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Abstract

New technologies that measure sparse molecular biomarkers from easily accessible bodily fluids 

(e.g. blood, urine, and saliva) are revolutionizing disease diagnostics and precision medicine. 

Microchip devices can measure more disease biomarkers with better sensitivity and specificity 

each year, but clinical interpretation of these biomarkers remains a challenge. Single biomarkers in 

‘liquid biopsy’ often cannot accurately predict the state of a disease due to heterogeneity in 

phenotype and disease expression across individuals. To address this challenge, investigators are 

combining multiplexed measurements of different biomarkers that together define robust 

signatures for specific disease states. Machine learning is a useful tool to automatically discover 

and detect these signatures, especially as new technologies output increasing quantities of 

molecular data. In this paper, we review the state of the field of machine learning applied to 

molecular diagnostics and provide practical guidance to use this tool effectively and to avoid 

common pitfalls.
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Introduction

Researchers in the field of ‘liquid biopsy’ are developing technologies to measure sparse 

molecular biomarkers shed from inaccessible tissue in easily sampled bodily fluids, such as 

urine, blood, saliva, sweat, feces, and tears.1–3 The last decade has seen great progress in this 

field, and there is a growing list of circulating indicators - rare circulating cells, 

microvesicles, nucleic acids, proteins, and metabolites - that can be detected. The field has 

focused primarily on developing minimally invasive sensors that are sufficiently sensitive 

and specific to detect sparse biomarkers against the complex substrate of clinical samples.4–8 

However, as sensor performance has improved, the field has been driven to develop 

computational tools to decode the complex biomarker information to inform patient 

treatment.9–17 This task is made particularly challenging because of variability in biomarker 

expression across individuals and because many diseases are phenotypically heterogeneous. 

As a result, it is rare that a single molecular biomarker can accurately diagnose or 

prognosticate a disease.9,18–21 Furthermore, healthy individuals can have variable baseline 

levels of molecular biomarkers because of a variety of unrelated cofactors, such as genetics 

and diet.22 To address these challenges, researchers are simultaneously measuring multiple 

biomarkers in the hope that their combined signatures are conserved across patients and 

correlate with states of disease. These multidimensional signatures often include 

measurements of multiple molecular biomarkers taken at several time points.

Rapid technical innovation in the field of liquid biopsy is producing microchip-based 

technologies that are increasingly sensitive and specific, are able to measure increasing 

numbers of biomarkers, and are miniaturized and clinically deployable. These diagnostics 

incorporate advances in microfluidics, microdroplet-based digital sensing, Next Generation 

Sequencing (NGS), single-cell RNA sequencing, nanopore sensing, nucleic acid 

microarrays, nanoelectronic sensing, and electrochemical sensing, among others.21,23–27 

One common theme in miniaturized diagnostics is that the marginal cost of measuring 

additional biomarkers continues to shrink as on-chip multiplexing improves.21,23–27 There 

are many excellent, recent reviews that cover the state of the art in microchip development.
2,28–30 The advantage of liquid biopsy compared to traditional biopsy, wherein tissue is 

excised from the body, is that the invasive procedure to remove the tissue is obviated, 

enabling more frequent measurements of diseases in tissues that would otherwise be 

impossible (e.g. brain tissue). The machine learning approaches described in this paper can 

also be applied to measurements on tissues obtained using traditional biopsy, but our focus is 

on liquid biopsy due to the emerging microchip technology to extract increasingly large 

quantities of molecular data. Moreover, due to the typical lack of knowledge on the 

mechanisms behind the release and dynamics of blood-based biomarkers, it is often not 
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possible to rationally design a panel of biomarkers that can classify a specific disease state. 

