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Abstract

Jitter-type spike resampling methods are routinely applied in neurophysiology for detecting 

temporal structure in spike trains (point processes). Several variations have been proposed. The 

concern has been raised, based on numerical experiments involving Poisson spike processes, that 

such procedures can be conservative. We study the issue and find it can be resolved by 

reemphasizing the distinction between spike-centered (basic) jitter and interval jitter. Focusing on 

spiking processes with no temporal structure, interval jitter generates an exact hypothesis test, 

guaranteeing valid conclusions. In contrast, such a guarantee is not available for spike-centered 

jitter. We construct explicit examples in which spike-centered jitter hallucinates temporal structure, 

in the sense of exaggerated false-positive rates. Finally, we illustrate numerically that Poisson 

approximations to jitter computations, while computationally efficient, can also result in 

inaccurate hypothesis tests. We highlight the value of classical statistical frameworks for guiding 

the design and interpretation of spike resampling methods.

1 Introduction

Jitter procedures have been developed to detect and quantify the presence of fine temporal 

structure in point processes (see Amarasingham, Harrison, Hatsopoulos, & Geman, 2012, 

for an overview) and have been applied extensively to analyze spike trains (see 

Amarasingham, Geman, & Harrison, 2015, for broader motivation). Loosely, the idea is to 

locally “jitter” the locations of observed spikes to generate surrogate data sets and then to 

ask whether the original spike train data set can be distinguished from the jitter surrogates. 

The amount of jitter specifies a hypothesized timescale of temporal structure. There are 

many variations in theme and terminology—for example: basic jitter in Amarasingham et al. 

(2012), dithering in Gerstein (2004), Grün (2009), and Louis, Gerstein, Grün, and Diesmann 

(2010); teetering in Shmiel et al. (2006); the convolution method in Stark and Abeles (2009); 

interval jitter in Amarasingham et al. (2012) and Date, Bienenstock, and Geman (1998); 
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pattern jitter in Harrison and Geman (2009) and Amarasingham et al. (2012); and tilted jitter 

in Amarasingham et al. (2012).

This basic idea is intuitively compelling in neurophysiology. The point of this letter is to 

emphasize that subtleties arise in translating this intuition into data-analytic procedures. We 

provide several constructive examples, based on the classical theory of statistical hypothesis 

testing, to make this point. The examples are deliberately simple, involving either single or 

paired spike trains, but the issues they raise are amplified in large-scale settings and confirm 

previous cautions about heuristic methods (Amarasingham et al., 2012).

In the first example, we discuss a concern raised by a numerical experiment of Stark and 

Abeles (2009). In essence, the concern is that a jitter procedure applied to analyze synchrony 

in a pair of independent, homogeneous Poisson processes is conservative (“biased,” in the 

terminology of Stark & Abeles, 2009). We review the distinction between spike-centered 

(basic) jitter procedures and interval jitter procedures (Amarasingham et al., 2012). In spike-

centered jitter, jitter surrogates are formed by jittering spikes within an interval centered at 

their location in the original spike train; in interval jitter, surrogates are formed by jittering 

spikes in intervals that are chosen independently of the original spike train (see Figure 1). 

Interval jitter is derived from an exact test of a null hypothesis that contains homogeneous 

Poisson processes (Amarasingham et al., 2012), whereas spike-centered jitter is not. We 

conclude that this accounts for the concern that motivates Stark and Abeles (2009).

A source of intuition is the following. Intuitively, resampling can be understood here as a 

way of removing structure from the data. Differences between the resamples and the 

observed trains thus provide statistical evidence for structure. However, the original spike 

trains can be exactly reconstructed from a sufficiently large ensemble of spike-centered jitter 

surrogates. The same does not hold for interval jitter surrogates. This observation makes 

clear that spike-centered jitter does not actually remove temporal structure and provides one 

informal way to distinguish the two procedures.

Motivated in part by the above observations, we then seek more extreme examples of the 

discrepancy between spike-centered and interval jitter. We focus on examples of spike 

processes that unambiguously contain no temporal structure. In such a setting, interval jitter 

procedures are guaranteed to function properly, regardless of the choice of test statistic. In 

contrast, we construct test statistics and unstructured spike processes for which spike-

centered jitter generates more exaggerated examples of conservatism. More striking, we 

construct examples in which spike-centered jitter even hallucinates temporal structure in the 

sense of exaggerated false-positive rates. The effect of the hallucination can be arbitrarily 

large.

