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Abstract

Asymmetric messenger RNA (mRNA) localization facilitates efficient translation in cells such as 

neurons and fibroblasts. However, the extent and importance of mRNA polarization in epithelial 

tissues are unclear. Here, we used single-molecule transcript imaging and subcellular 

transcriptomics to uncover global apical-basal intracellular polarization of mRNA in the mouse 

intestinal epithelium. The localization of mRNAs did not generally overlap protein localization. 

Instead, ribosomes were more abundant on the apical sides, and apical transcripts were 

consequently more efficiently translated. Refeeding of fasted mice elicited a basal-to-apical shift 

in polarization of mRNAs encoding ribosomal proteins, which was associated with a specific boost 

in their translation. This led to increased protein production, required for efficient nutrient 

absorption. These findings reveal a posttranscriptional regulatory mechanism involving dynamic 

polarization of mRNA and polarized translation.

Intracellular mRNA localization is an important determinant of various cellular functions 

(1–6). In mammals, localized translation of transcripts at the sites where their encoded 

proteins are needed is thought to confer cellular efficiency and a timely response (2, 7, 8). 

Epithelial tissues are inherently polarized with distinct functional specialization of basal and 

apical sides. The intestinal epithelium consists of a monolayer of enterocytes that absorb 

nutrients from the apical lumen and excrete them into the blood stream from the basal sides. 

Key transporters are specifically localized in these two compartments (9). Owing to the 

transient nature of nutrients in the gut, efficient and timely translation of such proteins might 

be important. The mRNA intracellular localization of a few enterocyte genes have been 

reported (10–12); however, we lack a global characterization of intracellular mRNA 

localization and its biological functions in epithelia.

To obtain a transcriptome-wide view of mRNA localization in the intestinal epithelium, we 

isolated apical and basal subcellular fractions by laser capture microdissection (Fig. 1A) and 

performed RNA sequencing (RNA-seq) (13). Almost 30% of the most highly expressed 
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2000 transcripts, for which experimental noise levels were lower, were significantly 

polarized (Fig. 1B and table S1). To validate the sequencing results, we performed single-

molecule fluorescence in situ hybridization (smFISH) (14) on intact intestinal tissues for 14 

genes that span different polarization patterns (Fig. 1, B to D). We found an excellent 

correspondence between the apical bias of mRNA measured with smFISH and with the 

whole-transcriptome method (Spearman’s r = 0.97, P < 2.2 × 10–16, Fig. 1D and table S2).

Given the functional polarization of enterocytes, we hypothesized that the observed global 

mRNA apical-basal polarization would match the location of the corresponding proteins. 

The most apically enriched gene sets included several nutrient transporter annotations, many 

of which encode apically localized proteins (fig. S1). Notably, however, the mRNAs that 

encode basolaterally localized proteins were strongly biased in localization toward the apical 

side, opposite to where their encoded proteins reside (Fig. 2, A and B, and fig. S2A). 

Examples of basolateral proteins with discordantly polarized apical mRNA included E-

cadherin (Cdh1 gene, Fig. 2B) and integrins (fig. S2A). Thus, the global mRNA polarization 

in the intestinal epithelium does not generally correlate with the localization of the encoded 

proteins.

To obtain a broader view of the relative localization of mRNAs and their encoded proteins, 

we performed mass spectrometry of laser capture microdissected apical and basal 

subcellular fractions (Fig. 2C and table S3). The apical bias of proteins and of mRNA was 

weakly anticorrelated (Spearman’s r = –0.12, P = 8 × 10–4). This data set revealed 

additional examples of discordant localizations of proteins and their encoding mRNA, such 

as the basal protein sodium-potassium ATPase (adenosine triphosphatase), encoded by the 

highly apical mRNA Atp1b1 (fig. S2A). Notably, the mass spectrometry data revealed a 

significantly higher abundance of ribosomal proteins at the apical side (Fig. 2C and table S4) 

