodic solution. As shown in Figures
2(a) and 2(c), the probability density functions (PDFs) of(𝑆(𝑡), 𝐼(𝑡)) of model (7) are nearly equal (from the shape

of stationary distribution aspect) to each other in different
periods, which supports the definition of a periodic Markov
process (see Figures 2(b) and 2(d)). Therefore, the solution
process of model (7) is a 24𝜋-periodic Markov process.
Additionally, in the absence of white noise, model (7) reduces
to a deterministic system. Hence, we also plot the trajectories
of the corresponding deterministic model (7) in Figures
2(a) and 2(c) (red lines). In summary, it can be observed
that the sample trajectories of the stochastic model (7) have
regular periodicity under small environmental fluctuations,
and fluctuation happens around the periodic solution of the
corresponding deterministic counterparts.

Case (ii). Assume that 𝑟10(𝑡) = 0.1 + 0.05cos(𝑡/12), 𝑟20(𝑡) =0.15 + 0.05cos(𝑡/12). After some simple calculations, we can
check that 𝛾𝑢 + 𝛾𝑢/𝐾𝑙 − 𝛽𝑙 − (𝑟10𝐶∗0 + 𝜉)𝑙 = 1.9711 > 0
and 𝜆𝜃 = 3.4121 > 0. According to Theorem 8, model (7)
has a stochastic 24𝜋-periodic solution (see Figure 3(a), red
lines). We can also observe from Figure 3(a) that due to the
decrease in pollution, the peak level of infective population
increases. Meanwhile, the corresponding PDF moves to the
right position, which implies a higher number for population
of 𝐼(𝑡) (see Figure 2(b)). Thus, pollution may increase the
peak level of infective population.

Next, we shall check the existence of a boundary periodic
solution.

Example 17. Let us assume that 𝑟10(𝑡) = 0.15 + 0.05cos(𝑡/12),𝑟20(𝑡) = 0.2 + 0.05cos(𝑡/12), 𝛽(𝑡) = 0.0015 + 0.0005cos(𝑡/12);
then we can calculate that

𝜆0𝜃 = −0.2388 < 0,
𝜆𝑆𝜃 = 3.011 > 0. (49)

It follows from Theorem 12 that there exists a boundary
periodic solution of disease extinction (𝑆0𝜃(𝑡), 0) of model (7),
which is consistent with the simulation results as shown in
Figure 4.

Now, we are in a position to see the fit of model (7) for a
real-world situation (the case of measles).

Example 18. Measles is a highly contagious airborne infec-
tious disease caused by themeasles virus, which spreads easily
through coughing and sneezing of infected people. Major
epidemics occur approximately every 2-3 years, causing an
estimated 2.6 million deaths each year [31]. Recent research
has showed that the incidence of measles is related to air
pollution in China [1, 3, 35] and has provided cumulative
evidence of the adverse health effects of particulate air
pollution and dust. Thus, using measles as an example, we
have the requisite information to fit a real-world situation
such as the outbreak of measles by using model (7). The
data source for the cases of measles was from the Chinese
center for disease control and prevention (CCDCP) [36].The
parameters of the simulation are listed in Table 2.

It can be seen from Figure 5 that our simulation, based
on model (7), is a good fit compared to the data on the
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Figure 2: (a), (c)The sample trajectory of 𝑆(𝑡) and 𝐼(𝑡) of model (7) (blue lines) and their corresponding deterministic periodic solution (red
lines), respectively. (b), (d) the probability density functions (PDFs) of 𝑆(𝑡) and 𝐼(𝑡) of model (7) in different periods, respectively. The initial
value is (1, 11) and the parameter values are used as in Example 16.

Table 2: The values of the parameters in model (46).