As a third class of example, we show that the natural, and computationally compelling, idea 

of approximating a jitter technique with a Poisson approximation (Abeles & Gat, 2001) can 

also have practical consequences. The latter is shown with a demonstration of conservative 

as well as invalid procedures in a numerical example involving an analytical version of an 

interval jitter experiment.
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2 Spike-Centered Jitter Can Be Conservative with Structureless Spike 

Processes

The problem that Stark and Abeles (2009) examined can be summarized by describing a 

numerical experiment as follows. Generate two independent, homogeneous Poisson spike 

trains with identical rates λ. We represent a spike train as a list of spike times. For example, 

denote t1 = (t1,1, t1,2, … , t1,N1) as the first spike train, and denote t2 = (t2,1, t2,2, … , t2,N2) as 

the second spike train (ti, j is the jth spike time in spike train i, and Ni is the number of spikes 

in the spike train i). (A glossary of mathematical terms is provided at the end of the letter.) 

Then the Monte Carlo–resampled train ti
k  is generated from the assignment 

ti, j
k = ti, j + ϵi, j, k, where ϵi, j,k is a random variable uniformly distributed on the interval 

[−Δ/2, Δ/2], and all ϵi, j,k terms are drawn independently. (Alternatively, when spike times 

are discretized, ϵi, j, k is distributed uniformly on {−Δ/2, −Δ + 1, … , Δ/2}.) Following 

Amarasingham et al. (2012), we will refer to this resampling technique as spike-centered, or 

basic, jitter (“dithering” in Grün, 2009; “teetering” in Shmiel et al., 2006; “artificial jitter” in 

Rokem et al., 2006; “jittering” in Stark & Abeles, 2009). The intuition, which turns out to be 

incorrect, is that the resamples and the original data should be indistinguishable because a 

homogeneous Poisson spike train has no temporal structure. To quantify indistinguishability, 

choose a statistic f (s1, s2) that converts a spike train pair (s1, s2) into a number and compute 

S0 = f (t1, t2), and Sk = f (t1
k , t2

k ) for k ∈ {1, 2, … , K}. For shorthand, we use X = (t1, t2) 

and R = (t1
1 , t2

1 , …, t1
K , t2

K ), so that X represents the data and R the Monte Carlo 

resamples. Then compute

p X, R =
1 + ∑i = 1

K 𝟙 Si ≥ S0
K + 1 , (2.1)

where 𝟙 represents the indicator function, so that 𝟙 {Si ≥ S0} takes the value 1 if Si ≥ S0 and 

0 otherwise.

Thus, p(X, R) measures, in some sense, how unusual the original data are with respect to the 

surrogate spike trains, in terms of the statistic f(s1, s2). Can p(X, R) be interpreted as a p-

value for a statistical hypothesis of “no temporal structure”?

For example, taking f (t1, t2) to be synchrony, with synchrony width δ,

f t1, t2 ≔ ∑
i = 1

N1
∑
j = 1

N2
𝟙 t1, i − t2, j < δ , (2.2)

and implementing the experiment numerically, we find that the empirical distribution of p(X, 

R) does not look uniform (see Figure 2A). This is, in essence, the motivating observation of 

Stark and Abeles (2009). A standard property of exact p-values that are absolutely 
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continuous is that they are uniformly distributed. Thus, the discreteness of the test statistic 

S0 = f (s1, s2) could be the underlying source of the nonuniformity. However, the same 

phenomenon occurs when we impose absolute continuity by further randomizing the number 

Sk. That is, let Sk′ = Sk + δk, where δ0, δ1, … , δK are independently drawn and uniformly 

distributed on [−1/2, 1/2], and define

pc X, R =
1 + ∑i = 1

K 𝟙 Si′ ≥ S0′
K + 1 . (2.3)

pc (X, R) is absolutely continuous. Nevertheless, it is evidently nonuniform (see Figure 2C). 

