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Abstract

Haploinsufficiency, a dominant phenotype caused by a heterozygous loss-of-function muta-

tion, has been rarely observed. However, high-dimensional single-cell phenotyping of yeast

morphological characteristics revealed haploinsufficiency phenotypes for more than half of

1,112 essential genes under optimal growth conditions. Additionally, 40% of the essential

genes with no obvious phenotype under optimal growth conditions displayed haploinsuffi-

ciency under severe growth conditions. Haploinsufficiency was detected more frequently in

essential genes than in nonessential genes. Similar haploinsufficiency phenotypes were

observed mostly in mutants with heterozygous deletion of functionally related genes, sug-

gesting that haploinsufficiency phenotypes were caused by functional defects of the genes.

A global view of the gene network was presented based on the similarities of the haploinsuf-

ficiency phenotypes. Our dataset contains rich information regarding essential gene func-

tions, providing evidence that single-cell phenotyping is a powerful approach, even in the

heterozygous condition, for analyzing complex biological systems.

Author summary

Diploid organisms harboring a wild-type gene and a loss-of-function mutation are called

heterozygotes. They are expected to have weak or no individual phenotypes because the

mutation is compensated for by the intact allele. The dominant inheritance of phenotypes

in heterozygotes is an exceptional phenomenon called haploinsufficiency. Haploinsuffi-

ciency was thought to be a rare occurrence; however, a sensitive technique called high-

dimensional single-cell phenotyping challenges this perspective. Investigations of single-

cell phenotypes revealed that a large extent of the essential genes in yeast exhibit haploin-

sufficiency. Our analyses also provided crucial information on gene functional networks

based on haploinsufficiency phenotypes. This work shows that high-dimensional single-

cell phenotyping is a useful tool that can be used to better understand complex biological

systems.
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Introduction

The concepts of dominance and recessiveness were originally formulated by Gregor Mendel [1]

and are still fundamental to modern genetics. Loss-of-function mutations are mostly recessive

and rarely dominant in diploid organisms. Haploinsufficiency is a rare manifestation of the domi-

nant phenotype arising from a copy of a loss-of-function mutation in the heterozygous state and

was initially studied in Drosophila [2]. There is great interest in haploinsufficient genes because

the loss of 1 functional allele is linked to human diseases including cancer and tumorigenesis,

developmental and neurological disorders, and mental retardation [3]. Therefore, it is challenging

to determine the number of genes in the genome that are sensitive to 1-copy gene loss [4,5].

Two models have been developed to explain the occurrence of haploinsufficiency. As can

be seen in dosage-dependent sex determination in Drosophila [6], a reduction in the gene copy

number affects regulatory genes working at a threshold level. Some proteins are likely pro-

duced at the lowest level possible for proper function. Therefore, haploinsufficiency may sim-

ply be due to a reduction in protein level in the heterozygous state, which is referred to as the

insufficient amount hypothesis. A second theory, referred to as the balance hypothesis, pre-

dicts that the stoichiometry of various protein components is important for maintaining the

integrity of a protein complex [7]. In yeast, representative haploinsufficient genes include cyto-

skeletal components such as actin (Act1) [8] and tubulin (Tub1) [9] as well as components of

protein complexes such as spindle pole body component (Ndc1) [10] and myosin (Mlc1) [11].

In these circumstances, gene overexpression also results in an imbalance of the components

and shows similar phenotypic consequences of 1-copy gene loss.

Genome-wide studies have been performed to investigate haploinsufficient growth pheno-

types in the budding yeast Saccharomyces cerevisiae. Among 5,900 yeast genes analyzed, approx-

imately 3% (184 mutants) exhibited haploinsufficient growth in rich media [12]. Many of the

yeast haploinsufficient genes were functionally related and related to ribosomal function [12],

suggesting a significant contribution of ribosomal function to rapid growth. By further investi-

gating the growth phenotypes under limited nutrient conditions, up to 20% of the genome was

found to display a haploinsufficient abnormality [13]. A recent systematic screen of another

budding yeast, Candida albicans, revealed that 10% of the genes in the genome influenced cell

size under optimal growth conditions [14]. However, the extent of haploinsufficiency was still

restrictive, and little is known about the functional relationships between these genes.

One approach to identify haploinsufficiency is to monitor the phenotypes from different

perspectives. Cell morphology is an attractive target for intensive analyses because it reflects a

wide variety of cellular events, and hundreds of traits can be analyzed [15]. In this study, we

investigated the haploinsufficiency of 1,112 heterozygotes of yeast essential genes using high-

dimensional phenotyping with 501 morphological traits. We found that more than half of the

essential genes displayed haploinsufficiency under optimal growth conditions, indicative of

extensive haploinsufficiency. Similar haploinsufficiency phenotypes were caused by heterozy-

gous deletion of functionally related essential genes. Correlation networks of haploinsufficient

genes provided a global view of their functional relationships. Our dataset offers useful

resources for the study of essential gene functions in S. cerevisiae.

Results

Frequently observed morphological haploinsufficiency in yeast essential

genes

We employed yeast heterozygous diploid strains with deletions in each of the essential genes

and examined haploinsufficiency in terms of its effects on morphology (morphological
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haploinsufficiency) by performing single-cell high-dimensional phenotyping. To minimize

variation due to inconsistencies in data acquisition, we collected the cultures after growth to a

precise point in early log-phase in rich medium, used the automated image processing system

CalMorph [15], and analyzed more than 200 cells for each strain. To exclude technical artefacts

due to staining procedures and cell segmentation, automatic discriminators and classifiers

built into CalMorph made it possible to obtain high-quality multivariate information on single

cells [16]. In addition to 220 mean and 61 ratio morphological parameters, 220 variance

parameters—which represent variance of the single-cell distribution in morphology—were

extracted. To detect phenotypic abnormalities, a generalized linear model (GLM) was applied

(S1 Table). As expected, haploinsufficient morphological phenotypes were rarely observed. Of

all the combinations between 501 traits and 1,112 heterozygous diploids, only 0.764% (4,258

assays) were significantly different from the wild-type diploid based on a 1-sample 2-sided test

(false discovery rate [FDR] = 0.01; P< 7.64 × 10−5; S1 Fig). However, an analysis of morpho-

logical phenotypes in each strain revealed a large number of haploinsufficient genes. A total of

59.1% (657 heterozygous diploids, S2A Table) of the heterozygous deletion mutants exhibited

differences compared with the wild-type diploid in at least 1 of the morphological traits exam-

ined (FDR = 0.01; P< 7.64 × 10−5; red area in Fig 1A and S2B Fig). The number of abnormal

mutants detected for each trait was relatively small, mostly within the IQR between 2 and 12.

