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Abstract

The goal of the NIH funded A.S.P.E.N. 2017 research workshop (RW) “Gastric Bypass: Role of 

the Gut”, was to focus on the exciting research evaluating gut-derived signals in modulating 

outcomes post bariatric surgery. Though gastric bypass surgery has undoubted positive effects, the 

mechanistic basis of improved outcomes cannot be solely explained by caloric restriction.

Emerging data suggest that bile acid metabolic pathways, luminal contents, energy balance, gut 

mucosal integrity as well as the gut microbiota are significantly modulated post bariatric surgery 

and may be responsible for the variable outcomes, each of which were rigorously evaluated.

The RW served as a timely and novel academic meeting that brought together clinicians and 

researchers across the scientific spectrum, fostering a unique venue for inter-disciplinary 

collaboration among investigators.

It promoted engaging discussion and evolution of new research hypothesis and ideas, driving the 

development of novel ameliorative, therapeutic and non-surgical interventions targeting obesity 

and its co-morbidities.

Importantly, a critical evaluation of the current knowledge regarding gut modulated signaling post 

bariatric surgery, potential pitfalls and lacunae were thoroughly addressed.
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Introduction

Obesity is a global health problem and its ameliorative strategies remain a major research 

focus1,2. Though several interventions have been trialed, the mainstay of current therapy 

anchors on lifestyle modification inclusive of nutrition and exercise3–5. While clinically 

meaningful weight loss may be achieved with lifestyle intervention, such weight loss is 

generally not sustained and its efficacy in modulating comorbidities has been questioned6. 

Thus, there remains an ongoing need for effective and durable therapeutic options, including 

bariatric surgery.

With surgical advances patients with obesity tend to have significant improvement in obesity 

related co-morbidities with gastric bypass surgery. While several variations for such bariatric 

surgery are in practice, one of the earliest was the Roux-en-Y gastric bypass (RYGB)7. Post-

surgery improvement in most organ systems affected by obesity have been noted8.

In keeping with significant health benefits, the number of patients undergoing bariatric 

surgery has reached unprecedented levels, with over 300,000 bariatric surgery procedures 

being undertaken annually9,10. Given the remarkable success, the underlying mechanisms 

leading to improved outcomes after bariatric surgery are the focus of a burgeoning field of 

research that may lead to novel non-surgical interventions.

Recent data suggests that post-surgery improvement may not merely be an effect of weight 

loss; there may be a significant influence of altered gut derived signals in modulating the 

disease pathology. Alterations in gut anatomy also induce adaptive changes to the 

morphology of the gut, which affect the absorption of macro and micronutrients. The 

mechanisms responsible for metabolic and nutritional outcomes following gastric bypass 

were reviewed as part of the workshop and presented by each faculty member.

(I) Overview of Enterohepatic Circulation, Gut Microbiota and Metabolic Pathways Relevant 
to the Gut-liver Axis: (Ajay K Jain)

Gastric Bypass FXR and Bile Acids—Emerging studies suggest that bile acid 

metabolic pathways are disrupted with bariatric surgery with significant alterations to the 

finely regulated enterohepatic bile acid circulation11,12. Bile acids, traditionally considered 

as toxic agents have emerged as major signaling molecules maintaining several homeostatic 

pathways involved in insulin, glucose metabolism, lipid regulation as well as regulators of 

hepatic steatosis13,14. Marked increases in serum bile acids and its sub-fractions have been 

noted post RYGB in comparison to weight matched controls12,15. New research provides 

evidence that enteral bile acid treatment activates the nuclear receptor, Farnesoid X Receptor 

(FXR) in gut epithelial cells16,17. Such activation stimulates the production of the growth 

factor, Fibroblast Growth Factor – 19 (FGF19). FGF19 is subsequently delivered via the 

portal system to the liver and is known to modulate bile acid, glucose and lipid 

metabolism18,19. In fact, intravenously delivered FGF19 has been shown to reverse or 

prevent diabetes, improve glycemic control and reduced hepatic steatosis and triglyceride 

levels20–22. FGF19 thus functions as a secretory signal from the gut to the liver, regulating 

bile acid synthesis23.
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This seems to provide evidence that hepatic bile acid synthesis; glucose and lipid 

metabolism is modulated via gut FXR signaling24–26. Indeed, higher levels of FXR and 

FGF19 have been noted several months post RYGB in human subjects27.

Both large animal studies and human studies have shown that exogenously delivered FXR 

agonist improve glycemic control, lipid metabolism and hepatic steatosis28,29. Additionally 

surgical procedures involving ileal transposition (where sections of the ileum are inserted 

into the jejunum), result in a significant increase in bile acids levels, improvement in body 

mass and obesity related co-morbidities30.

A postulated mechanism has been a short circuiting of the normal enterohepatic circulation 

brought about by the altered anatomy, as the ileum is the primary site of bile acid absorption. 