and mitochondrial proteins at the basal sides (fig. S3 and table S4). The mRNAs that encode 

ribosomal proteins were basally biased, again constituting a discordant set of genes, with 

opposite localizations of mRNA and their encoded proteins (Fig. 2C). Using smFISH, we 

identified a highly significant apical enrichment of ribosomal RNA 18S and 28S (Fig. 2D 

and fig. S2B, both twofold, P < 2.2 × 10–16), thus validating the apically polarized 

localization of the translational machinery. To assess whether the increased concentration of 

ribosomes on the apical sides yields higher translation at this subcellular compartment, we 

treated mice with O-propargyl-puromycin (OPP), a reporter that is efficiently incorporated 

into nascent peptides after a pulse-chase intraperitoneal injection (15) (fig. S4). Nascent 

peptides were significantly more abundant on the apical sides of the intestinal enterocytes 

(Fig. 2E, 1.82-fold higher concentration at the apical side, P < 2.2 × 10–16). Thus, 

translation in the intestinal enterocytes is also strongly polarized, with a twofold higher 

apical concentration of the translational machinery.

We next asked whether apical-basal mRNA polarization could regulate translation efficiency 

(TE) in this tissue. We performed ribosome profiling and RNA-seq of intestinal isolates from 

fasting mice and computed the TE of intestinal transcripts (Fig. 2F, fig. S5, and tables S5 

and S6). Genes with significantly apical mRNA localization had almost twofold higher TE 

compared to genes with significantly basal mRNA (Fig. 2, G and H, P = 8.36 × 10–10). In 

several nonpolarized mouse primary cell data sets, the apical and basal groups were either 
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indistinguishable or displayed much weaker apical enrichment of TE (fig. S6A). Thus, 

mRNA apico-basal polarization modulates TE in the intestinal epithelium.

The intestinal lumen is a highly dynamic microenvironment that exhibits temporal 

oscillation in nutrient availability (16). Dynamic translocation of mRNA between the basal 

and apical sides could potentially modulate translational efficiency. To explore such dynamic 

responses, we performed our transcriptome-wide mRNA polarization measurements and 

ribosome profiling on duodenum tissues of fasting and refed mice (Fig. 3A). The 

translational machinery remained apical after refeeding, as evident by the apical polarization 

of ribosomal RNA (rRNA) (fig. S6B), and the TE of genes was higher the more apically 

polarized were their transcripts (fig. S6C). mRNAs that encode ribosomal proteins (RNA-

RPs) shifted from the basal localization in fasted intestines to a more apical localization after 

2 hours of refeeding (Fig. 3A, 1.36-fold for RNA-RPs versus 1.08-fold for other transcripts, 

P = 0.0001). We also observed a concomitant increase in TE for these transcripts upon 

shifting their localization to the apical side—the side in which the translation machinery is 

more abundant (Fig. 3A and fig. S7, 1.87-fold, P < 2 × 10–16). We validated these 

localization changes for Rpl3 and Rpl4 mRNA by smFISH (Fig. 3, B and C, Rpl3 P = 1.8 × 

10–8, Rpl4 P = 2.9 × 10–13). The cellular mRNA expression levels of these genes were not 

increased (fig. S8, A to C). After 4 hours of refeeding, increased production of ribosomal 

components was associated with significantly higher protein synthesis compared to the 

fasting state (Fig. 3D, 2.05-fold, P < 2.2 × 10–16). TE of brush border proteins (17) also 

showed a slight, yet significant increase upon refeeding (1.1-fold, P = 0.02, fig. S8D). Thus, 

dynamic translocation of mRNAs encoding ribosomal proteins to the more translationally 

active apical side is associated with a specific translation of ribosomal components, 

facilitating a burst of protein production to meet the absorption demands upon refeeding.