This lack of knowledge further motivates the use of machine learning approaches to interpret 

liquid biopsy data.75

In addition to their improved performance, lab-on-a-chip systems are becoming increasingly 

low cost and automated, propelling them from engineering research laboratories into the 

hands of caregivers and technicians. As this hardware becomes established in new clinical 

devices, effort is being shifted to the informatics necessary to turn chip outputs into 

clinically useful information. Automated data processing and thoughtfully engineered user 

interfaces are becoming increasingly important to deliver clinically capable, next-generation 

devices. Advances in miniaturized computing and cloud-connected devices have helped 

facilitate the incorporation of automated data processing and machine learning into point-of-

care diagnostic systems.31,32

Machine learning encompasses a set of computational techniques widely applied in many 

fields to reduce large numbers of measurements into lower-dimensional outputs that are 

more useful.11,12,15,17,33–38 In recent years, machine learning algorithms have been 

increasingly applied to liquid biopsy data to aid in disease diagnosis, prediction, and medical 

decision-making. A growing set of studies use these approaches to identify signatures in 

multiple circulating biomarkers for a wide range of applications, including cancer, 

tuberculosis, dengue fever, heart disease, liver disease, brain disease, and diabetes.
9,10,12,13,15,16,21,39–52 These studies employ a variety of machine learning algorithms, 

including support vector machines, decision trees, and random forests, that outperform the 

sensitivity and specificity of individual markers in many applications (Table 1).

Applying Machine Learning to Liquid Biopsy

Machine learning algorithms build a model from sample inputs and use that model to make 

predictions based on subsequent data. Generally, machine learning algorithms fall into two 

main categories: supervised and unsupervised learning. In supervised learning, the algorithm 

is provided a set of training data wherein the true state of the data is known, such as which 

subjects have cancer and which subjects are healthy. Based on this training data, the 

algorithm generates a model that is deployed to predict the state of subsequent subjects for 

which the true state is not known. These predictions can take the form of a ‘classification 

problem,’ identifying a set of discrete states (such as the stage of a patient’s cancer), or a 

‘regression problem,’ across a set of continuous variables (such as the volume of a 

developing tumor). In unsupervised learning, on the other hand, algorithms search for 

patterns in sets of data without labeled states. These algorithms, such as clustering methods, 

may be used to investigate the structure or distribution of a dataset, discover groups of 

similar examples within the data, or reduce data dimensionality.

Supervised and unsupervised learning techniques are each useful for specific applications 

within the field of liquid biopsy. Often, biomarkers are collected to characterize group of 

subjects such that each subject has a single label (for example, which patients have or do not 

have the target condition). In these cases, algorithm training is limited by data collection and 

sample size, making supervised learning techniques most useful. However, machine learning 
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can also be applied in scenarios in which many data points can be collected, but labeling of 

these data points is resource intensive or unreliable.80 For example, if the goal is to classify 

individual cells as either tumor cells or healthy cells, it may be possible to record biomarkers 

from hundreds or thousands of cells but impractical to manually record the true label for 

each cell. In these cases, sample labeling is the primary bottleneck for algorithm training and 

unsupervised learning or active learning methods should be used.96 By clustering samples 

with similar features, it may be possible to differentiate between populations without the 

need for explicit labeling. In this particular application of identifying tumor cells, 

unsupervised techniques (using a generative mixture model) have been used with 

performance approaching that of a supervised method (support vector machine) without the 

need for labelled data.81 Similar unsupervised approaches have also been used to identify 

circulating tumor cells based on genetic clustering,82 identify cell-free DNA of tumor origin,
83 and classify tumor-educated platelets based on RNA expression profiles.46,84 

Unsupervised principal component analysis also offers a method to reduce the 

dimensionality of complex proteomic85 or lipidomic86 spectra sampled with liquid biopsy 

for patient stratification and classification, even in the absence of per-patient labels.

In this review, we focus on supervised learning applications in which each subject has a 

single label, the scenario most relevant for diagnostic devices. There is a typical workflow 

for developing supervised machine learning algorithms (Fig. 1). First, a set of labeled 

samples is assembled for algorithm training. Each sample in this dataset is described by a set 

of measured biomarkers. Once this dataset is assembled, it should be partitioned into a 

‘training dataset,’ containing labeled samples to be used for algorithm development, and a 

‘test or validation dataset,’ containing blinded samples to be used later to assess algorithm 

performance. All algorithm development and tuning should be restricted to the training 

dataset. The machine learning algorithm is then fit to the training dataset to generate a model 

for predicting the labels of subsequent data it has never seen. The performance of this model 

can be evaluated during development using a technique called cross validation. In cross 

validation, a subset of the training dataset is purposely left out during model fitting, and the 

generated model is evaluated by testing its prediction accuracy on that left-out data. 