Improved glycemic regulation, reduced hepatic steatosis, increased bile acid levels, as well 

as weight loss have been noted in animal models with biliary diversion31,32. The 

recapitulation of the benefits of gastric bypass using such procedure raises the thought 

provoking idea that anatomic alteration during bariatric surgery may explain some of the 

mechanistic basis of improved outcomes. However, while this data is encouraging it has also 

been noted that there are differences in post prandial bile acids after RYGB or Vertical 

sleeve gastrectomy (VSG) which points to a differential enterohepatic signaling based on the 

type of surgery33,34.

Further exploration of such bile acid regulated key signaling pathways with a potential for 

pharmacological and nutritional intervention was a major focus of the 2017 RW.

Gastric Bypass and role of Glucagon Like Peptide-1 (GLP-1) and TGR5 axis—
A further mechanistic link is again through bile acid regulated pathways. Bile acids activate 

TGR5 – a cell surface G-protein-coupled receptor35. TGR5 is known to be present in the 

intestines, brown adipose tissue and the liver36. There is an increase in intracellular cAMP 

upon bile acid stimulation of TGR5 with variable effects dependent on the cell type 

expressing TGR537. The role of bile acids in regulation of glucose homeostasis is further 

strengthened by the secretion of GLP-1 upon TGR5 activation38,39.

We now know that plasma GLP-1 rapidly increases after RYGB40. GLP-1 has been 

implicated in glycemic homeostasis. Along with glucose dependent insulinotropic 

polypeptide (GIP), GLP-1 is a major gut hormone which enhances the insulin response to 

nutrient ingestion41. In non-obese individuals with normal glucose tolerance GLP-1 is 

released in response to nutrient intake. However, this GLP-1 response is significantly 

diminished in those with obesity42. It is known that post RYGB there in an increased TGR5 

signaling12. Given that GLP-1 is secreted from enteroendocrine L cells in the intestine, it is 

plausible that manipulation of the gastro-intestinal tract as in RYGB alters GLP-1 secretion.

Further highlighting this pathway is data that postoperatively there is enhancement of 

postprandial GLP-1 response43,44. GLP-1 response is known to be greater after RYGB than 

after Sleeve Gastrectomy45. Additionally, such increase in GLP-1 response was not noted in 

calorie restricted obese patients; mimicking the post-surgery diet46 or in obese patients on a 

low-calorie diet experiencing a similar weight loss. It has also been shown that there is a 
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progressive increase in GLP-1 level during the first year postoperatively with a sustained 

response noted in some individuals47–49.

Given the above data it appears plausible that alterations to GLP-1 and the TGR5-GLP axis, 

brought about by the surgical procedure of Gastric bypass exert significant beneficial 

influence and the therapeutic potential needs to be explored.

Gut Microbiota FXR and TGR5—While the bacterial mass in any individual is a small 

percent of body weight50, the bacterial genome exceeds by several folds the human genome. 

Ironically this makes us genetically 1% human and 99% bacterial51,52.

When viewed as a whole, this “super gut microbial organism” can perform vital physiologic 

functions53. These typically benefit the host in educating the mucosal immune system, 

nutrient extraction from undigested carbohydrates, production of short chain fatty acids, 

production of vitamins and metabolism of bile acids54,55.

A large human study evaluating fecal microbial colonies in dizygotic and monozygotic twin 

pairs addressed the role of host genetic factors, adiposity, environment and its influence on 

the gut microbiota56. Although the human gut microbiota was shared among family 

members, it was specific for each individual. A comparable co-variation between dizygotic 

and monozygotic twin pairs excluded difference based on genetic factors. Obesity was 

associated with intestinal microbiomes showing reduced diversity at a phylum level56.

In rodent studies, delivery of cecal microbiota from ob/ob mice into wild germ free animals 

resulted in a modest fat gain. Such bacterial transfer also increased food calorie extraction in 

comparison to animals receiving gut bacteria from lean animal donors57. Several studies 

evaluating Nonalcoholic steatohepatitis (NASH), have noted improvement in steatosis, 

glucose intolerance as well as lipid profiles58,59 with exogenous gut bacterial 

modulation60,61.

These studies further support the belief that gut bacteria modulate and play an important role 

in human disease. Several rodent and human studies have shown that post RYGB there 

occurs a restructuring of the gut microbiota62,63. An exogenous transfer of the gut microbes 

from RYGB mice to un-operated, germ-free mice resulted in significant reduction in fat 

mass gain as well as less weight gain in comparison to such a transfer from mice that 

underwent sham surgery64.

Given that gut microbes are intimately involved in gut nutrient processing and their 

alterations are noted with RYGB, it is reason to believe that altered gut microbiota secondary 

to gastric bypass influences positive outcomes post RYGB surgery.

(II) Gut Hormones and Bariatric Surgery: (Carel Le Roux)

Gut hormones have been implicated as part of the mechanisms of how bariatric surgery 

reduces bodyweight and maintains long term weight loss65.