Parameters Mean value Source
𝛾 0.01295 [30]𝛽 0.00495 Estimated𝜉 0.0067 [30]𝜎 0.05 [30]𝐾 1.378 × 109 [30]
V 0.00175 [31]𝑟𝑖0, 𝑖 = 1, 2 0.0015 Estimated𝐶∗0 1.05 [1]

observed cases of measles in the period from Jan 2014 to Dec
2016. However, the results of fitting the model in the period

from Jan 2017 to Dec 2017 are not good; this may be due
to the following reasons: (1) by 2016, the government and
prevention departments push to improve vaccine coverage
may have resulted in the drop in the cases of measles
[31]; (2) the Chinese government paid more attention to
control the pollution in the environment and enforced strict
emission standards, which reduced the negative effect on
the population health [35]. Moreover, one interesting finding
is that the decrease of susceptible 𝑆(𝑡) is beneficial to the
decreasing trend of infected cases 𝐼(𝑡); that is, if we can
reduce the number of the susceptible subpopulation, the
cases of measles will show a decreasing trend in the future
(see Figure 5, blue lines). Thus, strengthening the cover-
age of measles vaccination and the environmental quality
improvement are advantageous in controlling the outbreak of
infectious diseases (e.g., measles).
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Figure 3: (a) The sample trajectory 𝐼(𝑡) of model (7) corresponding to different average pollution level 𝑟𝑖0𝐶∗0 , respectively. (b) the PDFs of𝐼(𝑡) of model (7) in the same period with different average pollution level, respectively.
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Figure 4: The sample trajectory of the boundary periodic solution (𝑆0𝜃(𝑡), 0) of model (7), with initial values (75, 10).

4. Conclusion

Generally, humans are exposed to some kinds of infectious
diseases because the diseases propagate through a polluted
environment. Examples include measles spreading through
air pollution, snail fever spreading through water pollution,

and diarrhea spreading through food pollution. Understand-
ing the transmission of an infectious disease is crucial to
predict and prevent major outbreaks of an epidemic [17].
Thus, one of the fundamental questions for the dynamical
models of infectious diseases is to find the conditions that
identify whether an infectious disease will exhibit a periodic
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Figure 5: Observed (red double cross pattern) of cases of measles𝐼(𝑡) during Jan 2013 toDec 2016 andmodel fitted and predicted cases
of measles (blue line) from Jan 2013 to Dec 2019. The inner panel is
the sample path of 𝑆(𝑡).

outbreak or not and determine the risk factors of pollution
exposure for such an outbreak in the population. In this
paper, we considered a stochastic SI epidemic model in a
polluted environment and incorporated the effect of environ-
mental fluctuations as well as pollution. First, we discussed
the existence of the global positive solution to the model.
The main result of this paper was to obtain the sufficient
conditions of the nontrivial stochastic periodic solution (see
Figure 2) and the boundary periodic solution of disease
extinction (see Figure 4).

Compared to existing research, the main breakthrough
of this paper is that we incorporated both environmental
white noise as well as pollution into an SI epidemic model,
which described two kinds of common phenomena in the
transmission process of infectious diseases and explored the
effects of environmental fluctuations (noise and pollution) on
the dynamical behaviors of an epidemic. The numerical sim-
ulations based on the cases of measles showed the following:

(i) The environmental noise 𝜎 on 𝛽 may play an impor-
tant role in determining the epidemic pattern: (1)
it follows from Theorems 8 and 12 that the large
intensity of noise 𝜎may adversely affect the existence
of the stochastic periodic of model (7) and accelerate
the extinction of infectious disease. Thus, the large
intensity noise may help the control of periodic out-
break of infectious disease; (2) according to Figure 2,
we can see that environmental fluctuations may be
responsible for the variations in the seasonal outbreak
pattern of a disease in a polluted environment.

(ii) The pollution level (𝑟𝑖0𝐶∗0 ) plays an important role
in susceptible populations, in that it may reduce the
number of susceptible population due to the effect
of pollution; that is, the pollution causes serious
harm to the susceptible population. Therefore, the
pollution level may have adverse health effects on

the susceptible exposed population, which is also
be supported by the measles data (see Figure 5;
the decreasing susceptible 𝑆(𝑡) may be responsible
for the decreasing tendency of 𝐼(𝑡).) Moreover, by
comparing the peak level of infective population with
different average pollution levels 𝑟𝑖0𝐶∗0 (see Figure 2),
we can see that the peak level of infective population
increases with the levels of pollution.