We estimated that the rate of false positive (FP) abnormal mutants detected by chance in our

analysis was 6% (Fig 1B, black line), which was almost the same as the number of abnormal

replicates in the wild type (Fig 1B, orange line). This confirmed that our statistical estimation

of the number of haploinsufficiency phenotypes was not overestimated. We used an alternative

approach to estimate the number of haploinsufficient mutants following dimensional reduc-

tion. A large number of heterozygotes (40% of 1,112) still displayed haploinsufficiency in at

least 1 of the 20 principal components (PCs) covering 60% of variance of the morphological

phenotypes (FDR = 0.05, S3C Fig).

Single-cell phenotyping used to detect morphological haploinsufficiency

We found that the cumulative number of haploinsufficient mutants increased with an increase in

the number of morphological traits examined (Fig 1B, red line). Mean parameters—and, more

effectively, variance parameters—contributed to haploinsufficiency detection (S4A Fig), highlight-

ing the importance of single-cell phenotyping. Ratio parameters were less important because the

cumulative number of haploinsufficient mutants reached 98% without the ratio parameters (S4B

Fig, light blue line). We next investigated whether the differences between the morphologies of

haploinsufficient mutants increased or decreased phenotypic variance and found significantly

more phenotypic variance in the 657 haploinsufficient strains than in the other strains (S5 Fig;

P< 0.01 after Bonferroni correction and Mann–Whitney U test). This observation is consistent

with the previous finding that decreasing dosage with the use of conditional alleles often results in

increased morphological variation within populations of isogenic cells [17]. Therefore, one wide-

spread function of essential genes is to stabilize morphological phenotypes.

Comparison between essential and nonessential genes

We counted the frequency of haploinsufficiency in nonessential genes by examining 100 ran-

domly selected heterozygous gene-deletion mutants. For the 501 traits, 33% of the heterozy-

gous diploids showed haploinsufficiency at the same threshold (P< 7.64 × 10−5; Fig 1B, gray

line). Therefore, the frequency of haploinsufficiency in essential genes (Fig 1B, red line) was

approximately 2-fold greater than that in nonessential genes (Fig 1B, gray line). We noted pre-

viously that 65% of the haploid mutants with nonessential deletions were morphologically
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distinct [15], indicating that the morphological phenotypes in heterozygous diploids were less

commonly observed than those in haploid deletion mutants (S2B Table). These analyses indi-

cated that essential genes have a large impact on haploinsufficient morphological phenotypes.

Morphological haploinsufficiency in poor synthetic medium

We tested the morphological haploinsufficiency of heterozygous diploids under nutrient-lim-

ited growth conditions in 50 randomly selected heterozygous deletion mutants, which
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Fig 1. Detection of morphological haploinsufficiency. (A) Graphical representation of heterozygous essential gene-

deletion mutants exhibiting haploinsufficiency phenotypes (S1 and S2 Data). The size of the colored area shows the

relative ratio of the corresponding heterozygotes. (B) Percentage of heterozygotes exhibiting haploinsufficiency in at

least 1 morphological trait (FDR = 0.01; P< 7.64 × 10−5) using the morphological traits examined. Red and gray lines

indicate essential and nonessential genes, respectively. The orange line indicates the percentage of FPs in 114 wild-type

replicates. Black solid line indicates percentage of samples detected by chance as estimated using parametric bootstrap

resampling. Black dashed line indicates 50%. The morphological traits were ordered on the x-axis by randomizing the

501 traits (3,000 iterations). FDR, false discovery rate; FP, false positive.

https://doi.org/10.1371/journal.pbio.2005130.g001
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exhibited no haploinsufficiency in rich media. After growth in poor synthetic medium, 40%

(16.4% out of 40.9%) of heterozygous diploids that exhibited no obvious morphological phe-

notypes in rich media exhibited haploinsufficiency in at least 1 of the morphological traits

(P< 7.64 × 10−5; Fig 1A, pink area). This indicated that up to 75.5% (59.1% + 16.4%) of the

heterozygous diploids exhibited phenotypes either in rich or poor synthetic medium.

Functional defects associated with morphological haploinsufficiency

We examined the morphological haploinsufficiency to see whether it could be explained by

functional defects of the genes. To investigate the relationship between gene function and a

particular haploinsufficiency phenotype, we performed dimensional reduction by principal

component analysis (PCA) and canonical correlation analysis (CCA) [18], which is used to

explore the relationship between 2 multivariate sets of variables. PCA and CCA successfully

compressed all combinations of 444 morphological traits and 830 gene ontology (GO) terms

into linear combinations of phenotypic (21 phenotype canonical variables [pCVs]) and gene-

function features (21 GO term canonical variables [gCVs]) (S6 Fig). In fact, analysis of the

canonical correlation coefficient revealed a significant correlation between phenotype (pCVs)

and gene function (gCVs) (P< 0.05, Bartlett’s chi-squared test). At a given canonical correla-

tion coefficient in each pair of 21 CVs, no FPs were found by chance after 10,000 iterations of

the randomization, indicating that randomized phenotypic data yielded no pairs of CVs. The

phenotypic space composed of pCVs was suitable for understanding phenotypic features of

haploinsufficient mutants with the same functional defects. For example, exploring the pheno-

typic space of pCV1 and pCV3 revealed that heterozygotes for RNA polymerase II (RNA pol

II) core complex (green) and for subunits of the cytosolic chaperonin containing TCP-1

(CCT) complex (red) were plotted in different directions (Fig 2B). This graphically demon-

strated that the heterozygous mutations in RNA pol II and chaperonin CCT caused specific

morphologies, namely, large/elongated cell shape and large actin region/nonelliptical cell

shape, respectively (Fig 2A, S3A Table).