Typically this process is performed iteratively, leaving out many possible subsets, or folds, 

of the data and then averaging performance results. As all testing for each fold is performed 

on data excluded from model fitting, cross validation provides insight as to how a model will 

perform on an independent dataset. This technique is a valuable tool for assessing algorithm 

performance on a specific dataset and for tuning algorithm-specific parameters. Despite the 

merits of cross validation, a significant issue when developing machine learning algorithms 

is ‘overfitting’ the training dataset. Overfitting refers to developing a model that mimics the 

specific training dataset too closely, such that it performs well on the training data but does 

not generalize to new data. Such a model may result from excessive experimentation with a 

single training dataset, due to inadvertent fitting of dataset-specific characteristics. As a 

result, to properly measure model performance, the trained model should be evaluated on the 

previously held-out test dataset with even the researcher blinded to the true sample labels. 

This testing dataset should never be inspected or used in any way during training or 

algorithm development, and therefore provides an unbiased view of the algorithm’s expected 

performance on independent test data.
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Limitations and Challenges of Applying Machine Learning to Liquid 

Biopsies

Although machine learning offers tremendous potential to improve diagnostics, it is 

important to consider its limitations. The efficacy of a machine learning algorithm is most 

significantly determined by the quality, structure, and amount of the underlying data. While 

complex or computationally-intensive algorithms may provide incremental improvements 

over simpler models, no level of complexity can compensate for poorly designed, 

insufficiently sampled, or excessively noisy training data. The critical importance of the 

training data raises issues that must be considered when developing machine learning 

algorithms for liquid biopsy applications. Because humans and diseases are so variable, a 

major challenge in liquid biopsy based studies is to select appropriate cohorts to train and 

evaluate the system that represent the full range of the disease process. For instance, if one 

were to develop a diagnostic for tuberculosis (TB), and only trained and evaluated the 

system for patients that are positive for TB and patients that are healthy, it would be left to 

chance whether the system could discriminate TB from common alternative diagnoses such 

as pneumonia. Similarly, because machine learning algorithms are agnostic to which 

patterns they identify in a dataset, careful thought needs to be taken to design experiments 

that avoid training on artifacts of sample collection or processing. For example, if all 

samples from group A are collected and/or measured in one batch and all samples from 

group B in another batch, it is possible that a discriminative model captures batch-to-batch 

variation rather than the desired differences between groups. This particular issue can be 

avoided by including a reference to normalize each batch or by mixing samples from 

different processing batches across the training and testing sets.

A further challenge to using machine learning in liquid biopsy is the small number of 

samples typically available to engineers during technology development, due to the time and 

expense required to collect samples from clinics or animal models. Typical studies that 

present a new liquid biopsy technology use n < 50 samples to train and test the machine 

learning algorithm.7,53–55 With such systems, where the number of measured biomarkers p 
is similar to the number of samples measured n, special consideration needs to be given to 

mitigate the effects of overfitting, as discussed below. An additional limitation of machine 

learning is that the generated model is not often easily interpretable.56 Even if a machine 

learning algorithm is highly effective, it is typically not possible to understand the 

fundamental relationship between algorithm structure and the underlying biology, or to 

glean significant insights to the physical system being modeled. Biomarkers that have 

important roles classifying different phenotypes in the algorithm do not necessarily have a 

significant, direct relationship to the biology of the disease. For example, a biomarker may 

result from an immune response downstream of the disease process of interest. Since it can 

be difficult to decipher the mechanism driving a machine learning algorithm, caution should 

be taken when attempting to apply an algorithm to new cohorts sufficiently different from 

the training subjects, such as translating from an animal model to human clinical samples.
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Considerations for Choosing a Machine Learning Algorithm

One of the most confusing aspects for newcomers to the field is choosing the correct 

machine learning algorithm for a particular application. Many machine learning algorithms 

have exotic sounding names, such as elastic net, Least Absolute Shrinkage and Selection 

Operator (LASSO), or random forest, and for a given dataset there are often no obvious 

criteria for making the best choice. However, careful consideration of a particular data set 

and the objectives of a study can help to identify a more manageable number of options. 