(iii) From an epidemiological viewpoint, our results may
provide some theoretical evidence for controlling
the infectious disease. For example, in the cases of
measles, the strengthening coverage of the measles
vaccination and environmental quality improvement
are still effective prevention measures in a polluted
environment. That is to say, the lesser the population
falling within the scope of susceptible subpopulation,
the less infected the patients. Therefore, the demo-
graphic characteristics of susceptible population may
affect the periodic outbreaks of infectious disease.
In addition, the pollution control is beneficial to
population health, which is consistent with the envi-
ronmental research results of hemorrhagic fever [37]
and influenza [38].

However, this study also has several limitations:

(i) A key assumption of our model is that the pollu-
tion affects population dynamics with a linear dose-
response function. Since the complicated mechanism
of interaction between the pollution and population is
still unclear, the dose-response parameter estimation
is difficult, since the effect of pollution in vivo is
not measurable for human patients. Thus, our model
can not accurately describe this interaction, and the
numerical simulations donot yet use the polluted data
(such as PM2.5 or PM10) to check the effect of the
pollution.

(ii) The times series of pollution concentration presents
significant variability [39]; however, our model has
not included the variability of pollution.

(iii) Some other issues also need to be considered in
future, for example, the age-structuredmodeling [40],
the impulse pollution input [41, 42], or the population
with partial pollution tolerance [43].

Appendix

Proof of Lemma 2. It follows from the periodicity of 𝑢(𝑡) that
the solution𝐶∗𝑒 (𝑡) of 𝑑𝐶∗𝑒 (𝑡) = [−ℎ𝐶∗𝑒 (𝑡)+𝑢(𝑡)]𝑑𝑡 is a positive𝜃-periodic continuous function, that is,

𝐶∗𝑒 (𝑡) = ∫𝑡+𝜃
𝑡

𝑒ℎ(𝑠−𝑡)𝑢 (𝑠) 𝑑𝑠
𝑒ℎ𝜃 − 1 . (A.1)

Combining with the third equation of model (4) can result in

𝐶𝑒 (𝑡) − 𝐶∗𝑒 (𝑡) = (𝐶𝑒 (0) − 𝐶∗𝑒 (0)) 𝑒−ℎ𝑡, (A.2)

which satisfies 𝑑(𝐶𝑒(𝑡) − 𝐶∗𝑒 (𝑡)) = −ℎ(𝐶𝑒(𝑡) − 𝐶∗𝑒 (𝑡))𝑑𝑡.
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Similarly, we can also get that the solution 𝐶∗0 (𝑡) of𝑑𝐶∗0 (𝑡) = [𝛼𝐶∗𝑒 (𝑡) − (𝑔 + 𝑚)𝐶0(𝑡)]𝑑𝑡 is a positive 𝜃-periodic
continuous function. According to the variation-of-constants
formula, we have

𝐶0 (𝑡) − 𝐶∗0 (𝑡) = 𝑒−(𝑔+𝑚)𝑡 [𝐶0 (0) − 𝐶∗0 (0)

+ 𝛼∫𝑡
0
(𝐶𝑒 (𝑠) − 𝐶∗𝑒 (𝑠)) 𝑒(𝑔+𝑚)𝑠𝑑𝑠] = [𝐶0 (0)

− 𝐶∗0 (0) − 𝛼 (𝐶𝑒 (0) − 𝐶∗𝑒 (0))𝑔 + 𝑚 − ℎ ] 𝑒−(𝑔+𝑚)𝑡

+ 𝛼 (𝐶𝑒 (0) − 𝐶∗𝑒 (0))𝑔 + 𝑚 − ℎ 𝑒−ℎ𝑡,

(A.3)

which satisfies 𝑑(𝐶0(𝑡) − 𝐶∗0 (𝑡)) = [𝛼(𝐶𝑒(𝑡) − 𝐶∗𝑒 (𝑡)) − (𝑔 +𝑚)(𝐶0(𝑡) − 𝐶∗0 (𝑡))]𝑑𝑡. Thus, we can obtain

∫𝑡
0

󵄨󵄨󵄨󵄨𝐶0 (𝑠) − 𝐶∗0 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠
= 1𝑔 + 𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐶0 (0) − 𝐶∗0 (0) − 𝛼 (𝐶𝑒 (0) − 𝐶∗𝑒 (0))𝑔 + 𝑚 − ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ (1 − 𝑒−(𝑔+𝑚)𝑡) + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼 (𝐶𝑒 (0) − 𝐶∗𝑒 (0))𝑔 + 𝑚 − ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (1 − 𝑒−ℎ𝑡)
< +∞.