The logistic regression analysis can be used to identify the best combinations of pCVs for

each GO term, yielding the maximum likelihood prediction of the gene functions with hap-

loinsufficiency phenotypes (e.g., cytosolic large ribosomal subunit [ribosomal protein of the

large subunit (RPL)] in Fig 2C). We applied this approach to every GO term and identified

306 GO terms corresponding to 553 genes with a significant correlation between gene function

and haploinsufficiency phenotype (P< 0.05, likelihood ratio test after Bonferroni correction)

(Fig 3 and S3B Table). Therefore, haploinsufficiency phenotypes were associated with gene

function in 90% of the haploinsufficient genes, suggesting that the observed phenotypes were

mostly explained by functional defects of the genes.

Correlation analysis of haploinsufficient genes for morphology

To better understand morphological haploinsufficiency, we examined the overlap between

haploinsufficient genes for growth [12] and haploinsufficient genes for morphology. A contin-

gency table test showed significant correlations between these 2 datasets (S4 Table; P< 0.01

according to Fisher’s exact test), suggesting a common integrant. A previous study revealed

that ribosomal function was specifically enriched in haploinsufficiency based on cell growth

[12]. Although many ribosomal genes were also morphologically haploinsufficient, specific

gene functions were not enriched among the 657 morphologically identified haploinsufficient

genes (FDR = 0.1); instead, genes encoding most of the essential cellular processes—such as

replication, transcription, translation, protein degradation, membrane trafficking, transporter,

cell cycle progression, morphogenesis, and macromolecular synthesis—were represented (S3B

Morphological haploinsufficiency in yeast essential genes
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Table). We also noted that specific gene functions were not enriched in genes that were not

morphologically haploinsufficient (FDR = 0.1). Therefore, careful high-dimensional and sin-

gle-cell phenotyping detected numerous haploinsufficient genes with functions in diverse cel-

lular processes.

A previous study indicated that genes involved in protein complexes were enriched among

haploinsufficient genes related to growth [12]. The genes involved in protein complexes were

also significantly enriched among haploinsufficient genes related to morphology (S5 Table,

P< 0.01 by Fisher’s exact test for 1 side). This suggested that specific gene functions were
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Fig 2. Function-specific haploinsufficiency phenotypes. (A) Images of heterozygous mutants for RNA pol II (RPC10/rpc10Δ), chaperonin CCT (CCT5/cct5Δ),

and wild type. Cells were stained with FITC-conjugated concanavalin A for cell wall (green), rhodamine-phalloidin for actin (red), and DAPI for nuclear DNA

(blue), and presented with pseudo-coloring. Scale bar indicates 10 μm. (B) Biased distribution of heterozygous mutants in phenotypic space. After CCA was

performed, scores of CVs of the haploinsufficiency phenotypes were plotted in pCV1/pCV3 orthogonal space. Green and red circles indicate mutants

heterozygous for RNA pol II and chaperonin CCT, respectively. Gray and yellow circles indicate the remaining heterozygotes and 114 wild-type replicates,

respectively. (C) Linear predictor of logistic regression showing phenotype specificity for the cytosolic large ribosomal subunit (GO:0022625) heterozygous

mutants (S3 Data). Linear predictor was calculated by linear combinations of 10 pCVs (pCV1, pCV2, pCV4, pCV5, pCV12, pCV13, pCV17, pCV18, pCV19, and

pCV21) selected by a combinational optimization. Asterisk indicates significant difference (P< 0.05 after Bonferroni correction by likelihood ratio test). CCA,

canonical correlation analysis; CCT, chaperonin containing TCP-1; DAPI, 4’,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; pCV, phenotype

canonical variable; RNA pol II, RNA polymerase II core complex; RPL, ribosomal protein of the large subunit; WT, wild type.

https://doi.org/10.1371/journal.pbio.2005130.g002
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enriched in both haploinsufficient morphological genes and genes involved in protein com-

plexes. In fact, some gene functions (such as nuclear polyadenylation-dependent mRNA cata-

bolic process, cytosolic large ribosomal subunit, etc.) were enriched with high degrees of

protein–protein interaction (S7A Fig, PPI). Similar but distinct gene functions were signifi-

cantly enriched with high degrees of genetic interaction (S7A Fig; genetic interaction) [19]. By

comparing Fig 3 with S7A Fig, a Venn diagram was constructed (S7B Fig), which indicated

that among 124 GOs of protein complexes, 70 GOs were enriched in morphologically identi-

fied haploinsufficient genes. Therefore, our analysis suggested that numerous haploinsufficient

genes are involved in protein complexes with diverse cellular functions.

Haploinsufficient genes are the genes that are sensitive to 1-copy gene loss. Therefore, we

next analyzed the correlation of haploinsufficient genes for morphology with overexpression-

sensitive genes [20] and with highly expressed genes [21]. We revealed a significant correlation

with overexpression-sensitive genes (S8A Fig; Spearman rank correlation coefficient, P< 0.01

by t test) but failed to detect any correlation with highly expressed genes (S8B Fig, Spearman

rank correlation coefficient, P = 0.38 by t test). However, we detected a significant correlation

when we selected genes annotated with a specific GO (S9 Fig, Wald-test, FDR = 0.05). This

implies that the correlation between morphologically identified haploinsufficient genes and
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https://doi.org/10.1371/journal.pbio.2005130.g003
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highly expressed genes is GO specific. Based on these results, we discussed the feasible models

for the mechanism of haploinsufficiency (see Discussion).