Here, we focus on supervised machine learning algorithms, and the methods described 

below can be applied equally well to both problems that require classification of discrete 

states and regression of continuous variables. This discussion is limited only to a few key 

topics for researchers working on liquid biopsy applications with small datasets; a more 

comprehensive background can be found in Bishop’s Pattern Recognition and Machine 
Learning57 textbook and freely available online resources including The Elements of 
Statistical Learning56 by Hastie, Tibshirani, and Friedman, and Andrew Ng’s Machine 
Learning course on Coursera.

What is the size of the data?

One of the most important dataset characteristics to consider when choosing a classifier is 

the size. In machine learning, datasets are typically structured in a matrix of dimensions n × 

p, where n is the number of observations and p is the number of features. In the case of 

liquid biopsy, n corresponds to the number of measured samples and p corresponds to the 

number of biomarkers being measured in each sample. Both dimensions need to be 

considered when designing a machine learning based diagnostic. The goal of machine 

learning is to identify and model patterns in the data, and the larger the sample size n, the 

more clearly these patterns will be represented in the dataset. In general, the more tunable 

parameters that an algorithm has, the larger the dataset must be to fit an accurate model to it. 

While machine learning offers the most advantages when analyzing ‘big data,’ it is often 

untenable to gather thousands of clinical or animal samples when developing a new 

diagnostic test. In the following section, we suggest specific approaches that should be 

considered when applying machine learning to ‘small data’.

The number of biomarkers p, more generally called features, dictates the dimensionality of 

the data, which in turn influences algorithm selection. Machine learning datasets are often 

represented in ‘feature space,’ which is a p-dimensional coordinate space with one 

dimension representing each feature. Ideally, the number of features must be sufficient to 

capture the desired trends in the data without too many unnecessary or unhelpful features, 

which may decrease model generalizability and affect the speed of training and running the 

algorithm. There are several methods, discussed below, for empirically selecting the best 

features from the dataset and eliminating those with little or no discriminative value. 

Therefore, a good first approach is to include all features that may be conceivably useful and 

to use statistical procedures to choose the best complementary features from the complete 

set.
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What is the application?

When choosing a machine learning algorithm, it is important to first consider the practical 

application of the algorithm. Will the algorithm be used for offline study of previously 

collected data or embedded in a device for real-time analysis? If analysis is carried out on a 

remote system, care must be taken to ensure that all medical data is transmitted and stored in 

compliance with Health Insurance Portability and Accountability Act (HIPAA) regulations 

to protect patient privacy. This may entail storing biomarker measurements in a secure 

database (e.g, an electronic medical record or Research Electronic Data Capture (REDCap) 

database), and limiting off-board analysis to de-identified patient data. If the algorithm is to 

be implemented directly in an implanted device, it may be necessary to consider the 

computational limitations of the system. Processing complexity may need to be curtailed for 

implanted devices that analyze data continuously due to limitations in on-board processing 

power, battery life, and acceptable heat generation71; however, most liquid biopsy 

applications use few enough samples and biomarkers that runtime demands are generally not 

a significant concern.

What kinds of algorithms exist?

While a complete discussion of the breadth of existing machine learning algorithms is 

outside the scope of this paper, here we provide a view of some of the most popular 

algorithms likely to be applicable to liquid biopsy. These algorithms are included in standard 

machine learning libraries and can be quickly implemented in a few lines of code. 

Commonly used machine learning algorithm packages include R packages (e.g. caret, 

randomForest, e1071, rpart, glmnet), Python libraries (e.g. TensorFlow, scikit-learn, Theano, 

Pylearn2, Pyevolve), and MATLAB Statistics and Machine Leaning Toolbox (e.g. SVM, 

KNN, PCA, Ensemble, Decision trees). Additionally, these packages include sample data 

sets that can be used to test the algorithms. The sample data sets can be found in the ‘Sample 

Data Sets’ section in the MATLAB & Simulink website, sklearn.datasets package for 

Python, and the ‘Comprehensive R Archive Network (CRAN)’ for R.