(A.4)

By virtue of the Barbălat Lemma [44] and (A.4), we obtain
the required assertion.

Proof of Theorem 7. Adding the two equations of model (7)
yields

𝑑 (𝑆 (𝑡) + 𝐼 (𝑡))𝑑𝑡 = 𝛾 (𝑡) 𝑆 (𝑡) (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 (𝑡) )
− 𝑟10 (𝑡) 𝐶∗0 (𝑡) 𝑆 (𝑡) − 𝜉𝑆 (𝑡)
− 𝑟20𝐶∗0 (𝑡) 𝐼 (𝑡) − V (𝑡) 𝐼 (𝑡)

≤ 𝛾𝑢 (𝑆 (𝑡) + 𝐼 (𝑡))
− 𝛾𝑙 (𝑆 (𝑡) + 𝐼 (𝑡))2𝐾𝑢 ,

(A.5)

which implies limsup𝑡→∞(𝑆(𝑡) + 𝐼(𝑡)) = 𝛾𝑢𝐾𝑢/𝛾𝑙. Thus, the
set

Λ = {(𝑆, 𝐼) ∈ R
2
+, 𝑆 + 𝐼 ≤ 𝛾𝑢𝐾𝑢

𝛾𝑙 } (A.6)

is a positively invariant set of system (7).
Due to the coefficients of model (7) are local Lipschitz

continuous. According to Theorem 3.15 in Mao [32], for
any given initial value (5), there is a unique local saturated
solution (𝑆(𝑡), 𝐼(𝑡)) on 𝑡 ∈ [0, 𝜏𝑒) where 𝜏𝑒 is the explosion

time. To show this solution is global, we only need to show
that 𝜏𝑒 = ∞ a.s. Since the initial value is positive and
bounded, throughout this paper, let 𝑚0 be sufficiently large
such that both 𝑆(0) and 𝐼(0) lie in the interval [𝑚−10 , 𝑚0]. For
each integer𝑚 ≥ 𝑚0, define the stopping time

𝜏𝑚 = inf {𝑡 ∈ [0, 𝜏𝑒) : 𝑆 (𝑡) ∉ ( 1𝑚,𝑚) or 𝐼 (𝑡)
∉ ( 1𝑚,𝑚)} ,

(A.7)

and for the empty set define inf Ø = ∞. Then, 𝜏𝑚 is an
increasing function in terms of𝑚 and 𝜏∞ = lim𝑚→∞𝜏𝑚 ≤ 𝜏𝑒
a.s. If we can show that 𝜏∞ = ∞ a.s. then 𝜏𝑒 = ∞ a.s. and
therefore (𝑆(𝑡), 𝐼(𝑡)) ∈ R2+ a.s. for all 𝑡 ≥ 0. That is to say, to
complete the proof all we need to show is that 𝜏∞ = ∞ a.s. If
this statement is false, then for any constant 𝑇 > 0 there is an𝜖 ∈ (0, 1) such thatP{𝜏∞ ≤ 𝑇} > 𝜖. Hence, there is an integer𝑚1 ≥ 𝑚0 such that

P {𝜏𝑚 ≤ 𝑇} ≥ 𝜖, ∀𝑚 ≥ 𝑚1. (A.8)

Define the 𝐶2 functional 𝑈 : R2+ → R+:

𝑈 (𝑆, 𝐼) = − ln(𝛾𝑙𝑆 (𝑡)𝛾𝑢𝐾𝑢 ) + 𝐼 (𝑡) . (A.9)

