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Abstract

There is emerging evidence that the immune biology associated with
lung and other solid tumors, as well as patient immune genetic traits,
contributes to individual survival. At this time, dramatic advances
in immunologic approaches to the study and management of
human cancers are taking place, including lung and head and neck
squamous cell carcinoma. However, major obstacles for therapies
are the profound immune alterations in blood and in the tumor
microenvironment that arise in tandemwith the cancer. Although there
is a significant current effort underway across the cancer research
community toprobe the tumorenvironment touncover thedynamicsof
the immune response, little similarwork is beingdone tounderstand the
dynamics of immune alterations in peripheral blood, despite evidence
showing the prognostic relevance of the neutrophil/lymphocyte
ratio for these cancers. A prominent feature of cancer-associated

inflammation is the generation of myeloid-derived suppressor cells,
which arise centrally in bone marrow myelopoiesis and peripherally
in response to tumor factors. Two classes of myeloid-derived
suppressor cells are recognized: granulocytic andmonocytic. To date,
such immune factors have not been integrated into molecular
classification or prognostication. Here, we advocate for a more
complete characterization of patient immune profiles, using DNA
from archival peripheral blood after application of methylation
profiling (immunomethylomics). At the heart of this technology
are cell libraries of differentially methylated regions that provide the
“fingerprints”of immune cell subtypes.Going forward, opportunities
exist to explore aberrant immune profiles in the context of
cancer-associated inflammation, potentially adding significantly to
prognostic and mechanistic information for solid tumors.
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It has long been known that DNA
methylation patterns are completely erased
and reprogramed in preimplantation
embryos, enabling the developmental
differentiation processes associated with
the genesis of somatic lineages (1). In
general, genomic methylation patterns in
somatic differentiated cells are stable and
heritable (1) and include such generally
irreversible states as those associated with
genomic imprinting and X-inactivation.
Our early data (2) are consistent with those
of numerous other labs showing that
patterns of methylation in promoters,
enhancers, and gene bodies strongly

correlate with expression (3) and define
essentially invariant, stable differentially
methylated regions (DMRs) that can be
used to predict lineage (4, 5). These DNA
methylation changes act to form barriers to
ensure that cell-type specification, within
the context of the normal development of
an organism, is a one-way street. We note
that there is some evidence of somatic cell
plasticity, but this has been observed under
unusual circumstances (e.g., in cancers or
in inducing pluripotent cells) (6–8). The
Epigenome Roadmap Consortia recently
confirmed this, noting that DMRs define
lineage (in the developmental context) and

that the environment has little (if any)
influence on this process (9). Of course, the
“environment” does influence cellular
lineage, but it does so with some specificity,
in the sense that it modifies the major
differentiation pathways so as to hone
the genome to best respond to the
anticipated challenges for the individual.
Finally, DNA methylation has been explored
extensively in hematopoietic lineage
differentiation. In the case of T-cell
differentiation, stable and heritable changes in
DNA methylation, impervious to minimally
responsive environmental perturbations,
define the major lineage (10), although it
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must be noted that the environment can alter
the relative size and nature of the differing
cell lineages and the pool of cells in each
lineage. Regulatory T cells, as one example of
a lineage, have been exhaustively shown to
have stable and invariant methylation marks
that define their phenotype (11, 12). As a
consequence, methylation marks with lineage
specificity have a potentially profound utility
as biomarkers, signaling programmed cellular
responses to regulatory stimuli that are
distinct from environmental influences upon
methylation. Thus, it is now clear that DMRs are
specific, genetically determined, developmentally
programmed, invariant marks of lineage. Hence,
we have applied these methylation biomarkers
to probe the immune response status of
patients with nonhematopoietic cancer, seeking
to enhance our understanding of the normal
immune response and devise predictors of
disease outcome.