One of the most basic machine learning algorithms is the naïve Bayes model. This model, 

traditionally applied to text classification tasks, attempts to classify data by assuming 

independence among biomarkers and imposing a particular distribution, often a Gaussian 

distribution, to the data. These strong and generally oversimplified assumptions87 typically 

render naïve Bayes the most effective option only in some cases of very small datasets.88,89

Another group of algorithms are ‘nearest neighbor’ methods, such as k-Nearest Neighbors 

(KNN). These nonparametric models attempt to classify new data by examining the labels of 

the nearest training examples in feature space. Nearest neighbor methods do not impose 

assumptions on the data, but require sufficient sampling, become ineffective with large 

numbers of features (the ‘curse of dimensionality’),90 and are sensitive to training choices 

such as the distance metric or number of nearest neighbors to examine.

A commonly used classification algorithm is logistic regression. This model, analogous to 

standard linear regression, models the probability that data belongs to a certain class using a 

linear combination of the biomarkers. While logistic regression itself is prone to overfitting, 
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this model can be extended to eliminate less relevant features and favor robustness over 

maximizing training accuracy (LASSO, ridge regression, and elastic net models).91

Another widely applied algorithm is the support vector machine (SVM). This algorithm 

seeks to separate classes of data by finding the decision boundary that produces the largest 

separation, or margin, between classes. In contrast to logistic regression, SVM focuses only 

on the datapoint at the border between classes, rather than taking obviously correct points 

into account. SVM can be used to generate linear or nonlinear decision boundaries.

An especially useful class of algorithms for small to medium size datasets is decision-tree-

based methods. Decision trees classify data by iteratively splitting the data based on the 

most informative biomarker, defined in statistical terms as that which produces the largest 

‘information gain’. Decision trees become particularly useful when grouped into ensembles, 

such as a random forest, as discussed below. These ensembles can sometimes be trained with 

‘boosting’, a technique designed to assign more weight to samples that are difficult to 

classify during training. Tree-based models are very popular due to their flexibility, ease of 

training, and ability to handle correlated or unnecessary features without overfitting.92,93

Lastly, deep learning and neural networks are increasingly popular models that rely on layers 

of interconnected, nonlinear data transformations. While these models can be highly 

effective in a wide range of tasks,94 they generally require very large datasets during training 

to avoid overfitting.95 This data requirement renders these algorithms inapplicable for most 

liquid biopsy applications.

Which algorithm should I use?

Even with a clearly defined dataset and objective, it is very rarely possible to predict which 

algorithm will be most effective. In this case, ‘effectiveness’ is measured by algorithm 

performance on a ‘held-out’ test dataset (i.e. a set of data not used to train the algorithm). 

Sometimes, there may be a benefit to simpler models, such as logistic regression or decision 

trees. With fewer tunable parameters, these models may be easier to design and, in some 

cases, are easier to interpret, providing confidence that the model is meaningful and capable 

of producing insights into the data itself such as which biomarkers are most strongly 

diagnostic. However, in a typical case with a large number of biomarkers, many of which are 

weakly diagnostic or correlated with one another, even simple models cannot be interpreted 

in a useful or reliable manner.

With modern machine learning packages, it can be tempting to apply and compare a large 

number of algorithms, with a range of tunable parameters for each algorithm, to find the best 

performer on cross validation. Unfortunately, this approach is prone to overfitting, especially 

when working with a small training dataset. In most cases, the best model is constructed by 

combining several algorithms in an ensemble or stack, as is described in more detail in the 

‘Model averaging and bootstrapping’ section. Using a cohort of algorithms mitigates 

overfitting by any one algorithm, and tends to provide a more effective model than any 

single method alone. If the individual algorithms have few tunable parameters (as is the case 

in the previously mentioned algorithms), they can be tuned and evaluated using cross 

validation without extensive searching or comparison. It is important to remember during 
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training that all such evaluation must be limited to the training dataset to avoid overfitting 

the test data.

As an example, we compared the performance of various individual algorithms and stacked 

approaches using real liquid biopsy data from our previous work, Ko et al. ACS Nano, 2017, 

where we measured the expression levels of multiple exosomal mRNAs to diagnose 

pancreatic cancer patients versus healthy controls.76 We performed 100 iterations of 10-fold 

cross validation on individual algorithms (SVM, KNN, Logistic regression, Decision tree, 

Naïve Bayes, Random forest) and on a stack that combines these algorithms. The 

classification accuracy of individual algorithms ranged from 77.4% – 92.9%. For the stack, 

the classification accuracy was 93.7%, and also has the advantage of being less prone to 

overfitting.