Linkage between cell growth and cell morphogenesis

A previous study of heterozygous diploids showed that the essential genes involved in ribo-

some biogenesis cause coupling of the growth rate to cell size [22]. Analysis of our dataset con-

firmed a significant correlation between growth rate and cell size in 198 heterozygous

ribosome biogenesis mutants (Fig 4A). Aside from cell size, we revealed that other morpholog-

ical features were correlated with growth rate in these ribosome biogenesis mutants (S6 Table,

likelihood ratio test, FDR = 0.05). Of 163 correlated morphological features, we extracted the

independent features (S7 Table and S10 Fig) and summarized them with a schematic represen-

tation (Fig 4B). Therefore, our results provide a deeper understanding of a mechanism that

may link cell growth with cell morphogenesis, including growth in size, cell cycle progression,

actin morphogenesis, and nuclear morphogenesis.

Correlation of the haploinsufficiency phenotypes

Because the haploinsufficiency phenotypes were due to functional defects of the genes, we fur-

ther assessed the degree of similarity between the phenotypic profiles of individual haploinsuf-

ficient mutants. To do this, a full matrix of gene–gene pairwise similarities was calculated

based on the haploinsufficiency phenotypes. Although phenotypic correlation coefficients

between all pairs of the heterozygous diploids were distributed largely from –0.23 to +0.23

(mean ± 1 SD), the mean values of those sharing the same GO categories were typically posi-

tive (S11 Fig). There were only a few (0.98%) highly correlated (>0.5) cases. We analyzed the

interactions with correlations above 0.5 and found many cases of interactions within the pro-

tein complex GO (S12 Fig). Therefore, the similar haploinsufficiency phenotypes were associ-

ated with the deletion mutants in the same GO categories. After dimensional reduction by

CCA, a high level of precision and recall curve for GO terms was achieved (S13 Fig), indicating

that the positive correlation coefficient had substantial predictive power for gene function. We

compared the precision-recall characteristics of our phenotypic data to the results from other

high-throughput studies (S14 Fig) and found that our data (red) were almost as precise and

sensitive as protein interaction [23] (green) and microarray co-expression data [24] (purple)

and were more predictable than phosphoprotein (orange) [25] and genetic interaction data

[26] (blue). We then tested pairs of correlation coefficients between representative functional

gene groups (S8A Table) and observed both positive and negative correlations. For example,

the mean value between “cytoplasmic translation” and “ribosomal large subunit assembly”

(both involved in protein synthesis) was positive, while that between “ribosomal large subunit

assembly” and “proteasome regulatory particle” was negative (Fig 5). The negative correlations

reflected the opposing nature of the cellular processes, namely, protein synthesis and degrada-

tion. Our results strongly suggest that positive and negative correlations of the haploinsuffi-

ciency phenotypes reflect functional relationships in cellular processes.

We used correlations between haploinsufficiency phenotypes to construct global functional

maps among the yeast essential genes. Based on the patterns of the relationships, we systemati-

cally mapped 513 essential genes belonging to 46 GO terms (Fig 6A and S8B Table). We

observed 15 core gene groups containing 285 haploinsufficient genes with functions in DNA

replication, transcription, nuclear transport, translation, phospholipid metabolism, and pro-

tein degradation that served as a hub: these genes were related directly and/or indirectly to all

of the other genes. Pairwise testing did not detect significant phenotypic correlations between

the core gene groups (Fig 6B), indicative of the different and diverse functions of the hub
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genes. These phenotypic relationships provide a global view of the functional relationships

between large numbers of haploinsufficient genes.

Discussion

Comprehensive single-cell phenotyping of heterozygous diploids in budding yeast revealed

that more than half of the essential gene mutants are haploinsufficient in morphology. Up to

76% of the heterozygous diploids showed distinct morphological phenotypes either in rich or

minimal media. High-dimensional phenotyping with many points of view yielded an even

larger number of haploinsufficient mutants. This suggests that future high-dimensional assays

will identify more haploinsufficient genes that are linked to human diseases. Among pheno-

typic values acquired from hundreds of individual cells, the variance value of the traits was

found to be more effective than others, demonstrating the importance of single-cell phenotyp-

ing. The morphological phenotypes of the haploinsufficient heterozygotes could be mainly

explained by gene function. There was morphological similarity within the deletion mutants of

functionally related genes, as evidenced by dense gene clusters with rich functional informa-

tion, and functional networks based on morphological similarity.

Phenotypes can be perturbed by environmental changes, epigenomic effects, and/or experi-

mental artefacts [27]. To demonstrate that the observed haploinsufficiency phenotypes were

due to chromosomal heterozygous deletions, we determined whether the haploinsufficiency

phenotypes could be explained by gene-functional defects. We found that 90% of genes with

functional defects (553 of 610 haploinsufficient genes with reliable GO annotations) were

Fig 4. Morphological phenotypes correlated with growth defects in heterozygotes for ribosome biogenesis genes.

(A) Distribution of whole-cell size in G1 phase and cell growth. Gray circles indicate 198 heterozygotes for ribosome

biogenesis (GO:0042254) genes. x- and y-Axes indicate average growth rate (HET_AV) [12] and average area size of

G1 cells (C11-1_A), respectively. Red line indicates linear regression with a gamma distribution. R2 indicates

coefficient of determination. P value was estimated by likelihood ratio test. (B) Illustration of morphological features.

Morphological traits correlated to growth (S6 Table) were grouped into 11 features (S7 Table and S10 Fig). Green,

blue, and red indicate cell walls, nuclei, and actin patches, respectively.

https://doi.org/10.1371/journal.pbio.2005130.g004
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associated with the phenotypes of heterozygous diploids. The strong correlation between gene

function and the haploinsufficiency phenotype provides concrete evidence that a decrease in

the gene dosage could result in malfunctioning in a large proportion of essential genes.

Given the results from previous comprehensive studies of haploinsufficient genes, it was

quite surprising that such a large proportion of essential genes displayed haploinsufficiency.