RYGB and VSG might alter signaling from the gut to the hypothalamus and brainstem. 

Markedly higher postprandial levels of the anorexigenic hormone peptide YY (PYY)66 are 
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noted after both RYGB and VSG, but not after calorie restriction or adjustable gastric 

banding (AGB)67,68. After a meal, PYY is released from the L cells in the distal small bowel 

in proportion to consumed calories. It decreases food intake by acting at the arcuate nucleus 

of the hypothalamus69, and also via vagal afferents ending at the nucleus of the solitary 

track, thus signaling satiety. PYY has been shown to delay gastric emptying and increase 

energy expenditure70. Patients with increased PYY after RYGB have more weight loss71,72. 

Blocking the release of PYY with octreotide increased food intake in humans and rats after 

RYGB, but not AGB. Mechanistic studies have also shown the physiological importance of 

PYY in rodent studies. GLP-1 responses are similar to those of PYY after both RYGB and 

VSG73. GLP‑1 is secreted by the L cells of the small bowel together with PYY, with higher 

concentrations in the colon and distal ileum. It acts on the GLP‑1 receptors in the 

hypothalamus, striatum, substantia nigra and brainstem74. In response to a meal the peptide 

is produced, which decreases food intake via its effects on the brainstem and 

hypothalamus75. GLP‑1 delays gastric emptying, inhibits the release of glucagon and acts 

on the pancreas to promote secretion of insulin76. Whether GLP‑1 alone is necessary for 

VSG-induced weight loss has been questioned. The procedure was effective equally in 

GLP‑1 receptor wild-type and knockout mice77 but the potential synergy of GLP-1 along 

with other gut hormones post these operations may hold the key. The rapid nutrient delivery 

to the distal ileum after RYGB might be responsible for the exaggerated increase of both 

GLP-1 and PYY levels78. In the absence of a shorter small bowel in VSG, the rise in levels 

of these gut hormones has been attributed to rapid gastric emptying79. However, this finding 

is probably just part of the story as nutrient sensing in the proximal segment of the small 

bowel can produce signal to the distal small bowel to release gut hormones80. Recent data 

also suggests that post RYGB there is an increase in the post prandial responses for 

cholecystokinin and glucagon and a decrease in ghrelin and leptin81. It is also known that 

gut hormones are elevated within days after surgery and remain elevated for at least a decade 

after RYGB47. However, although they play an important role the gut hormones are only 

part of the mechanistic explanations for why bariatric surgery is able to reduce weight and 

maintain weight loss.

(III) Role of Bile Salts and Key Hepatobiliary Receptors in Modulating Gut Structure and 
Signaling Post Gastric Bypass Surgery (Puneet Puri)

Weight loss in the management of obesity is plagued by the lack of effective long term 

sustainability and translation into improved outcomes6,82. The most notable obesity related 

liver condition is nonalcoholic fatty liver disease (NAFLD). More concerning is the fact that 

NASH, the aggressive phenotype of NAFLD, is emerging as the leading cause of cirrhosis, 

liver cancer and liver transplantation83,84.

Bariatric surgery remains a very important approach to combat obesity and its co-

morbidities85. The benefits of bariatric surgery extend beyond weight loss and are postulated 

to occur via modulation of glucose and lipid homeostasis, which in turn are also regulated 

by bile acids86. Given alterations noted in serum bile acid levels following gastric bypass 

surgery in both human and animal studies12,87, several authors have postulated that the 

beneficial effects post-surgery are a result, at least in part, due to changes in enterohepatic 

circulation of bile acids88.
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Experimental approaches such as ‘ileal transposition’ or bile diversion have been used in 

preclinical studies. Ileal transposition studies in rodent models demonstrate diminished food 

intake, significant weight loss and resolution of the features of the metabolic syndrome89. 

These improvements are linked to adaptation of the interposed segment as evident by greater 

length of jejunum-like villi, enhanced mucosal surface area, as well as increase in mRNA 

expression of transcription factor GATA4/ileal lipid binding protein (GATA4/ILBP)30. 

Additionally, ileal transposition short-circuits enterohepatic recycling of the bile acids that 

lead to protective effects against the metabolic syndrome30. Importantly, weight loss alone 

does not improve the metabolic effects as is seen in rodents with similar weight loss on food 

restriction, but are observed in surgical weight loss procedures that alter serum bile acids and 

have been noted to help in the resolution of NASH90.

While data translated from these studies is certainly helpful in defining mechanistic links, it 

is plausible that additional bile acid pathways are modulated by current bariatric surgery 

procedures as there is a known variability in the serum bile acid levels based on the kind of 

surgery performed34,91.