What facilitates this broad mRNA polarization? Active transport by motor proteins along the 

cytoskeleton, molecular anchors that bind and keep transcripts localized, or spatially varying 

RNA degradation rates within the cell have all been implicated in determining localization 

(1, 18). Additionally, our finding that the ribosomes are apically polarized in enterocytes 

could indicate that preferential retention of highly translated mRNA could lead to their 

apical polarization (1, 18). To investigate whether microtubules mediate the observed mRNA 

localization patterns, we depolymerized the microtubule network by injecting mice 

intraperitoneally with nocodazole (Fig. 4, A and B). The basally polarized Net1, Cyb5r3, 

Rpl3, and Rpl4 transcripts lost polarization, and the apically polarized Apob and Cdh17 

transcripts were significantly less apical (Fig. 4, A and B, and fig. S9). Although ribosomal 

RNA remained significantly apically polarized in nocodazole-treated mice, the extent of 

rRNA polarization was smaller compared to that in vehicle-treated controls (fig. S10). To 

assess whether the difference in polarization of apical mRNA upon nocodazole treatment 

could stem from coordinated movement of ribosomes and their retained mRNA to the basal 

side, we measured the combined polarization of both rRNA and of four apical genes with 

high TE in nocodazole-treated mice and in controls, and stratified the results according to 

the single-cell rRNA polarization. Microtubule disruption decreased the apical polarization 

of these genes even when controlling for rRNA polarization changes (figs. S10 and S11A). 

Thus, the microtubule network mediates the asymmetric localization of these and potentially 

other transcripts in the intestinal epithelium, whereas additional anchoring mechanisms seem 
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to render the apical localization of ribosomes less sensitive to microtubule disruption. 

Selective inhibition of kinesin 5 in intestinal organoids (19, 20) using ispinesib (21) 

decreased the polarization of Apob and Net1 (Fig. 4, C to E) but not of Cdh17 and Pigr (fig. 

S9, E and F).

Given the transient nature of inputs in the gut, consistently high translation rates could be 

energetically inefficient (22). When nutrients arrive, however, there is a short temporal 

window in which they must be efficiently absorbed (9). Nutrient availability was shown to 

stimulate rapid ribosome biogenesis in other contexts (23, 24) via activation of translation 

initiation factors, rRNA transcription, and translation of RNAs that encode the translational 

machinery (24). Here, we found a similar burst of protein translation upon refeeding, 

associated with a rapid translocation of ribosomal-protein encoding transcripts, the nature of 

which is yet to be determined, into the translationally active apical side (Fig. 4F). The burst 

of ribosomal protein translation upon refeeding resembles a “bang-bang” control strategy, in 

which resources are first invested in making the ribosomal “machines,” to facilitate a rapid 

increase in total protein output (25, 26). Our approach, combining laser-capture 

microdissection and whole-transcriptome sequencing with smFISH, can be readily applied 

to characterize mRNA polarization in other tissues and organisms. Future studies will 

determine if mRNA mislocalizations are causatively involved in pathophysiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Global analysis of mRNA polarization in the intestinal epithelium.
(A) Laser capture microdissection of paired apical and basal fragments. (B) RNA-seq data of 

isolated subcellular areas. Insets show smFISH validation results of transcripts of interest. 

Four outlier data points are omitted from the plot. Of the transcripts, 645 of 9905 are 

significantly apical and 779 of 9905 are significantly basal. Dashed vertical line separates 

the 2000 most highly expressed transcripts, of which 392 genes are significantly apical and 

194 are significantly basal. (C) smFISH staining of the apical Apob (red) and basal Cyb5r3 

(green) mRNA. (D) Strong correlation of smFISH quantifications and RNAseq data for 14 

representative genes (Spearman’s r = 0.97, P < 2.2 × 10–16); dots and error bars represent 

median and 95% confidence interval of smFISH and mean and SE of RNAseq. All scale bars 

are 10 μm.
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Fig. 2. Translational machinery is asymmetrically distributed.
(A) Ranking of gene sets that are significantly enriched on the apical cell sides. (B) 