Studies in budding yeast revealed that approximately 9% of essential genes in the genome are

haploinsufficient for growth in rich medium [12]. A careful survey of the Drosophila genome

showed that only 56 loci were associated with an altered phenotype when present as a single

copy [28]. Compared with results from a previous study, we found that most of the genes

involved in essential cellular processes were haploinsufficient in terms of morphology.

Genes encoding components of protein complexes were significantly enriched among the

haploinsufficient genes, which supports the balance hypothesis. In addition, the significant

correlation between overexpression-sensitive and haploinsufficient genes supports the balance

hypothesis discussed previously [7,12]. On the other hand, many genes encoding noncomplex

enzymes were also haploinsufficient, which supports the insufficient amount hypothesis.

Although we failed to detect a significant correlation between highly expressed and haploinsuf-

ficient genes on the whole, we detected a significant correlation when we selected haploinsuffi-

cient genes annotated with specific GO terms, including carbohydrate-derivative biosynthetic

process (GO:1901137 in alcohol metabolic process group; S9 Fig), RNA methyl transferase

activity (GO: 0008173 in tRNA processing group; S9 Fig), and mitotic cohesin complex (GO:

0030892). The correlation between highly expressed and haploinsufficient genes supports the

insufficient amount hypothesis, and haploinsufficiency of these genes can be easily explained

by this hypothesis. Therefore, according to our analysis, it is conceivable that both the insuffi-

cient amount and balance hypotheses are correct. Further study will be necessary to determine

which hypotheses are applicable for each haploinsufficient gene.

Our dataset will provide researchers with a tool for gaining insights into the functions of

yeast essential genes. First, haploinsufficiency phenotypes can be used to understand the func-

tion of essential genes. Compared with the various pleiotropic phenotypes frequently observed

in conditional lethal mutants [29,30], haploinsufficiency phenotyping is equally reliable. Sec-

ond, phenotypic similarities between heterozygous diploids can be used either to identify previ-

ously known functional connections or propose previously unknown functional connections. It

should be noted that phenotypic similarities between the nonessential deletion mutants were

used to predict gene function [15]. We observed both positive and negative correlations

between haploinsufficiency phenotypes, suggesting that high-dimensional single-cell pheno-

types reflect functional relationships in the cellular network. Third, it would also be interesting

to compare haploinsufficient genes observed under different conditions. Because more than

1,000 chemical genetic assays revealed a growth defect for all deletion mutants [31], phenotyp-

ing in multiple environments is a promising strategy. Therefore, as is the case for growth pheno-

typing [13], morphological phenotyping under different growth conditions will reveal

important aspects of gene function. Finally, comparisons between haploinsufficient and chemi-

cal-induced morphological profiles [32] will be used to explore intracellular drug targets. We

will be able to make more precise predictions by integrating haploinsufficient morphological

Fig 6. Global view of functional relationships between haploinsufficient genes. (A) Graphical representation of haploinsufficient gene network. White and

black edges indicate positive and negative phenotypic correlation. Transparency of edges indicates absolute value of the correlation coefficient. Colored nodes

represent 285 haploinsufficient genes belonging to core gene groups. (B) Heat map of the phenotypic correlation coefficient between each pair of functional

gene groups. Pairs with significant phenotypic correlation coefficients are indicated with colors in the heat map. The upper bar plot indicates the number of

pairs with significant similarity. The 15 identified core functional gene groups (black bars) are shown by the representative GO term on the right side. The

dendrogram is constructed based on the proportion of significant correlation. GO, gene ontology.

https://doi.org/10.1371/journal.pbio.2005130.g006
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profiles with chemical-genetic interaction profiles [33] or other gene features. These will give us

additional tools for drug target prediction.

Materials and methods

Strains and culture conditions

A collection of heterozygous gene-deletion mutants was purchased from EUROSCARF

(http://www.euroscarf.de). Essential genes were defined previously [34]. The yeast diploid

strain BY4743 was used as the wild type. Strains heterozygous for 1,112 essential genes and 100

randomly selected nonessential genes and the wild-type strain were cultured under optimal

growth conditions at 25˚C in nutrient-rich yeast extract peptone dextrose (YPD) medium con-

taining 1% (w/v) Bacto yeast extract (BD Biosciences, San Jose, CA), 2% (w/v) Bacto peptone

(BD Biosciences), and 2% (w/v) glucose, which was prepared as described previously [15].

Strains heterozygous for 50 essential randomly selected genes and the wild-type strain were

cultured under severe growth conditions at 37˚C in nutrient-poor synthetic minimal dextrose

(SD) medium, which was prepared as described previously [35].

To minimize variation due to inconsistencies in data acquisition, we used a precise protocol

to prepare yeast cells growing in early log-phase. Strains were activated from the freezer stock

by streaking onto YPD agar plates and incubating for 3 d at 25˚C. Three colonies from each

strain were inoculated into 2 mL of YPD liquid medium in a 20-mL glass test tube (Iwaki, Shi-

zuoka, Japan), and the liquid culture was incubated on a rotator (30 rpm with RT-50; TITEC,

Saitama, Japan) at 25˚C for 20 h. Then, the cells were transferred into 20 mL of fresh liquid

medium in a 100-mL conical flask (Iwaki). The cells were further incubated in a shaking water

bath (110 rpm with LT10-F; TITEC) at 25˚C at least for 16 h. A total of 5.0 × 106 cells at log-

phase were harvested and used for fixation and fluorescence staining.