Therefore pc (X, R) cannot be a p-value for any null hypothesis (H0) that includes 

independent Poisson spike trains.

One way to get a proper hypothesis test is to use interval jitter in place of basic jitter (see 

Amarasingham et al., 2012, for a complete treatment). To summarize, the interval jitter null 

hypothesis associated with parameter Δ is as follows (Date et al., 1998; Amarasingham et 

al., 2012). Partition the time interval into disjoint subintervals of length Δ. Let the sequence 

CΔ(t1, t2) represent the counts in the subintervals. (We conceptualize CΔ(t1, t2) as a Δ-

coarsening of spike trains t1 and t2.) The null hypothesis is that the conditional distribution 

of t1 and t2, conditioned on CΔ(t1, t2), is uniform (see section A.1 and Amarasingham et al., 

2012, for a detailed review of the concept of conditional uniformity).

To generate surrogates, instead of the assignment ti, j
k = ti, j

k + ϵi, j, k above, use

ti, j
k = Δ ti, j/ Δ + ϵi, j, k′ , (2.4)

where ⌊x⌋ denotes the floor of x (round down) and ϵi, j, k′  are uniformly distributed on [0, Δ] 

and drawn independently. With these surrogates, p(X, R) and pc(X, R) are (both) now proper 

p-values for the interval jitter null hypothesis. (The reasoning is reviewed in section A.2; see 

Amarasingham et al., 2012, for explicit statements and demonstrations.) To illustrate one 

implication of this, we repeat the same numerical experiment with interval jitter: pc(X, R) 

indeed appears uniformly distributed (see Figure 2D). This is a corollary of the theory, as 

independent homogeneous Poisson spike trains are in the null hypothesis for interval jitter, 

for any Δ (Amarasingham et al., 2012). Independent homogeneous Poisson spike trains are 

indeed conditionally uniform, conditioned on CΔ(t1, t2), for any Δ. Another implication is 

that the interval jitter procedure has greater sensitivity toward detecting “nonaccidental” 

synchronous events, when they are present (see section A.3 in the appendix).

This provides a theoretical account of the observation motivating Stark and Abeles (2009).
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3 Spike-Centered Jitter Can Make Mistakes with Structureless Spike 

Processes

The key general requirement of a p-value is not uniformity; rather the typical implication of 

hypothesis testing is that, under a null hypothesis H0, the p-value is subuniform (Casella & 

Berger, 2001), meaning that

Pr p ≤ α ≤ α, for all α > 0 . (3.1)

In some sense, subuniformity of p-values is a necessary and sufficient condition for 

hypothesis testing of H0. (A technical explanation of this equivalence is provided in section 

A.4 in the appendix.) In contrast, uniformity is a stronger requirement that, under H0, a p-

value p̂ satisfies Pr(p̂ ≤ α) = α for all α. The difference is that the hypothesis tests associated 

with subuniform p-values are valid but conservative, whereas the tests associated with 

uniform p-values are valid and nonconservative. For these reasons, our opinion is that 

conservatism, while certainly sensible to avoid when possible, is a lesser concern and not 

particularly dangerous, if it is properly interpreted (see section 5). As a familiar example of 

conservatism, any discrete-level α test is conservative for most values of α.

On the other hand, misconstruing a statistic as a p-value in such a way that, under the null 

hypothesis of no temporal structure, rejection of the null occurs more often than one expects 

by chance, will lead to substantially misleading conclusions (i.e., an excess of false 

positives). This is exactly what happens when random variables that are not subuniform are 

treated as p-values. That is, we are concerned about the situation in which we treat p(X, R) 

as a p-value despite the fact of examples, which clearly belong in H0, for which Pr(p(X, R) ≤ 

α) = κα, with κ > 1. The higher the value of κ, the greater the concern; thus, the ratio κ(α) 

= Pr(p(X, R) ≤ α)/α can be viewed as a kind of hallucination factor. (Henceforth, we will 

write κ(α) simply as κ, bearing in mind that κ depends on α.) Such a decision-making 

procedure is invalid as a hypothesis test (Stark & Abeles, 2009, refers to the case κ > 1 as 

permissive).