Costaining of the discordantly localized basolateral protein E-cadherin, encoded by Cdh1 

(gray staining) and its apically localized mRNA (green dots). (C) Mass spectrometry results 

of microdissected areas demonstrate apical enrichment of ribosomal proteins and a lack of 

positive correlation (Spearman’s r = –0.12, P = 8 × 10–4). Blue, all genes; red, genes with 

GO-Ribosome annotation. (D) Representative smFISH staining and quantification of 

intracellular distribution of rRNA 18S and 28S (n = 142 single cells, P < 2.2 × 10–16). (E) 
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Representative staining and quantification of nascent proteins (n = 143 single cells, P < 2.2 × 

10–16). (F) Normalized coverage plot of ribosome footprint sequencing data (n = 3 mice, 

gray area denotes SD). (G) TE increases with the apical bias of genes in fasting mouse 

samples. The y axis shows the mean TE over a sliding window of 1000 genes consecutively 

shifted from the most basal gene to the most apical gene, with a 500-gene overlap. The x 

axis is the mean apical bias of genes within each window. Patches are standard errors of the 

mean. (H) Translational efficiency of the significantly localized transcripts (false discovery 

rate adjusted P value <0.1, n apical = 346, n basal = 141, P = 8.4 × 10–10; 20 outlier data 

points are omitted from the plot). Data include only genes for which we obtained TE values 

and that are of epithelial origin (methods). All scale bars are 10 μm.
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Fig. 3. Dynamic shifts of localized transcripts are associated with differential translational 
efficiency.
(A) Scatterplot of TE and mRNA localization changes when comparing three fasting and 

three refed mice (n = 6282 transcripts). The x axis is log2 of the ratios between TEs in refed 

and in fasting states; the y axis is log2 of the ratios of apical biases between refed and fasting 

states, where apical bias for each condition is the ratio of apical and basal TPM (methods). 

Upon refeeding, mRNAs encoding ribosomal proteins (red dots) become more apically 

polarized and are translated more efficiently. (B) smFISH images of Rpl3 and Rpl4 mRNA 

across metabolic states. (C) Quantification of Rpl3 and Rpl4 smFISH analyses across 
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metabolic states (n = 70 single cells, Rpl3 P = 1.8 × 10–8, Rpl4 P = 2.9 × 10–13). (D) 

Comparison of nascent protein content at fasting and 5-hour refeeding time point (n = 188 

single cells, P < 2.2 × 10–16). All scale bars are 10 μm.
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Fig. 4. Intestinal mRNA localization is mediated by the microtubule network.
(A) Nocodazole strongly perturbs the polarization of Net1 and Apob (Net1 n = 94 cells, P = 

1.1 × 10–15, Apob n = 96 cells, P = 2.9 × 10–12). (B) Representative smFISH images of 

strongly polar Net1 and Apob transcripts in vehicle- or nocodazole-injected animals. Scale 

bar, 10 μm. (C) Intracellular mRNA localization of Net1 and Apob in intestinal organoids 

phenocopies in vivo observations. Highlighted inset is shown in higher magnification in top 

row of (D). Scale bar, 50 μm. (D) smFISH images of Net1 and Apob in nocodazole-, 

ispinesib-, or vehicle-treated organoids. Scale bar, 10 μm. (E) Single-cell quantification of 
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the nocodazole and ispinesib effects on transcript localization in smFISH images of 

intestinal organoids (vehicle n = 101, ispinesib n = 68, nocodazole n = 77 cells, costaining of 

Apob and Net1). (F) Transcripts that encode ribosomal proteins are stored in the less 

translationally active basal side of the intestinal epithelium in fasting mice. Refeeding 

induces a translocation of these transcripts into the more translationally active apical cell 

side. This translocation is associated with a concomitant increase in their translational 

efficiency. The increased ribosomal biogenesis is reflected in an increased total protein 

synthesis.
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