DNA Methylation Data Can Be
Used to Define the Immune
Profile in Peripheral Blood

Epigenetic modifications, specifically DNA
methylation, dictate programmed lineage
differentiation within the immune system
(13–16). Remodeling the epigenome during
development leads to progressively restricted
immune subtypes, and DNA methylation
provides a chemically stable mark for these
cell fate decisions that are immutable and
unchanged by lifestyle or exposures (17).
This fact, in conjunction with our empirical
observations of isolated leukocyte DNA
methylation array data, led our group to
hypothesize that all lineage-specific
immune cells in the peripheral blood
could be distinguished by a signature or
“fingerprint” of DMRs. In 2012, with our
group, Dr. Houseman developed the first
statistical algorithm for estimating leukocytes
solely by reference to DNA methylation data
(18). We have since performed several more
extensive validation experiments and
continue to evolve ever more sophisticated
and accurate bioinformatic methods for
immunomethylomics; that is, immune cell
typing using methylation (19–22). Using pure
cell type reference DNA methylation data
(cell type libraries), we deconvolute
separate target DNA methylation data sets
into constituent cell-type proportions. At
this time, there are DMR libraries based on
the Illumina 450K methylation platform
(Illumina) for normal leukocyte subtypes,

including CD4, CD8 T-cells, B cells,
natural killer cells, dendritic cells,
monocytes, neutrophils, basophils,
eosinophils (23), activated natural killer
cells (24), and cord blood (25).

Host Immunity Has a
Significant Effect on
Cancer Survival

Although the classification of tumors has
improved our understanding of lung cancer
prognosis, immune factors are notably
absent in existing prognostic models of lung
cancer (26). This omission is significant
both because immune evasion is a
recognized hallmark of cancer (27) and
because of the abundant evidence that
patients with lung and aerodigestive cancer
suffer systemic immune defects (28–46), a
portion of which are now known to
respond to immunotherapy (47, 48).
Blood lymphocyte counts (particularly
CD4 T-cells) and T-cell function are
altered in patients with cancer, with T-
regulatory cells having been of significant
interest to date in the literature (30,
38, 40, 42, 45, 46). Several studies have
reported that the increased frequency of
T-regulatory CD41 lymphocytes in the
peripheral circulation correlates with
prognosis (49–51). In addition to the
inhibitory signaling alterations mediated
by T-regulatory cells that are associated
with cancers, it is also clear that natural
killer cells play an important role in
aerodigestive cancers (32, 38, 52). In
addition to mediating direct cytotoxicity,
they participate in the regulation of the
antitumorous adaptive immune response,
as they produce cytokines such as
interferon-g, tumor necrosis factor-a,
interleukin-10, several chemokines, and
growth factors. Thus, natural killer cells
exert an influence on macrophages,
neutrophils, and dendritic cells during the
immune response (53). We demonstrated
depressed natural killer cell numbers in
patients with head and neck squamous cell
carcinoma, consistent with their importance
in the immune response to head and neck
squamous cell carcinoma (54). In addition,
the solid tumor microenvironment is highly
immunosuppressive (30, 33, 37, 40, 44,
52, 53) through secretion of soluble factors,
most notably transforming growth factor-b,
interleukin-4, interleukin-10, interleukin-13,
and other mechanisms. At the same time,

polymorphonuclear granulocytes have been
shown to play an important role in the
immune and inflammatory responses in
head and neck squamous cell carcinoma and
lung cancers (28, 29, 41–43, 52, 53).

Neutrophil–Lymphocyte Ratio
as a Prognostic Biomarker

Shifts in the distribution of blood leukocytes
are important predictors of cancer patient
survival. The neutrophil–lymphocyte ratio
(NLR) in whole blood has received a great
deal of attention as a marker of cancer
inflammation (55). The NLR can be derived
using the common five-part white blood
cell differential (neutrophil, basophil,
eosinophil, monocytes, and lymphocytes)
from automated cell analyzers. Because the
NLR reflects the relative balance of the
myeloid and lymphocytic lineages in
peripheral blood, it is sensitive to the
altered myelopoiesis arising in chronic
inflammation and cancer. Extensive studies
show that the NLR is a remarkably
consistent prognostic factor for survival in
malignant and cardiovascular disease
(56–61). An NLR ,3 is widely considered a
favorable predictor for solid tumors as well as
related disease mortalities, and an NLR .5
has often been used as the threshold that
predicts poor outcome (62). A recent
meta-analysis of solid tumor prognosis
including 100 studies and 40,559 subjects
showed that a higher NLR was
significantly associated with reduced
overall survival, reduced cancer-specific
survival, and reduced progression-free
and disease-free survival (55).