In fact, VSG with gastroduodenal continuity is becoming the preferred surgical option for 

obesity in recent years92. In addition to weight loss, VSG can produce changes in bile acids 

and their receptor mediated molecular actions confer the metabolic benefits93. We now know 

that FXR is “a” target for the beneficial weight-loss dependent and independent effects of 

VSG, similarly its downstream targets small heterodimer partner (SHP) and indirect entero-

hepatic signal FGF15/19 also merit future investigation as potential therapeutic targets94. 

Further mechanistic insights into bile acid signaling and regulation of entero-hepatic 

circulation will advance our understanding of bariatric surgery related metabolic benefits. In 

future, this will allow translation of these metabolic benefits through non- or minimally 

invasive “bariatric-mimetic” interventions that would bridge the current vast therapeutic gap 

in patients suffering from obesity and other related comorbidities including NASH95.

(IV) Changes in intestinal metabolism and portal signaling (Ali Tavakkoli)

Mechanisms leading to the anti-diabetic effects of bariatric surgery remain poorly 

elucidated. Understanding these mechanisms can lead to development of less invasive 

surgical or medical alternatives that can be offered to a wider patient population. There has 

been a broad interest in the changes in intestinal function that occurs after RYGB surgery, 

with studies showing increase in intestinal glucose utilization after surgery96. Furthermore, 

studies have also shown a decrease in intestinal glucose absorption after RYGB97,98. It has 

been postulated that these changes in intestinal function, alter fasting and post-prandial 

portal vein milieu which can alter hepatic glucose handling and lead to the early reduction in 

hepatic insulin resistance that is seen after bariatric surgery. To support this hypothesis, 

studies using portal vein infusions in a rodent model, have shown post-infusion changes in 

expression of hepatic enzymes involved in glucose homeostasis, through a neutrally 

mediated process that likely involves SGLT3 as a portal glucose sensor97. The authors 

concluded that the portal vein was not only capable of sensing its glucose levels but 

responded to it by altering hepatic glucose handling.
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The portal vein delivers the intestinal venous drainage to the liver and as such provides a 

direct communication between the bowel and the liver. The above mentioned studies which 

show that the portal vein is more than a simple conduit between the bowel and the liver, and 

the observation that changes in portal vein glucose levels can lead to changes in hepatic 

pathways involved in glucose homeostasis97,99, through a neutrally mediated pathway, 

highlight an important role for this structure in post-operative glucose improvement.

To this effect studies have documented a decrease in fasting and post-prandial glucose levels 

after RYGB surgery in rodents, with associated decrease in hepatic gluconeogenesis and 

glycolysis. Interestingly, some of these changes are uniquely seen in RYGB and not VSG, 

which may explain the more potent anti-diabetic effects of RYGB. Further research may 

provide insights into the mechanistic basic of these responses.

(V) Gut Nutrient Sensing: Gut Remodeling and Adaptation to Gastric Bypass and Effects 
on Absorption of Macro and Micronutrients (Nana Gletsu-Miller)

Gastric bypass surgery is traditionally considered to be malabsorptive100, however, from the 

stand point of nutrition this characterization is simplistic. Several mechanisms contribute to 

the risk of malnutrition observed following RYGB. One major issue is the reduced dietary 

intake of macro and micronutrients, secondary to decreased energy intake and to food 

intolerances that develop after surgery101,102. In addition patients decrease their intake of 

dietary factors that enhance absorption including fat and vitamin C, which leads to decreased 

bioavailability of nutrients such as vitamin D, iron and copper. Besides changes in dietary 

intake, anatomical changes result in reduced nutrient bioavailability and intestinal 

absorption. Resection of the stomach antrum decreases gastric acid secretion103,104 and loss 

of absorptive surface in the duodenum and proximal jejunum reduces access to nutrient 

transporters105. At the same time, the adaptive response to changes in the anatomy result in 

growth of the remaining small intestine, similar to the adaptation of the gut that occurs after 

resection of the intestine, referred to as short gut syndrome106. The result of these changes is 

an increase the absorption of some nutrients but not others after RYGB107. Therefore the 

impact of RYGB on nutritional status is mixed with respect to macro and micronutrients.

Impact on macronutrient status—As aforementioned changes in gut anatomy, 

accompanied by intestinal hyperplasia106,108 lead to changes in macronutrient absorption. 

Over the long term, the gut retains or enhances its ability to absorb glucose109, fatty acids110 

and amino acids111,112. Elegant studies in rodents and humans demonstrated that gut 

adaptations can lead to improvements in glucose metabolism, as the intestine assists with 

glucose disposal from the periphery109. At one and six months post gastric bypass, it has 

been demonstrated that even though patients decreased their dietary intake of fat, they did 

not exhibit deficiencies in essential fatty acids113. However, enhanced absorption of amino 

acids does not compensate for the fact that many patients do not meet the dietary intake of 

60 g of protein that is recommended for this population114,115. The evidence supporting this 

recommendation was rated as low; information on the impact of dietary protein on protein 

status during surgically-induced weight loss is mostly observational116 and evidence from 

randomized clinical trials is extremely limited117. This is an important issue since 

sarcopenia is common after surgery, with patient losing 10 to 28% of lean mass116. The 
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clinical manifestations of a reduction of lean body mass and sarcopenic obesity include 

decreased energy expenditure118, muscle strength119, and bone density118, adverse outcomes 

that have the potential to reduce the benefits of surgery over the long term.