Fluorescence staining, microscopy, and image processing

Yeast cells were fixed for 30 min in growth medium supplemented with formaldehyde (final

concentration, 3.7%) and potassium phosphate buffer (100 mM [pH 6.5]) at 25˚C as described

in [36]. Yeast cells were then collected by centrifugation at room temperature and further incu-

bated in potassium phosphate buffer containing 4% formaldehyde for 45 min. Next, actin stain-

ing was performed by overnight treatment with 15 U/mL rhodamine-phalloidin (Invitrogen,

Carlsbad, CA) and 1% Triton-X in phosphate-buffered saline (PBS). Staining of cell-surface

mannoproteins was performed by 10-min treatment with 1 mg/mL fluorescein isothiocyanate

(FITC)-conjugated concanavalin A (Sigma-Aldrich, St. Louis, MO) in P buffer (10 mM sodium

phosphate and 150 mM NaCl [pH 7.2]). After washing twice with P buffer, the yeast cells were

mixed with mounting buffer (1 mg/mL p-phenylenediamine, 25 mM NaOH, 10% PBS, and

90% glycerol) containing 20 mg/mL 4’,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) to

stain DNA. Finally, the specimens were observed using an Axio Imager microscope equipped

with a 6100 ECplan-Neofluar lens (Carl Zeiss, Oberkochen, Germany), a CoolSNAP HQ cooled

charged coupled device (CCD) camera (Roper Scientific Photometrics, Tucson, AZ), and Axio-

Vision software (Carl Zeiss).

Image processing was performed using CalMorph (version 1.3) software designed for dip-

loid yeast strains [37]. CalMorph can collect a large amount of data regarding many morpho-

logical parameters of individual cells such as cell cycle phase and cell form from a set of

photographs of cell walls, nuclei, and actin cytoskeletons. The CalMorph user manual is avail-

able at the Saccharomyces cerevisiae Morphological Database (SCMD; http://yeast.gi.k.u-tokyo.

ac.jp/datamine/) [38]. Descriptions for each trait were presented previously [15].
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Statistical test for identification of haploinsufficiency phenotypes

To assess haploinsufficiency cell morphology phenotypes statistically, we used the GLM as

described previously [39] with minor modifications. The haploinsufficiency phenotypes of het-

erozygotes were detected using the 1-sample 2-sided test with a null distribution estimated

from 114 replicated wild-type strains.

The null distribution for each trait was estimated using 1 of 4 probability density functions

(PDFs), as described previously [39]. To minimize the effects of confounding factors affecting

microscopic output, we applied the linear model using dummy variables (S1 Table, and S1

Text). The maximum likelihood estimation for each PDF was performed using R function

“gamlss” contained in the “gamlss” package [40]. The validity of the null distributions esti-

mated by the wild-type phenotype was assessed using the R-squared value of a quantile–quan-

tile plot. A theoretical distribution for each trait was estimated using the “qqplot” function of

the default package using random values (n = 11,400) generated from the PDF estimated as a

null distribution. To calculate the R-squared value, the theoretical distribution was compared

to the distribution of the wild type (n = 114). The median of R-squared values among 501 traits

was 0.966 (IQR 0.964–0.976), indicating that the selected model and its estimated parameters

approximated the distributions of the wild type.

P values for each mutant were calculated based on the estimated PDF at 2 sides (low and

high tails), such that twice the minimum P values were used for statistical tests (1-sample

2-sided test). The FDR was estimated using the R function “qvalue” in the “qvalue” package

[41]. Similarly, the number of deletion mutants for nonessential genes was estimated based on

the 1-sample 2-sided test with 122 replicated wild-type and 4,718 nonessential gene-deletion

mutant strains [15].

The number of mutants detected for at least 1 trait was counted for each threshold (S2 Fig).

To estimate the number of samples detected by chance for at least 1 trait, we performed

parametric bootstrap resampling using PDFs with maximum likelihood estimations. Random

values of 114 samples were generated from each PDF for each parameter. The number of trials

(n = 3,000) with at least 1 falsely detected trait among 501 traits was counted at each threshold

and averaged. In S2 Fig, the confidence intervals from the FPs were estimated by assuming

binomial distribution.

CCA

The purpose of this analysis was to reduce the dimensions from 501 traits and identify biologi-

cally important morphological features. We used Z values of 501 traits as a morphometric pro-

file and a Boolean matrix of GO terms as a gene function for each heterozygote. First, we

obtained Z values using test statistics of the Wald test using the R function “coeftest” in the

“lmtest” package [42] and selected 657 heterozygotes (59%) with significant haploinsufficiency

phenotypes at an FDR of 0.01 (Fig 1). We further discarded 47 genes that were annotated by

GO terms with fewer than 3 genes. We then selected 830 GO terms that annotated more than

2 genes in the remaining 610 haploinsufficient genes and fewer than 200 genes in the genome

with no identical sets of annotated genes. Finally, we used Z values of 444 morphological traits

calculated from 610 of the 657 heterozygotes (S2B Fig), such that the 444 traits were detected

in at least 1 of the 610 heterozygotes.

To reduce dimensionality, we subjected the morphometric profiles to PCA and the first 17,

29, 50, 91, and 130 PCs (phenotype principal components [pPCs]) contributed more than 0.6,

0.7, 0.8, 0.9, and 0.95, respectively, to the cumulative contribution ratio (CCR). Next, to esti-

mate functional relationships among the 610 genes, we used the structure of 830 GO terms.

Dimensionality of GO terms can be reduced by PCA on a Boolean matrix (if a gene was
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annotated by GO, then its value was 1; otherwise, it was 0), as described previously [43]. The

830 GO terms for the 610 genes were then subjected to PCA, and the first 59, 84, 120, 181, and

346 GO term principal components (gPCs) contributed 0.6, 0.7, 0.8, 0.9, and 0.99, respectively,

to the CCR indicating that approximately 346 gene functions were related to the 610 genes.

After projection of Z values on pPCs and a zero matrix on gPCs for 114 replicates of the

wild type, we applied CCA to the 130 pPCs and the 346 gPCs, for which the CCRs were 0.95

and 0.99, respectively (S6 Fig). Significance of the canonical correlation coefficient was tested

at P< 0.05 based on Bartlett’s chi-squared test [44] to obtain 21 morphological features

(pCVs) and 21 gene function features (gCVs). To characterize each pCV based on morpholog-

ical features, linear regression analysis was performed based on the Z value of each trait on

pCV and detected at P< 0.05 after Bonferroni correction using the F test. Morphological fea-

tures for each pCV are summarized in S3A Table by successive PCA, as described previously

[45].