Special consideration for machine learning on ‘small data’

Much of the recent progress in the field of machine learning has been driven by a revolution 

in ‘big data’58. Machine learning offers a uniquely effective tool for parsing massive 

quantities of information with millions of data points. However, in the field of liquid biopsy 

and medical diagnostics, dataset sizes are typically much smaller, on the order of tens to 

hundreds of observations prior to clinical deployment59–61. In these cases, machine learning 

can still be very useful. With ‘small data,’ we can leverage machine learning by focusing on 

a particular set of algorithms and techniques designed to constrain model complexity and 

estimate prediction uncertainty.

The number of observations available for model training dictates the number and complexity 

of potential models that could be applied to the data. With relatively few data points, there 

are countless methods that could adequately fit the data, but we lack the capacity to 

discriminate among their expected performance on yet-to-be-collected data. We are thus 

limited to only simple hypotheses modeled with algorithms such as linear regression or 

shallow decision trees, rather than models with nonlinearity or higher-order feature 

interactions, as the simpler models are more likely to have consistent performance on unseen 

data62. Small datasets inherently preclude optimization of complex models with many 

tunable weights or parameters or those that rely on stochastic gradient descent learning such 

as neural networks.

Overfitting the training data is particularly worrisome when working with small datasets. In 

this case, overfitting stems from applying too complex an algorithm for the limited number 

of training samples, resulting in a model that closely fits the training data but lacks robust 

performance on new data. The relationship between model complexity and robustness is 

demonstrated in Fig. 2. The goal is to develop a model that is complex enough to capture the 

desired signal but not so complex as to capture noisy data or features in the training set. In 

the case of liquid biopsy, the goal is to model meaningful differences in biomarkers between 

subjects with and without the target condition, while minimizing modeling effects such as 

inter-subject noise, inter-measurement noise, or outlier measurements.
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One strategy to limit model complexity is to use ‘feature selection’, a process by which the 

most useful biomarkers are identified for inclusion in the model. This approach seeks to 

generate a more robust and generalizable model by eliminating the effects of noisy or 

irrelevant biomarkers. While feature selection is not always useful or reliable for modern 

machine learning methods72, it is of particularly practical importance in the field of liquid 

biopsy. For example, many potential biomarkers can be screened during preliminary 

sequencing studies, but due to practical hardware limitations (e.g. cost, simplicity), a much 

smaller number is used during device implementation. During device design, it is therefore 

quite meaningful to select the limited set of biomarkers with the best joint performance. It 

may be possible to reduce the feature space up front using relevant literature and domain 

expertise, choosing biomarkers with physiologic relevance and eliminating other biomarkers 

within the same pathway that are likely to be highly correlated. This manually curated 

feature set can then be further reduced using feature selection methods appropriate for sparse 

modeling, where the number of features may be significantly greater than the number of 

observations (p >> n)73. In this scenario, we recommend applying LASSO (a version of 

linear regression in which large coefficients are penalized), stepwise regression (in which 

features are sequentially added to the model if they meet a significance threshold), or LARS 

(least angle regression; a combination of these two methods)64 for feature selection. Details 

on these methods can be found in original papers describing LASSO65 and LARS66 or in a 

recent textbook by the same authors67. In some cases, it may be necessary to select a 

particular number of features to accommodate the diagnostic hardware. This can be 

accomplished either by tuning the LASSO algorithm such that it produces the desired 

number of features (at some expense of performance), or by brute force optimization of your 

classifier by cross validation with all possible feature subsets of the appropriate size. The 

biomarkers selected by these methods should be taken with the caveat that empiric feature 

selection with small datasets is inherently noisy; there is no guarantee that these biomarkers 

have particular biological significance, or that they would consistently be selected if more 

data were gathered.

During model training, regularization must then be applied to the selected features to further 

limit model complexity. Regularization refers to a series of techniques designed to prevent 

overfitting of the training data, such as discouraging large coefficients in a linear model. 