Impact on micronutrient status—Unlike macronutrients, patients undergoing RYGB 

are more vulnerable to deficiencies in micronutrients, primarily minerals and fat soluble 

vitamins. It has long been appreciated that nutritional complications such as hair loss, bone 

loss, anemia, fatigue, neuropathies120, and more severe symptoms including bone 

fractures121, blindness122 and paralysis123, associated with deficiencies in micronutrients 

can occur following gastric bypass. Unfortunately, the literature regarding the micronutrient 

status of RYGB is incomplete due to the lack of patient follow-up and nutritional screening. 

Our best knowledge is that deficiencies in iron, calcium and vitamin D are common, ranging 

from 25 to 75%120. Deficiencies in vitamins A, B12 and other B vitamins occur less 

frequently with incidences of around 10%124,125 The mechanisms responsible are complex 

since obesity per se, prior to surgery, is a risk factor for deficiency in specific nutrients, such 

as vitamin D126 and iron127. In the obese state, the bioavailability of iron and vitamin D is 

reduced due to obesity-induced inflammation128 and sequestration in adipose tissue129, 

respectively. Following surgery, as patients experience weight loss, this alleviates the 

adverse impact on the nutritional status that is related to obesity130,131. Despite the favorable 

impact of weight loss, research shows that the nutritional status of vitamin B12, iron, zinc, 

copper, and calcium worsens after surgery120. This may be due to resection of the stomach 

and the resulting decrease in gastric acid secretion59,60. Gastric acid is needed to digest the 

minerals from food, and solubilize them, so that they are bioavailable for absorption. 

Moreover, to reduce the risk of stomach ulcers after surgery, patients increase their use of 

proton pump inhibitors132, and hypogastric acidity impairs the absorption of nutrients133. 

Bypass of the proximal intestine, which is where the majority of the transporters of minerals 

are located, also contributes to the reduced absorption of iron105, zinc105, and vitamin D134 

that has been observed after surgery. It is not clear whether gut adaptation, over the long 

term, can rescue the defects in intestinal absorption of micronutrients135–138.

Strategies for prevention and treatment—The risk of malnutrition following RYGB 

reduces its safety profile. Adverse outcomes related to function and quality of life139,140 

would be reduced if nutritional support of these patients was improved. Therefore patients, 

practitioners, and other stakeholders need to know the best practices for the treatment and 

prevention of nutritional deficiencies114. Studies have demonstrated that sufficient intake of 

protein and iron, can realistically be obtained from diet especially if it is nutrient 

dense115,141. Use of dietary supplements is also an effective way to manage status of 

protein142, calcium, iron141,143, and vitamins D115 and B12
144 after gastric bypass. For 

treatment of deficiencies, although clinical trial are limited, data suggest that high-dose 

supplementation of iron145, vitamins D142,146 and B12 and protein117 is effective. Taken 

together, since oral ingestion of food and supplements can be used to prevent and treat 

malnutrition, this suggests that sufficient capacity of the gut remains for digestion and 

absorption of micronutrients after surgery. However, it has also been advocated for patients 

to undergo intravenous administration of nutrients, as a second line of therapy114,147. In 

summary, more research is needed to determine optimum strategies for treatment and 
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prevention of nutritional deficiencies post gastric bypass surgery. This information will 

improve nutritional outcomes so that more patients can benefit from this life-saving 

procedure.

(VI) Effect of Microbiota on Digestion and Absorption: Integrity of the Mucosal Barrier 
(Bruce M. Wolfe)

The extent to which obesity contributes to the development and severity of obesity-related 

comorbid conditions such as type 2 diabetes, hypertension, dyslipidemia, and obstructive 

sleep apnea generally increases with the severity of obesity but is highly variable148. There 

are both genetic and environmental factors which contribute to obesity-related comorbid 

disease, including certain alterations of the composition of the microbiome. Efforts to 

determine causality are the subject of ongoing research.

In addition, weight loss is highly variable among people with obesity following interventions 

including lifestyle intervention, pharmacotherapy, and bariatric surgery/gastric bypass149. 

Efforts to explain or predict the extent of this variable weight loss following gastric bypass 

remain largely unknown. While, the NIH multi-center consortium, Longitudinal Assessment 

of Bariatric Surgery, identified changes in eating behaviors that contribute modestly to this 

variation150, further research is necessary into the potential contributions by genomic factors 

as well as changes of the microbiome induced by gastric bypass to identify appropriate 

candidates. Though mechanisms indicating a direct relationship between gut microbiota 

changes and response to gastric bypass remain a major focus of research, we know that the 

gut microbiota in mammals plays an important role in the digestion, absorption, and 

extraction of energy from ingested nutrients151. The importance of this energy extraction 

varies among mammalian species. For example, in cows, as much as 70% of total energy 

extraction from the diet results from fermentation production of short-chain fatty acids. 