Logistic regression with combinational optimization

To detect correlation between GO terms and haploinsufficiency phenotypes, we applied multi-

ple logistic regression analysis to each of the 830 GO terms with combinational optimization

techniques for pCVs as explanatory variables. Logistic regressions were performed using the R

function “brglm” in the “brglm” package, which was designed to determine a solution to the

problem of separation [46]. Combinational optimization was performed using the R function

step, in the default package after adaptation of the “brglm” function. A best linear model con-

sisting of 1 of 21 pCVs as an explanatory variable was selected by optimization of algorithms

based on Akaike’s Information Criterion (AIC) [47]. The selected model was tested at P< 0.05

after Bonferroni correction by the likelihood ratio test using the R function “lrtest” in the

“lmtest” package [42].

Hierarchical cluster analysis for 830 GO terms

The hierarchical cluster analysis (HCA) in Fig 3 was performed using the R function “hca.”

Dissimilarity was calculated based on the ratio of shared genes to the union of genes annotated

with 2 arbitrary genome-wide GO terms. The GO terms were divided into 20 groups as listed

in S3B Table at a height value less than 0.99, such that height was the minimum ratio of the dif-

ferent genes between clusters (complete linkage).

Precision recall analysis

Precision and recall were calculated as described in Baryshnikova and colleagues (2010) [48]

with minor modifications. Correlation coefficients of all (185,745) pairs of 610 genes were cal-

culated using 130 pPC scores or 21 pCV scores. The gene pairs were sorted in ascending order

of correlation coefficient and were ranked by the correlation coefficient. The number of gene

pairs for which 2 genes were co-annotated by at least 1 of the 830 GO terms listed in S3B Table

were counted as true positives (TPs) for each nth (n = 1, 2, . . .. 185,745) rank of gene pairs

from the first to nth rank of the gene pairs. TP was used for the recall. The precision of each

TP was calculated by dividing TP by each rank of pairs.

Pairwise CCA

We first divided the genes into functional gene groups with no common term. The 553 hap-

loinsufficient genes with significant high probabilities of correlation to the gene functions

were classified into disjunctional functional gene groups using GO annotations in common.
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The binary distance between each pair of genes was calculated based on a Boolean matrix of

the selected 306 GO terms and used for clustering by the complete linkage method using static

branch cutting with a height value less than 1; 62 gene groups were identified, each of which

contained from 1 to 33 genes (Fig 6B). To assign the most appropriate GO terms to each gene

group, enrichment of GO terms was analyzed using Fisher’s exact test (P< 0.05 after Bonfer-

roni correction; S8A Table). In 49 of the groups, more than 1 GO term was enriched. The

remaining groups were therefore identified as functional gene groups with no GO terms in

common.

Next, we calculated pairwise correlation coefficients between the functional gene groups.

To detect significant relationships between the gene groups, we performed pairwise CCA

between arbitrary pairs of the 62 gene groups (62C2 = 1,891) using 21 pCV scores. To eliminate

possible detection bias, we used a smaller number of genes than the number of pCVs by reduc-

ing dimensionality of genes after applying PCA to the data of heterozygous genes. For pairwise

CCA, we applied CCA to pCV scores using the genes and/or the selected PCs as variables, and

extracted heterozygote canonical variables (hCVs) as independent components that correlated

between the gene groups. We then tested the significance of the canonical correlation coeffi-

cient of the first hCV at P< 0.05 after Bonferroni correction using Bartlett’s chi-squared test

[44]. Among 1,891 pairs of the 62 gene groups, 136 pairs were detected with significant rela-

tionships between the gene groups (Fig 6B).

Networking with phenotypic correlation

A good way to show a global view of functional relationships based on phenotypic correlation

is through graphical representation of gene networks. Similarity of phenotypes between the

pairs of 513 heterozygotes was calculated using 21 pCV scores and expressed as a correlation

coefficient. To visualize the network of the 46 GO term-enriched gene groups (513 genes, S8B

Table) with significant relationships to other groups (Fig 6B), we used the R function “qgraph”

[49], with which a correlation matrix can be represented as a network. We fed the matrix of

the pCV-score–based correlation coefficient after zero filling cells into the “qgraph” of R func-

tion when at least 1 of 2 genes in the combination was not significantly related to the first hCV

at P< 0.05 by t test for correlation coefficient (see Pairwise CCA section).
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wild type (dashed line) detected in at least 1 trait in 1,112 essential genes were compared

among 220 noise traits (green), 220 mean traits (blue), 61 ratio traits (black), and all 501 traits

(red). Horizontal lines indicate the maximum percentage with each type of trait. (B) Contribu-

tion of “noise + mean” traits (S6 Data). Cyan lines indicate 440 “noise + mean” traits. The

other symbols are the same as in panel A.

(PDF)

S5 Fig. Increased morphological variation within populations of isogenic cells in haploin-

sufficient mutants. The phenotypic variance in morphology was calculated in terms of the

phenotypic potential (x-axis) (S7 Data), as described previously [37]. Asterisks indicate that

applying Bonferroni correction to the Mann–Whitney U test yielded P< 0.01.

(PDF)

S6 Fig. CCA used for extraction of 21 pairs of CVs. The eye diagram [51] illustrates the CCA

procedure. Magenta, red, orange, cyan, green, and blue circles indicate 444 traits, 130 pPCs, 21

pCVs, 21 gCVs, 346 gPCs, and 830 GO terms, respectively. Edges were drawn to have high

loadings by cutting with threshold at P< 0.05 by t test for the loading such that each node has

more than 1 relationship to other nodes. CCA, canonical correlation analysis; CV, canonical

variable.