Appropriate regularization methods for small datasets include L1 (LASSO) or L2 (ridge 

regression) penalties for linear models, or maximum depth and pruning requirements for 

tree-based models. (LASSO is an example of a broader class of regularization methods for 

feature selection, serving both functions.) To some extent, the choice of regularization 

strategy is related to insights about the dataset. For instance, L1 regularization can be used if 

few features are expected to be important, while L2 regularization is more applicable if 

many features are expected that are weakly predictive. Together, feature selection and 

regularization produce a simpler, more generalizable model that leverages the most useful 

biomarkers without overfitting noise in the training data.

Model averaging and bootstrapping

While small datasets limit us to relatively simple models, it is possible to combine many 

simple models into a single, more powerful algorithm using model averaging.68,69 Model 
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averaging generates a ‘committee’ or an ‘ensemble’ model. If each simple model performs 

even slightly better than random chance, the average prediction of many such models will 

lead to a more accurate prediction. One common way to implement model averaging is 

through ‘bagging,’ in which a series of simple models is generated on randomly sampled, 

i.e. bootstrapped, subsets of the dataset. Each model, or ‘weak learner’, is sensitive to the 

noise of its particular training data and has limited predictive accuracy; the average 

prediction of all the models, however, is much more accurate as this noise will be averaged 

out across the many data subsets. This approach is often applied to shallow decision trees to 

generate the popular ‘random forest’ classifier. Another way to combine multiple models is 

through Bayesian model averaging.68 This approach, often applied to linear models, 

generates a weighted average of model predictions based on each model’s level of certainty. 

Models can also be combined using a slightly different technique known as ‘stacking’. In 

this technique, predictions from multiple models, typically chosen to represent a variety of 

machine learning methods, are fed into a ‘second-level’ model that combines this 

information to generate the final predictions. This second-level model can learn to 

emphasize each base model where it performs well and discount each base model where it 

performs poorly. Stacking is especially useful for small datasets since it mitigates model-

specific overfitting. So long as each base model overfits the data differently, they can be 

intelligently combined to cover the feature space. Using stacking, the fear of ‘missing out’ 

on the benefit of any particular algorithm is mitigated, as any potentially useful algorithm 

can simply be added to the stack as another base model. More detail on stacking can be 

found in Data Mining by Witten, et al.58

An example of ensemble learning is demonstrated in Fig. 3, in which a classification 

problem is solved using an ensemble of bootstrapped logistic regression models. Each 

individual logistic regression model is trained on a subset of the data, and produces a linear 

decision boundary. The decision boundary of the full ensemble is constructed as the median 

of these individual decision boundaries. When the data are easily separable, the ensemble 

yields a similar decision boundary as a single model built on all the data (Fig. 3A). However, 

if a single outlier is introduced, the model trained on all the data is significantly skewed, 

while the ensemble decision boundary is largely unchanged. (Fig. 3B) This quality is 

especially important in small datasets, which may be greatly affected by only a few outlying 

measurements. The distribution of decision boundaries within an ensemble also provides 

information about the underlying dataset, as greater discrepancies among the models, panel 

B compared to A, may indicate a higher degree of noise or outlying data.

With small datasets, it is also important to consider inherent statistical limitations during 

both model optimization and prediction. A small dataset for model training also means a 

small test set for estimating out-of-sample performance. In this case, it can be easy to overfit 

the test set with repeated experimentation, negating its value as an independent test set. 

Small datasets also limit confidence in model parameters. The output of a machine learning 

algorithm is often reported in terms of a single point estimate, masking a potentially high 

degree of uncertainty that propagates to the model’s predictions. One effective way to 

estimate the uncertainty of model predictions is by analyzing the distribution of predictions 

from models in a committee. This approach enables generation of approximate confidence 

intervals, providing insight to overall model performance and allowing identification of 
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areas in which the model performs particularly well or poorly. For example, collective 

examination of many bootstrapped classification models allows us to compute confidence 

intervals, or generate receiver operating characteristic (ROC) curves, for classification tasks. 

An example of this approach is shown in Fig. 4, using a two-class dataset modeled by a 

random forest classifier with 1000 bootstrapped trees. Each individual tree in the ensemble 

provides a classification score, in this case the probability that a test point is red, for 

predicting the label of a given test point. Querying the distribution of classification scores 

over all trees provides not only an average ensemble classification score (Fig. 4B), but also 

its uncertainty (Fig. 4C). Therefore, this approach improves on strict binary classification by 

also providing a level of confidence for the predicted label, further informing decision-

making based on test results. Additionally, by comparing the classification uncertainty at 

different points we can assess which areas in feature space may be under-sampled in the 

current dataset, leading to predictions with high uncertainty. This methodology is especially 

valuable in high-dimensionality data, which may be more difficult to visualize than the toy 

data presented here.