For example, consider a pair of spike processes such that the spike trains are conditionally 

uniform and independent, conditioned on (N1, N2), for each neuron (see section A.1 for 

definitions of conditional uniformity in specific settings). Regardless of the many subtleties 

involved in constructing a quantitative definition of temporal structure for a point process 

(spike train), it is sufficient here to work with the conditionally uniform example because it 

is a prototypical example of a point process with no temporal structure. Because such a 

process is in the interval jitter null hypothesis (Amarasingham et al., 2012) for any Δ, p-

values from interval jitter are guaranteed to be subuniform and the tests are guaranteed to be 

valid. Furthermore, if the p-value p(X, R) is (absolutely) continuous, then interval jitter p-

values are guaranteed to be uniform.

Interval and basic jitter are intuitively similar procedures. To what degree is it appropriate to 

suppose that properties of interval jitter, such as sub-uniformity with respect to conditionally 

uniform processes, approximately extend to basic jitter? Previously, Amarasingham et al. 
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(2012) emphasized that the basic jitter procedure did not have a clearly defined null 

hypothesis, cautioning against its unaccompanied use. One aspect of this is that the 

mathematical logic that justifies interval jitter does not necessarily apply when basic jitter is 

used to generate surrogates (see section A.2 and Amarasingham, Harrison, Hatsopoulos, & 

Geman, 2011, for more details).

Continuing to focus on conditionally uniform processes, we sought a more refined look at 

this question. We examined the implications of using spike-centered jitter surrogates to 

calculate equation 2.1, and then interpreting the result as a p-value. We find that it is possible 

for the resulting decision procedure to be conservative (κ < 1) or invalid (κ > 1). The latter 

case (κ > 1) conclusively establishes that the spike-centered jitter procedure cannot be 

justified in general; loosely, we refer to this as hallucination of temporal structure. The 

possibility of both κ > 1 and κ < 1 is independent of the discreteness or continuity of the test 

statistics. Moreover, there is no upper bound on κ, even focusing only on small α. The range 

of these possibilities is demonstrated below.

The examples are all of the following common form, involving at most two spike trains, t1 

and t2, in a single trial. Let Ni be the total number of spikes in the trial for neuron i. N1 and 

N2 are deterministic. t1 and t2 are uniformly distributed on the space of all possible 

(consistent) outcomes. All such examples are conditionally uniform by definition, 

conditioned on any Δ-coarsening. Thus, they are in (any) interval jitter null hypothesis. A 

visual representation of the key idea in examples 1 and 4 is provided in Figure 3.

Example 1: A Conservative Spike-Centered Jitter Test (α < 1/2). Consider the example 

of a single spike: suppose N1 = 1 with probability 1. The spike train is specified by t1,1, 

which is uniformly distributed on the interval [0, 1]. Let 0 < Δ < 1. (It does not matter how 

edge effects are handled in this example.) Let the statistic f (t1, t2) = t1,1. Conditioned on 

{Δ/2 <t1,1 < 1 − Δ/2}, the law of large numbers (LLN) implies that p(X, R) → 1/2, as K → 
∞. Thus, for any α < 1/2, we have infK,Δ Pr(p(X, R) ≤ α) = 0, demonstrating conservatism. 

A generalization of this example is implicit in Amarasingham et al. (2011).

Example 2: An Invalid Spike-Centered Jitter Test (1/2 < α < 1). Repeat example 1, 

except now consider α > 1/2. By the same reasoning, supK,Δ Pr(p(X, R) ≤ α) = 1 > α, so the 

test is invalid (κ = α−1 > 1).

Example 3: A Conservative Spike-Centered Jitter Test (α < 1/2). For another (somewhat 

more natural) example, consider N1 = N2 = 1. Let f (t1, t2) = |t1,1 − t2,1|, or consider N1 = 2 

and let f (t1, t2) = |t1,2 − t1,1|. In either case, conditioned on {Δ/2 < ti, j < 1 − Δ/2 ∀i, j, |ti, j − 

ti′, j′ | > Δ/2 ∀(i, j) ≠ (i′, j′)}, p(X, R) → 1/2 as K → ∞ (LLN). Thus, as in example 1, for 

any α < 1/2, we have infK,Δ Pr(p(X, R) ≤ α) = 0, demonstrating conservatism. Note also that 

p(X, R) is (absolutely) continuous in this example as well as example 1, so the exhibited 

conservatism is not a consequence of discreteness.