By use of Itô’s formula, we have

𝑑𝑈 (𝑆 (𝑡) , 𝐼 (𝑡)) = {−𝛾 (𝑡) + 𝛾 (𝑡)𝐾 (𝑡) (𝑆 + 𝐼) + 𝛽 (𝑡) 𝐼
+ [𝑟10 (𝑡) 𝐶∗0 (𝑡) + 𝜉 (𝑡)] + 𝛽 (𝑡) 𝑆𝐼
− [𝑟20 (𝑡) 𝐶∗0 (𝑡) + V (𝑡)] 𝐼 + 12𝜎2 (𝑡) 𝐼2}𝑑𝑡
+ 𝜎 (𝑡) 𝐼 (1 + 𝑆) 𝑑𝐵 (𝑡) ≤ [𝛾𝑢𝐾𝑙 (𝑆 + 𝐼) + 𝛽𝑢𝐼
+ (𝑟10𝐶∗0 + 𝜉)𝑢 + 𝛽𝑢𝑆𝐼 + 12 (𝜎𝑢)2 𝐼2] 𝑑𝑡
+ 𝜎𝑢𝐼 (1 + 𝑆) 𝑑𝐵 (𝑡) ≤ [𝛾𝑢𝐾𝑢𝐾𝑙
+ (𝑟10𝐶∗0 + 𝜉)𝑢 + 𝛽𝑢 𝛾𝑢𝐾𝑢𝛾𝑙
+ [𝛽𝑢 + 12 (𝜎𝑢)2] (𝛾

𝑢𝐾𝑢
𝛾𝑙 )2]𝑑𝑡 + 𝜎𝑢𝐼 (1

+ 𝑆) 𝑑𝐵 (𝑡) = 𝐻1𝑑𝑡 + 𝜎𝑢𝐼 (1 + 𝑆) 𝑑𝐵 (𝑡) ,

(A.10)

where

𝐻1 = 𝛾𝑢𝐾𝑢
𝐾𝑙 + (𝑟10𝐶∗0 + 𝜉)𝑢 + 𝛽𝑢 𝛾𝑢𝐾𝑢𝛾𝑙
+ [𝛽𝑢 + 12 (𝜎𝑢)2] (𝛾

𝑢𝐾𝑢
𝛾𝑙 )2 < +∞.

(A.11)



14 Computational and Mathematical Methods in Medicine

Integrating both sides of (A.10) from 0 to 𝜏𝑚 ∧ 𝑡 = min{𝜏𝑚, 𝑡},
and then taking expectations, yields

E𝑈 (𝑆 (𝜏𝑚 ∧ 𝑡) , 𝐼 (𝜏𝑚 ∧ 𝑡))
≤ 𝑈 (𝑆 (0) , 𝐼 (0)) + 𝐻1𝐸 (𝜏𝑚 ∧ 𝑡) . (A.12)

SetΩ𝑚 = {𝜏𝑚 ≤ 𝑇} and it follows from (A.8) thatP{Ω𝑚} ≥ 𝜖.
Note that, for every 𝑤 ∈ {𝜏𝑚 ≤ 𝑇}, there exists one of𝑆(𝜏𝑚, 𝑤) and 𝐼(𝜏𝑚, 𝑤) equals either 𝑚 or 1/𝑚, and hence𝑈(𝑆(𝜏𝑚, 𝑤), 𝐼(𝜏𝑚, 𝑤)) is no less than
𝐶 = min{− ln( 𝛾𝑙𝑚𝛾𝑢𝐾𝑢) + 𝑚, − ln( 𝛾𝑙𝑚𝛾𝑢𝐾𝑢) + 1𝑚,

− ln( 𝛾𝑙𝛾𝑢𝐾𝑢𝑚) + 𝑚, − ln( 𝛾𝑙𝛾𝑢𝐾𝑢𝑚) + 1𝑚} .
(A.13)

Consequently, it follows from (A.12) that

P (𝜏𝑚 ≤ 𝑇)𝐶
≤ E [1𝜏𝑚≤𝑇 (𝑤)𝑈 (𝑆 (𝜏𝑚, 𝑤) , 𝐼 (𝜏𝑚, 𝑤))]
≤ 𝑈 (𝑆 (0) , 𝐼 (0)) + 𝐻1𝑇,

(A.14)

where 1{𝜏𝑚≤𝑇} is the indicator function of {𝜏𝑚 ≤ 𝑇}. Letting𝑚 → ∞ gives lim𝑚→∞P(𝜏𝑚 ≤ 𝑇) = 0, which contradicts
with (A.8). So, 𝜏𝑒 = ∞. Further, notice 𝑇 > 0 is arbitrary.
It then follows that P(𝜏𝑒 = ∞) = 1. This completes the
proof.
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