Germ-free mice require approximately 30% greater energy intake in order to achieve 

comparable growth to normally colonized mice. The contribution from microbiota digestion 

of nutrients in humans is estimated to represent approximately 10% of total energy, a figure 

that potentially varies widely.

The mammalian proximal intestine absorbs simple carbohydrates efficiently, especially 

glucose. Disaccharides are also absorbed and, to a limited extent, polysaccharides. 

Otherwise indigestible carbohydrates in the proximal intestine pass distally for digestion and 

metabolism by luminal microbiota. Fermentation in which polysaccharides are metabolized 

to short-chain fatty acids is an important pathway. Pyruvate is metabolized to acetyl-CoA 

and ultimately acetate, butyrate and propionate152. Butyrate and acetate are readily absorbed 

and contribute to energy supply, particularly for enterocytes. Butyrate has been identified as 

a modifier of cytokine production by CT cells and to enhance the integrity of the intestinal 

epithelial barrier. Metabolic signaling is also attributed to absorbed butyrate153. Acetate has 

a role in enhancing the resolution of intestinal inflammation and protection from intestinal 

pathogens.

In summary, gut microbiota is responsible for the digestion of otherwise indigestible 

carbohydrates and, to a lesser extent, protein and lipids. The contribution of these processes 

to total energy supply will vary as functions of dietary intake, microbiome composition, and 
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other factors involved in digestion of nutrients including bile salts, and pancreatic and other 

enzymes154. One measure of qualitative detection of the microbiota effect on digestion is the 

production of both methane and hydrogen. These gases are excreted in the breath and may 

be detected qualitatively if not quantitatively, reflecting bacterial digestion. Since gut 

anatomy is altered post bariatric surgery there is data confirming an associated change in the 

microbiota. Whether such change this is a cause or has a major effect post bariatric surgery 

needs further investigation.

Low levels of chronic inflammation are variably associated with obesity. This low level 

inflammation is associated with atherosclerosis, insulin resistance, type 2 diabetes as well as 

non-alcoholic steatohepatitis152. The activation of inflammatory cells in fat stores involves 

the action of cytokines, chemokines, and acute phase reactants. Triggers of inflammatory 

cells include adipocyte apoptosis, saturated free fatty acids, ceramides, glucose, and low 

levels of endotoxemia (LPS).

LPS-binding protein (LPB) serves as a surrogate marker of underlying low-grade 

endotoxemia induced by LPS from the gut. The absorption of LPS is attributed to increased 

permeability of the intestinal barrier induced by alterations of the microbiome among other 

factors. Levels of LPB, BMI, and obstructive sleep apnea have all been shown to be 

associated in children155. New data also shows that short term decrease in LPS is 

additionally dependent on the type of the surgical procedure as well as on the glycemic 

status of a patient156. In mice, a high fat diet induced changes of the microbiome are 

associated with endotoxemia, suggesting a relationship between diet-induced changes of the 

microbiome, intestinal permeability to endotoxins, and related systemic inflammation157. 

This may provide a link between the association of the gut microbiome and cardio/metabolic 

health158. As changes in the flow of the food stream post bariatric surgery can alter the 

microbiota, it seem intuitive to believe that these microscopic organisms may prove 

formidable players in outcomes post such surgery.

Microbiome-obesity research challenges—It is apparent that many associations of 

the descriptive findings of the microbiome with metabolic phenomena and related human 

disease have been established including gastric bypass. Most of these studies use feces, 

which may or may not be an appropriate representation of the composition of the 

microbiome throughout the intestinal tract. Additional challenges arise from the incomplete 

status of bacterial genome databases and the high number of polymorphisms. There are 

species differences among the animal models. Finally, obesity, as noted above, is a 

heterogeneous condition. Thus, establishing a cause-and-effect relationship and a basis for 

therapeutic interventions will require sorting out multiple aspects of the relationship of the 

microbiome to obesity and related comorbid disease. These investigations generate 

exceedingly large data files which require rapidly evolving skillsets among computational 

biologists for analyses.
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(VII) Gut Microbial Symbiosis and Key Enterocyte Derived Signals Influencing Health and 
Disease: Microbial Metabolomics (Blandine Laferrère)