There are now numerous studies that
all show shorter survival times in patients
with lung cancer with an elevated NLR,
and a recent meta-analysis confirms the data
are consistent (63). Although the thresholds
for defining an elevated NLR were
somewhat different in these studies, an
NLR .5 was associated with poor
prognosis independent of known risk
factors (e.g., age, stage). We have devised an
algorithm using DNA methylation to
estimate (64) NLR from 27K and 450K
methylation data, and our approach is
easily adaptable to the new 850K array
platform. In published studies, we found
that this DNA methylation-derived NLR at
values .5 was independently associated
with significantly shorter survival time in
studies of multiple solid tumors (65).
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Because the conventional NLR is based
on simple normal cell morphology, the
presumed pathologic cell types within
the blood cannot be phenotypically (or
otherwise) distinguished in blood smears or
automated differential counters. Similarly,
the current epigenetic methylation-derived
NLR measure is based on the methylomes
of normal mature leukocyte populations.
We have also created an algorithm that
estimates the common clinical NLR
parameter using only DMR information
from normal leukocyte libraries. Because
cancer inflammation leads to aberrant
myeloid populations in the blood and
associated shifts toward higher values
of the NLR, immune biomarkers specific
to these pathologic cell types (driving
immunosuppression) will provide the
greatest power to evaluate the role of cancer
inflammation in lung cancer survival.
Importantly, new preliminary data are
poised to answer the obvious question about
the predictive power of the NLR. Using
either complete blood cell counts or blood
methylation data, emerging data suggest the
NLR can also prospectively predict solid
tumor risk (65). Confirmation of these
results awaits further studies.

Mechanistic Considerations

As a result of the overwhelming
concordance of this body of literature, there
is now an urgent need to investigate the
molecular drivers of this phenotype.
Researchers long ago observed that tumors
affect the host’s hematopoietic progenitor
cells, resulting in expansion of myeloid
lineage populations and a decrease in
circulating lymphoid cells (66). Chronic
inflammation, infection, and aging lead to
the same reciprocal dynamic between
myeloid and lymphoid lineages (67, 68).
Today, cancer-associated shifts in
myelopoiesis are actively studied, fueled by
the realization that inflammation-induced
myeloid cells suppress host immune cells
(69–71). These myeloid-derived suppressor
cells (MDSCs) (72) suppress antigen-
specific CD81 T-cell activity via production

of reactive oxygen species and nitric
oxide (73, 74), and increase L-arginine
metabolism via arginase secretion (75),
leading to arginine depletion. These effects
lead to downregulation of crucial T-cell
receptor components (76), as well as
natural killer cell–suppression and cytokine
secretion (77). MDSCs also downregulate
the NKG2D gene (an activation receptor
on natural killer cells), rendering them
ineffective in attacking malignant cells (78).
Importantly, MDSCs contribute to
maternofetal tolerance, modulating immune
response via a presence in cord blood (79).
Although much research has focused on the
effects cancer cells have on bone marrow
MDSC precursors, compelling evidence
exists that circulating MDSCs may arise
from cancer-associated normal blood
monocytes and bone marrow precursors,
likely via tumor-derived soluble factors
such as lactate dehydrogenase and
prostaglandin E2 (80, 81). As the myeloid
cascade is induced by the presence of a
cancer, there exists an opportunity to
capture these cells in the peripheral blood;
this is a particularly attractive opportunity
to use immunomethylomic methods (see
Figure 1). The role of MDSCs in lung
cancer has been studied, with recent work
highlighting the potentially crucial role
they might play in personalized medicine
(82–85).

Challenges and Opportunities

Immunomethylomic approaches have
demonstrated a completely novel approach to
the interrogation of the peripheral blood
immune profile. This can be accomplished
using archived DNA from blood and does not
require flow cytometry. As a consequence,
new opportunities have arisen for
application of epidemiologic techniques to
study of the immune response. At this time,
there are few quantitative data enumerating
the immune subtype response to
environmental insult; these new tools offer
promise for in-depth studies of the effects
of the environment on the immune
response. There are opportunities for
assessing the immune profile prospectively,
as well as the immune correlates of
treatment. Application of this tool will
require building additional immune
subtype libraries and devising rich
quantitative approaches to detection of
more rare cell subtypes. Using the tools
derived from the stable, developmental
methylome, a rich new array of
biomarkers and mechanistically based
epidemiologic assessments of the immune
response is likely to be discovered moving
ahead. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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