(PDF)

S7 Fig. Enrichment of GOs with high degrees of PPI and GI. (A) Detection of enriched

genes in 2 datasets. In each GO, logistic regression of the interaction degree was applied to the

GO annotation of 1,044 genes for PPI [52] and 940 genes for GI [26]. Enrichment of the genes

annotated to each GO with a high degree of interaction was assessed using a 1-tailed Wald test

for the slope of the linear model at P< 0.05 after Bonferroni correction. Color peaks indicate

P values of the 1-tailed Wald test for each of 830 GOs. The vertical dashed line indicates P<
0.05 after Bonferroni correction. Colors of peaks and text for 124 and 201 GOs in PPI and GI,

respectively, indicate the GO group and representative GO term, which are the same as in Fig

3. Black peaks and grey texts indicate no correlation was detected at P< 0.05 after Bonferroni

correction. (B) Venn diagram of the enriched GO terms in the 3 datasets. The GOs detected in

each dataset (306 GOs for cell morphology shown in Fig 3, 124 GOs for protein interaction

[52], and 201 GOs for genetic interaction [26]) were summarized in a Venn diagram. GI,

genetic interaction; PPI, protein–protein interaction.

(PDF)

S8 Fig. Correlation between expression level and morphological abnormality. (A) Distribu-

tion of copy number limit and morphological abnormality. Gray circles indicate 1,040 essential

genes available in both datasets. y- and x-Axes indicate the average copy number limit [20]

and morphological abnormality, which was calculated as the Euclidean distance from the

mean of the wild type to each heterozygote to obtain a Z value, as described previously [53].

(B) Distribution of protein abundance and morphological abnormality. Gray circles indicate

780 essential genes available in both datasets. y- and x-Axes indicate protein abundance in the

cell [21] and morphological abnormality, respectively, which is the same as in panel A. Red

line indicates linear regression with a gamma distribution. R2 indicates coefficient of determi-

nation. P values were estimated by likelihood ratio test.

(PDF)

S9 Fig. Detection of correlations between protein abundance and function-specific mor-

phological phenotype among selected genes annotated to specific GO terms. Correlation

between protein abundance and function-specific morphological phenotype were assessed
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using linear regression with a gamma distribution. Function-specific morphological pheno-

types were identified using the best combination of pCVs for each GO term, as described in

Fig 3. Color peaks indicate P values of 1-tailed Wald test for the slope of the linear model in

each of the 306 GOs described in Fig 3. The vertical dashed line indicates FDR = 0.05. Colors

of peaks and text indicate GO group and representative GO term, which are the same as in Fig

3. Black peaks and grey texts indicate that no correlation was detected at FDR = 0.05.

(PDF)

S10 Fig. Significant correlations between independent representative morphological traits

and growth rate in 198 heterozygous ribosome biogenesis mutants. Each independent mor-

phological feature, as defined by PCs (S7 Table), was represented by the morphological traits

with significant PC loading at P< 0.05 after Bonferroni correction (t test). The 11 PCs reached

60% of CCR. Red lines indicate linear regressions with the PDFs defined in S1 Table. Legends

are the same as in Fig 4. R2 indicates coefficient of determination. P values were estimated by

likelihood ratio test.

(PDF)

S11 Fig. Density plot of correlation coefficients. The black curve indicates the distribution of

morphology correlation coefficients between pairs of 610 haploinsufficient mutants. The red

curve indicates the distribution of mean values of the morphology correlation coefficient

within the same GO terms.

(PDF)

S12 Fig. Representative interaction networks of GOs with high correlation coefficients.

The distribution on the left panel shows the means and SDs of the correlation coefficients of

the 306 GOs detected in Fig 3. The red circles indicate GOs that are annotated as protein com-

plexes in the CYC2008 database (http://wodaklab.org/cyc2008/) [50]. The vertical dashed line

indicates half of the mean of the correlation coefficient. The network graphs on the right panel

show representatives of the GOs. The grey nodes indicate essential genes annotated by the rep-

resentative GOs: cytosolic small ribosomal subunit (GO:0022627), RNA polymerase II

(GO:0005665), cytosolic large ribosomal subunit (GO:0022625), SLIK complex (GO:0046695),

chaperonin CCT (GO:0005832), RNA polymerase I activity (GO:0001054), tRNA-intron

endonuclease complex (GO:0000214), proteasome regulatory particle, lid subcomplex

(GO:0008541), and eukaryotic translation initiation factor 2B complex (GO:0005851). The

green and magenta edges in each network indicate positive and negative phenotypic correla-

tions, respectively. GO, gene ontology.

(PDF)

S13 Fig. Precision versus recall for positive correlation coefficients. TP and FP indicate the

numbers of true positives and false positives, respectively. Black and red lines indicate preci-

sion/recall values calculated from pPCs (before CCA) and pCVs (after CCA), respectively.

(PDF)

S14 Fig. Comparison of precision/recall analysis with other large-scale data. Red: morpho-

logical similarity based on haploinsufficient phenotypes (Fig 6A); green: affinity precipitation

[23]; purple: similarity of gene expression [24]; blue: synthetic lethality [26]; and orange: phos-

phorylome network [25].

(PDF)

S1 Data. P values of 1,112 heterozygotes for essential genes, 100 heterozygotes for nones-

sential genes, and 114 replicates of wild type after cultivation in YPD.

(XLSX)
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S2 Data. P values of 50 heterozygotes for essential genes and 50 replicates of wild type

after cultivated in SD.

(XLSX)

S3 Data. Linear predictor of cell morphology for large ribosomal subunit.

(XLSX)

S4 Data. Parametric bootstrap of 114 replicates at 4 thresholds.

(XLSX)

S5 Data. CCR and P values after PCA for 114 replicates of wild type and heterozygotes of

1,112 essential genes and 100 nonessential genes.

(XLSX)

S6 Data. Proportion of detected mutants in each number of traits selected after randomi-

zation.

(XLSX)

S7 Data. Phenotypic potentials of 1,112 heterozygotes for essential genes and 114 repli-

cates of wild type.

(XLSX)
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