We know that specific composition of the gut microbiome associates with pathological 

conditions such as cardio vascular disease, inflammatory bowel disease or asthma and with 

certain phenotypes like obesity and insulin resistance159. However, the mechanism by which 

the gut microbiome maintains health or contributes to diseases is unknown. Metabolomics is 

the quantitative analysis by mass-spectrometry or nuclear magnetic resonance spectroscopy 

of large numbers of low molecular weight metabolites, substrates and products in metabolic 

pathways, in bio specimens (fluids or tissue)160. Identifying metabolomic signatures and 

circulating biomarkers associated with the metabolism and functions of gut bacteria is an 

important step to understand the pathways and mechanisms by which the gut microbiome 

contributes to the development of diseases. These metabolomic biomarkers could also be 

used to track response to treatment. Discussed below are four examples of targeted 

metabolomics to the measure circulating biomarkers of microbiome metabolism: short chain 

fatty acids (SCFA), bile acids, branched chain amino acids (BCAA) and trimethylamine-N-

oxide (TMAO), and how they relate to outcomes post bariatric surgery.

SCFA – fuel and anti-carcinogen—The SCFAs are fatty acids with 2 to 6 carbons, 

bacterial metabolites produced during the colonic fermentation of indigestible 

oligosaccharides, dietary plant fibers, non-digested proteins and intestinal mucin, that are at 

the interface between the diet, the microbiota and the host161. SCFA (and medium chain FA) 

are primarily absorbed through the portal vein during lipid digestion, while long chain fatty 

acids go through chylomicrons, the lymphatic canal and the subclavian vein. SCFAs have 

many positive functions. Butyrate is the major energy source for colonocytes162–164. SCFAs 

stimulate the production of the satiety hormones GLP-1 and PYY via activation of the G-

protein-coupled receptor FFAR2165,166, a mechanism by which SCFA may modulate food 

intake167. Propionate is largely metabolized in the liver, and acetate is the main circulating 

SCFA168. SCFAs play a role in lipid metabolism and inflammation, improve insulin 

sensitivity and modulate the risk of cardio vascular disease, in part by activation of a subset 

of G protein-coupled receptors169,170. The administration of inulin-propionate ester, a 

dietary fiber, to 60 overweight humans reduced body weight, intra-abdominal adipose tissue, 

liver fat and improved insulin resistance in a 24-weeks randomized clinical trial. The 

targeted colonic delivery of inulin-propionate increased circulating PYY and GLP-1 

concentrations during a test meal and reduced subsequent food intake171. This in vivo data 

confirm the in vitro stimulation of PYY and GLP-1 from a colonic cell line by butyrate and 

propionate166. Colonic infusions of SCFA mixtures, in concentrations and ratios similar to 

the ones reached after fiber intake, increased fat oxidation, energy expenditure and PYY, and 

decreased lipolysis in overweight/obese men172. The systemic availability and metabolism 

of colonic-derived SCFAs in healthy subjects has been demonstrated using stable isotopes. 

The quantification of SCFA production from 13C-labelled fibers in the human colon can be 

done by measurement of 13C-labelled SCFA concentrations in blood173174. In that study, the 

systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% 

and 2%, respectively. Conversion of acetate into butyrate (24%) is the most prevalent 

interconversion by the colonic microbiota. Little administered acetate was incorporated into 

cholesterol (<1%) and less than 15% in fatty acids. On average, 6% of colonic propionate 
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was incorporated into glucose. Most of SCFAs excretion occurred via the lungs after 

oxidation to 13CO2, and almost no SCFAs (less than 0.05%) were excreted into urine. There 

is no report to our knowledge of levels of circulating SCFA after bariatric surgery. However, 

fecal SCFA concentration and microbial composition was shown to be altered after 

biliopancreatic diversion and related to change in metabolism175.

Bile acids and microbiota – symbiotic relationship—Bile acids are synthesized in 

the liver from cholesterol under the control of key enzymes, stored in the gall bladder and 

excreted in the intestine upon ingestion of meals high in fat. Historically, their main function 

is to facilitate the emulsification of dietary fats and the intestinal absorption of lipids and 

lipophilic vitamins176. Bile acids undergo further transformation by the gut microbial 

enzymes, including bile salt hydrolase, through deconjugation and dehydroxylation reactions 

that generate unconjugated and secondary bile acids177. Apart from regulating secondary 

bile acid metabolism, gut microbiota also reduce the synthesis of bile acids in the liver, by a 

mechanism involving the suppression of FXR expression in the ileum178. Therefore, the gut 

microbiota contributes to the diversity and composition of the bile acid pool176,179. The 

activity of bile salt hydrolase may be modified in colon cancer and or liver disease. In the 

gut, bile acids control bacterial overgrowth and microbiome composition180–182. We also 

know that bile acids have carcinogenic potential183,184,185. In addition to their role in lipid 

digestion and as bacteriostatic agents, bile acids signal a variety of systems in the liver and 

intestine by interaction with multiple nuclear receptors186 and play a role in glucose and 

lipid metabolism187,188. Dietary factors such as prebiotics play important roles in the growth 

of intestinal microbiota and bile acids metabolism. Fecal bile acid profiling, as opposed to 

circulating bile acids, may be a better non-invasive tool to monitor the intestinal 

environment189. Many studies have shown an increase of circulating bile acids pool after 

RYGB15,190,191. However, the increased concentration of circulating bile acids and the 

change in the composition of conjugated bile acids do not seem to parallel the observed 

GLP-1 rise after the same surgery as noted in some studies191.