Example 3a: Synchronization. Sticking to the spike process of example 3, use f (t1, t2) = −|

t1,1 − t2,1| (analogous to a left-tailed test). The conclusion is the same. With respect to 

interval jitter, the statistic implies power toward alternatives that favor spike synchronization, 

though in a different sense from equation 2.2. The example has natural generalizations to 
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physiological settings, including multiple-spike, multiple-trial versions. The qualitative 

conclusion is the same. Similarly, f (t1, t2) = −|t1,1 − t2,1 − j| targets lagged synchronization 

at time lag j. (Think of cross-correlogram analysis.) Note the implications for sensitivity.

Example 4: An Invalid Spike-Centered Jitter Test, α (Arbitrarily) Close to 1/3, κ 
(Arbitrarily) Close to 3/2. A relatively simple example can be constructed with discrete 

(binary) spike trains. For example, consider a 1 ms discretization, with time specified in ms 

units. Suppose again that N1 = 1 with probability one and also that Δ = 2. In this case, t1,1 

takes values in {1, 2, … , T}, where T is the length of a trial in ms (for simplicity, suppose T 
is even). Let f (t1, t2) = (−1)t1,1. It follows that P(S0 = 1) = P(S0 = −1) = 1/2. Conditioned on 

{S0 = 1, 2 < t1,1 < T − 1}, p(X, R) converges to 1/3 as K → ∞. Conditioned on {S0 = −1, 2 

< t1,1 < T − 1}, p(X, R) = 1 (for all K). Thus, supT , KPr(p(X, R) ≤ 1
3 + ϵ) = 1

2 , for sufficiently 

small ϵ > 0, which demonstrates a permissive procedure with α arbitrarily close to 1/3. 

(Moreover, this gives supT , KPr(p(X, R) ≤ 1
3 + ϵ)/(1

3 + ϵ) = 3
2 + O(ϵ), for sufficiently small ϵ > 

0, as well.)

Example 5: An Invalid Spike-Centered Jitter Test, α Arbitrarily Small, κ Arbitarily 
Large. Expanding on example 4, take discretized binary spike trains (e.g., with 1 ms bins), 

and let N1 = m with probability one (m an arbitrary natural number) and Δ = 2. Let 

f (t1, t2) = ∑k = 1
N1 (−1)

t1, k, and let A be the event {|t1,i − t1, j| > 2 ∀i ≠ j, 2 ≤ t1,i ≤ T − 1 ∀1 ≤ 

i ≤ N1}. We note that:

1. Pr(A, S0 = m) → 2−m as T → ∞.

2. Conditioned on {S0 = m, A}, p(X, R) → 3−m as K → ∞ (LLN).

Consequently,

supT , KPr(p(X, R) ≤ 3−m + ϵ) ≥ 2−m,

and

supT , K, mPr(p(X, R) ≤ 3−m + ϵ)/(3−m + ϵ) = ∞,

for all sufficiently small ϵ > 0. Thus, there is no upper bound on κ in the sense that supH0 
κ(α) = ∞ (H0 here is the interval jitter null hypothesis). A related relevant implication is 

that lim supα↓0 supH0 κ(α) = ∞.

Remark 1: Edge Effects. In example 1, edge effects are sidestepped by conditioning on the 

event that t1,1 is not near the edge. This event can be made arbitrarily unlikely by taking Δ 

small (alternatively, make the interval arbitarily long). Thus, edge effects do not underlie the 

phenomena we highlight. The same idea is used in the other examples, as well as the 

analogous idea to preserve a minimum distance between spikes. This is all that is needed 

because here we are only seeking counterexamples (see section 5). Another way to 
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understand the irrelevance of edge effects is to construct the examples directly on the circle, 

generalizing the test statistics as appropriate. Then there are no edge effects by definition, 

but the identical phenomena occur.