Conclusion

Liquid biopsy based approaches offer many new opportunities to measure molecular 

biomarkers for the diagnosis, prognosis, and monitoring of disease. Machine learning, and 

its ability to identify signatures of specific disease states in multiplexed data, will be key to 

taking advantage of the new molecular information that microchip-based diagnostics can 

extract. The ‘small data’ inherent to the development of new liquid biopsy technologies 

creates challenges in developing machine learning based approaches, but these problems can 

be overcome through careful study design and thoughtful use of established algorithms. By 

combining multiple measurements of molecular biomarkers, machine learning has 

demonstrated that it can improve diagnostic performance relative to a manually chosen 

biomarker or a set of biomarkers using the same underlying dataset. Furthermore, it is 

possible in some cases that no individual biomarker has significant predictive value on its 

own, but that its diagnostic power is derived from the cumulative interpretation of many 

weak predictors. Machine learning algorithms can evaluate the effects of many biomarkers 

simultaneously and can discover higher-order interactions among biomarkers that would not 

be possible to design manually. The approaches outlined in this paper can also be applied to 

more conventional diagnostic platforms, including tissue biopsy and imaging techniques.
77–79 Because these technologies are more established platforms that are currently used in 

the clinic, larger data sets than what is available for liquid biopsies are generally available.

While this paper focused primarily on the ‘small data’ challenges that are faced by academic 

labs that develop new diagnostics, companies with budgets many times larger than academic 

laboratories are entering the field of liquid biopsy and will likely evolve towards ‘big data’. 

These larger data sets, which will include large numbers of patient samples n > 1,000 and 

large numbers of features p > 1,000 (e.g. using ultra-broad and ultra-deep sequencing), will 

enable the use of the emerging, high performance tools such as deep learning.70

The trend in liquid biopsy, towards automated microchips that output increasingly large 

datasets, will be augmented and enhanced by the continued development of machine 
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learning and its continued adoption by those in the liquid biopsy field. Based on these 

trends, we expect the emergence of a coming next generation of high performance liquid 

biopsy technologies that will have a significant impact on the improved diagnosis and 

treatment of patients.
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Figure 1. 
A generic workflow for developing and evaluating a machine learning based liquid biopsy 

diagnostic.
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Figure 2. 
Model complexity and generalizability. Each panel represents the decision boundaries of a 

k-nearest neighbor classifier with a different level of complexity. A: A low complexity (high 

bias) model captures the overall trend of the data, but misses some meaningful signal. B: An 

intermediate complexity model captures the meaningful dataset distribution, and is more 

likely to perform well on new data. C: A high complexity (high variance) model overfits the 

dataset. This model fits the training data perfectly, but is not likely to perform well on new 

data. D,E,F: A test dataset is drawn from the same distribution as the training data. 

Superimposed decision boundaries and classification accuracy on the test dataset are shown 

for the models in A, B, and C, respectively. During model development, model complexity 

must be optimized to maximize performance on out-of-sample validation data not used for 

training.
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Figure 3. 
Using bootstrapping to generate an ensemble classifier. The two-class dataset was modeled 

with 50 bootstrapped logistic regression models. The decision boundary of each 

bootstrapped model (i.e. the line on which points are equally likely to be red or blue) is 

represented by a gray line. The median decision boundary of the ensemble is shown in 

black. The decision boundary of a single logistic regression model built on all of the data is 

shown in pink. These methods were applied to a dataset without outliers (A) and the same 

dataset with a single outlier added (B).
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Figure 4. 
A. Toy data drawn from two classes (red and blue). A 1000-tree random forest was trained 

on this dataset for binary classification. B. Heat map showing the ensemble classification 

score (probability that the test point is red) throughout feature space. C. Heat map showing 

the standard deviation of the classification score (reflecting classification uncertainty) 

throughout feature space. Under-sampled areas are associated with higher degrees of 

classification uncertainty.
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