Remark 2: Symmetry of the Jitter Distribution. The uniformity of the jitter distribution 

does not play an important role either, as all the effects will persist if the jitter distribution is 

nonuniform yet symmetrical. For example, it is clear in the first three examples that the main 

phenomenon is simply due to the fact that spike-centered jitter is equally likely to move a 

spike forward as backward.

As a final remark, we note that the physiological relevance of the examples is besides the 

point. Rather, the goal is to clarify the concerns with respect to spike-centered jitter 

hypothesis tests using examples in which the relevant probabilities can be easily computed. 

At the least, they demonstrate that some restriction on the class of statistics is a requirement 

to avoiding hallucinations with spike-centered jitter. This is in contrast to interval jitter, 

where p(X, R) is a proper p-value for the null hypothesis (of conditional uniformity), 

regardless of the test statistic. Even these relatively simple examples hint that using more 

physiologically motivated statistics with spike-centered jitter should immediately warrant 

concern, particularly for complex test statistics (Shmiel et al., 2006). However, the examples 

may not be altogether pathological. Example 3a is relevant to synchronization studies. Also, 

the statistic f in examples 4 and 5 essentially quantifies phase locking of spikes or spike 

bursts to an (extremely smoothed, coarsened) oscillating field (Jones, 2016). The latter 

examples can be rescaled to correspond to a synchronization example involving 

physiologically relevant oscillation frequencies as follows. Generate and then coarsen and 

threshold an oscillatory inhomogeneous Poisson train and a homogeneous Poisson train, 

both of them independent. With appropriate choices for relevant parameters (period of 

oscillation, constants of coarsening and thresholding, and firing rates), a stochastic version 

of examples 4 and 5 can be reproduced with realistic firing rates, employing the identical 

statistic f. In effect, synchronization is measured with respect to an oscillating spike train 

rather than an external oscillation. As expected, the result in numerical experiments is an 

excess of small p-values, in the sense of hallucination (results not shown).

Analogous but more complex versions of examples 1 to 5 can also be constructed from 

homogeneous Poisson processes.

4 Poisson Approximations of Interval Jitter Can Produce Nonuniform 

Approximate p-Values

It is natural to use a Poisson approximation to facilitate jitter computations (Abeles & Gat, 

2001), as in the convolution method (Stark & Abeles, 2009). What is the effect of such an 

approximation? Here we illustrate that Poisson approximation errors can have practical 

consequences. A single numerical example suffices to make the point. We will work here 

with a simplified interval jitter example, using synchrony as a test statistic. The interval jitter 

null hypothesis is that spike times are conditionally uniform, conditioned on CΔ(t1, t2) (see 

above). In the simplest case, consider a spike process such that the spike count in each 

interval is at most one (for both spike trains). Synchrony is the test statistic (see equation 
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2.2). Under the null, conditioned on CΔ(t1, t2), the synchrony test statistic is binomially 

distributed with parameters N and q, by which we mean 

Pr S0 = s CΔ t1, t2 = N
s

qs 1 − q N − s (the parameters N and q depend on CΔ(t1, t2); N is the 

number of intervals with spikes in both trains; q = 1/Δ). This binomial distribution can be 

approximated as Poisson with parameter Nq. This suggests two ways to compute a p-value 

for this null hypothesis. In the first, an exactly valid p-value is given by Pr(X ≥ S0|S0), where 

X is distributed as a binomial random variable with parameters (N, q), and independent of 

S0. In the second, an approximately valid p-value is given by Pr(ϒ ≥ S0|S0), where ϒ is 

distributed as a Poisson random variable with parameter Nq, independent of S0.

The p-values, resulting from either the original binomial distribution or the Poisson 

approximation, cannot be uniformly distributed because in both cases, the synchrony 

statistic is discrete. (The exactly valid method will give subuniform p-values.) Abeles and 

Gat (2001) used a randomization technique to generate strictly uniform p-values. The 

technique can be described as follows. Sample U independently and uniformly from the 

interval [0, 1], and then compute

p′ X = U ⋅ Pr ϒ = X X + Pr ϒ > X X . (4.1)

Then p′ (X) will be strictly uniform. (See the appendix for an intuitive derivation of this 

formula.) In the example discussed above, the (conditional) distribution of synchrony, under 

the (conditional) null hypothesis, is exactly binomial. (Note that there is no need for Monte 

Carlo surrogates in this example.) A numerical example, using N = 500, q = .1 is provided in 

Figure 4A. Thus, use of this technique produces uniformly-distributed p-values (Figure 4C). 

However, the technique depends on the fact that the conditional distribution is known 

exactly. If an approximation of the conditional distribution, such as a Poisson 

approximation, is used instead, there are no corresponding guarantees of uniformity. The 

randomized approximate p-values, computed from the Poisson distribution, are visibly 

nonuniform (see Figure 4D), suggesting conservative tests for small α (invalid tests, for 

sufficiently large α).

5 Discussion

The distinction between spike-centered and interval jitter might appear esoteric to some 

readers. Nevertheless, these results indicate that it is not as mild as it appears. For example, 

even in the prototypical case of analyzing synchrony between independent homogeneous 

Poisson processes, the spike-centered jitter procedure can be surprisingly more conservative 

than interval jitter. This insensitivity is not simply an artifact of discrete statistics. More 

striking, we show with relatively simple examples that spike-centered jitter can even 

hallucinate temporal structure to an arbitrary extent. Thus, we caution the use of spike-

centered jitter as a rigorous test of hypotheses regarding temporal structure.

It is worth emphasizing that these issues clearly generalize beyond isolated pairs of spike 

trains and will scale up when applied to large data sets involving multiple neurons, test 
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statistics, and periods of analysis. Such settings amplify the dangers of invalid tests. 

Correspondingly, multiple testing corrections constructed in such situations will generally 

require that they are built out of hypothesis tests that are valid in isolation.

In reviewing the literature on these topics, a common theme in these discrepancies is a lack 

of a well-specified null hypothesis. We wondered whether this has practical implications. 

The subtleties reported here indeed make a case for rigorous treatment (i.e., precise 

specification of null hypotheses, in the classical sense). Our conclusions are largely 

consistent with the overview in Amarasingham et al. (2012).

Once oriented in this direction, other issues arise. As an example, interval jitter has more 

degrees of freedom than spike-centered jitter, associated with the selection of an interval’s 

location. This arbitrariness can make practitioners uneasy. Here two points bear considering. 

The first is that the issue is essentially identical to the arbitrariness associated with rounding 

(discretizing) measurements. When rounding, we anchor a discretization grid on the origin 

(zero), but the choice of the origin is arbitrary. Second, there are occasions when one can 

anchor the interval in an intuitively satisfying way. In the case of synchrony or other cross-

correlogram analyses, one can choose to anchor intervals with respect to a reference train 

(Hatsopoulos, Geman, Amarasingham, & Bienenstock, 2003). For example, in a synchrony 

analysis, center the intervals around the spikes in a reference train; then jitter the spikes in 

the target train, respecting the intervals.

More fundamentally, however, the arbitrariness of interval locations is a symptom of the 

broader problem that the (conditional) uniformity assumption is an approximation. A more 

precise null hypothesis would accommodate relative variations in the conditional likelihood 

of spike placement (cf. tilted jitter: Amarasingham et al., 2012), patterned structures such as 

bursts and refractory periods (cf., pattern jitter: Harrison & Geman, 2009; Amarasingham et 

al., 2012), multiple comparisons corrections (Amarasingham et al., 2012; Harrison, 

Amarasingham, & Truccolo, 2015), and quantitative measures of effect size (Amarasingham 

et al., 2012). With respect to technique, it seems reasonable to expect that statistical 

precision ought to be applied in proportion to the subtlety of observed effects. In scenarios 

involving strong effects, this may justify a conservative approach (Fujisawa, Amarasingham, 

Harrison, & Buzsáki, 2008). In more subtle scenarios, it underscores the need for finely 

grained analysis.

Related to the above comments, our purpose in using processes with no temporal structure in 

these examples was to clarify these issues in the simplest setting. For the same reasons, we 

focused on examples (i.e., sparse firing) where refractory and bursting phenomena, as well 

as edge effects and firing rate inhomogeneities, are irrelevant to probability computations. 

Here, these complications were avoided only for clarity of exposition. The issues we have 

discussed will remain essentially the same embedded in more complicated structures. The 

same motivations led us to use the randomization approach to handling discretization 

artifacts. There are procedures for multiple hypothesis testing corrections that do not rely on 

randomization (see Amarasingham, Chen, Geman, Harrison, & Sheinberg, 2006, for an 

example in a neurophysiology setting), which we anticipate to be more powerful (data 

efficient).
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Finally, we have largely ignored the inconvenience of excessively time-consuming 

computation, which in day-to-day work is a major motivation for using approximate 

methods. We hope that the observations highlighted here will encourage further development 

of computationally efficient procedures that can be rigorously understood or rigorously 

calibrated (Harrison, 2013; Jeck & Niebur, 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

CΔ(t1, t2) Δ-coarsening of spike trains t1 and t2

Δ jitter window width

δ synchrony window width

f function to compute the test statistic

K number of surrogate spike trains

Ni number of spikes in the spike train i

R = (t1
1 , t2

1 , …, t1
K , t2

K )

S0 test statistic derived from the original spike train pair

Sk test statistic derived from surrogate spike train pair k

Sk′ : randomized Sk

t1 spike train 1

ti
(k) Monte Carlo resampled spike train i, surrogate k

X = (t1, t2)
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Figure 1. 
Two prototypical spike resampling methods. In spike-centered (basic) jitter (blue), each 

spike is resampled in an interval centered at its original location (black). In interval jitter 

(red), each spike is resampled in an interval whose location is specified independent of the 

original spike train. The thick colored lines represent the surrogate spike trains, whereas the 

thin colored lines represent the potential locations of a resampled spike. For illustration 

purposes, only two surrogate trains are shown for each jitter type. The actual computation 

involves many surrogates.
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Figure 2. 
A numerical demonstration of the distribution of p(X, R) (see equation 2.1) and pc(X, R) 

(see equation 2.3), generated by both the spike-jittered and interval jitter procedures. Data 

are taken from pairs of homogeneous (20 spikes/s) Poisson-generated artificial spike trains, 

and synchrony is used as a test statistic. Details of the experiment are described in the text. 

Here δ = 30 ms, K = 500, Δ = 20 ms, and trial lengths are 1 s. Each trial provides a single 

value of p(X, R) (resp., pc(X, R)). Fifty thousand trials were generated to produce 50,000 

such values. The histograms were computed using a 0.01 bin width. (A, C) The respective 

distributions, using the spike-centered jitter procedure. The horizontal dashed line in all 

panels represents the theoretical limit (as the number of samples/trials goes to ∞) if the 

distribution is truly uniform. (B, D) The respective distributions, using the interval jitter 

procedure. In all panels, the inset represents the respective cumulative distribution, Pr(p(X, 

R) ≤ α) or Pr(pc(X, R) ≤ α) (as appropriate). Note that the test is invalid for sufficiently 

large α with spike-centered jitter. Code is available at https://github.com/aamarasingham/

bjitter.
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Figure 3. 
Illustration of examples 1 and 4. The top spike trains represent the observed data, where the 

spike-centered jitter window length is indicated. The shaded areas correspond to the edges. 

The collection of spikes below represents the surrogate data. The gray color and the dashed 

line are only for visual clarity.
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Figure 4. 
Nonuniformity of randomized p-values induced by Poisson approximation. Fifty thousand 

binomial random variables were independently drawn with parameters N = 500 and q = .1, 

to construct 50,000 p-values. The histograms were computed using a 0.01 bin width. p-

Values were constructed by (A) using the exact binomial distribution without randomization, 

(B) Poisson approximation without randomization, (C) using the exact binomial distribution 

with randomization, and (D) Poisson approximation with randomization. In all panels, the 

horizontal dashed line represents the theoretical limit (as the number of samples goes to ∞) 

if the p-value distribution is truly uniform. Compare panels C and D to notice the 

nonuniformity induced by Poisson approximation alone. In panels C and D, the insets 

represent the respective cumulative distribution, Pr(p(X, R) ≤ α) or Pr(pc(X, R) ≤ α) (as 
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appropriate). Note in panel D that the test is conservative for small α and invalid for 

sufficiently large values. Code is available at https://github.com/aamarasingham/bjitter.
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