Protein and amino acids—Bacterial fermentation of proteins in distal colon can produce 

ammonia which can act as tumor promotor. Fermentation of aromatic amino acid tyrosine 

and tryptophan by colonic bacteria can produce phenols and indoles respectively. Phenols, 

such as p-cresol, may be pro-carcinogen in colon CA192. Essential amino acids, not 

synthesized in the body, are provided by the diet and de novo biosynthesis by gut bacteria. 

The intestinal microbiota is involved in the utilization and catabolism of several amino acids 

originating from the diet and from endogenous proteins. These amino acids can serve as 

precursors for the synthesis of bacterial products such as SCFAs. Gut bacteria may 

contribute to the branched chain amino acid (BCAA) signature associated with insulin 

resistance. Circulating BCAAs have long been associated with obesity and insulin 

resistance193,194,195,196,197 and can predict future type 2 diabetes198. Their concentration 

decreases after interventions that improve insulin sensitivity, such as surgical weight loss by 

RYGB199. Circulating BCAA concentrations are modulated by their metabolism in adipose 

tissue200 and, perhaps, also by the microbiome201. The altered gut bacterial composition in 

individuals with obesity and type 2 diabetes may contribute to their dys-metabolism by 

influencing amino acids and SCFAs bioavailability to the host. Individuals with insulin 
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resistance who have a serum metabolome characterized by increased levels of BCAAs, have 

a gut microbiome with an enriched biosynthetic potential for BCAAs and deprived of genes 

encoding bacterial inward transporters (from blood to gut) for these amino acid. Specific 

bacterial species driving this association were shown to induce insulin resistance, aggravate 

glucose intolerance and augment circulating levels of BCAAs in mice201.

The importance of the TMA/TMAO microbiome-host axis in health and disease
—Dietary phosphatidylcholine (lecithin), the major source of choline, is metabolized by 

intestinal lipases to form glycerophosphocholine, phosphocholine, and choline202. Choline 

containing nutrients that reach the cecum and the large bowel serve as fuel for intestinal 

bacteria, producing trimethylamine (TMA). TMA is oxidized to trimethylamine-N-oxide 

(TMAO) in the liver. TMAO enhances the accumulation of cholesterol in macrophages, the 

deposition of foam cells in arterial walls and the formation of atherosclerosis, all factors 

associated with an increased risk of cardiovascular disease and death203,204. Circulating 

choline can also be oxidized to betaine, a metabolite involved in methylation reactions and 

detoxification of homocysteine, in the liver and in the kidneys. In humans, elevated plasma 

concentrations of TMAO, choline and betaine are associated with an increased risk of a 

major adverse cardiovascular event, even after adjusting for traditional risk factors. The role 

of the gut microbiota in TMAO production was demonstrated in vivo. The acute rise of 

circulating TMAO after an oral phosphatidyl challenge can be suppressed with 

antibiotics205206. Paradoxically, circulating TMAO levels are elevated after RYGB, a surgery 

associated with large weight loss, decreased inflammation and cardiovascular risk207.

(VIII) Microbiome Host Mucosal Interactions: The Role of Epigenetics (Richard 
Kellermayer)

Epigenetics defines molecular mechanisms that influence pre-translational gene expression 

independently from the genetic code. Epigenetic processes can respond to environmental 

changes and have been implicated as important participants in the developmental origins of 

human diseases208. Secondary to environmental plasticity, the host epigenome in mammals 

carries the potential to communicate with the commensal microbiota through direct and 

indirect mechanisms209.

With respect to obesity, epigenetic regulation of body composition210 and physical 

activity211 through prenatal/early life exposures are intense areas of research. Intermediates 

of energy metabolism are co-factors in epigenetically mediated chromatin, and secondary 

gene expression modifications. Therefore, gene regulation underlying phenotypic 

determinants of adult metabolic health may be influenced by maternal and early postnatal 

diet212. Maternal (by communicating maternal nutritional influences to the emryo) and 

individual (own) commensal microbiota are inherent participants in this environment-diet 

associated developmental programming. In fact, early developmental modulation of gut 

microbial composition leads to lasting metabolic consequences in mammals213. The clinical 

relevance of these findings is supported by the association of infantile antibiotic exposure 

and subsequently increased body mass index in children214.
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The ongoing importance of microbiome composition in obesity and related comorbidities is 

underscored by the beneficial effects of fecal microbiota transplantation (FMT) from lean 

individuals to obese patients with metabolic syndrome215. This therapeutic intervention is 

intensely being investigated in ongoing obesity related clinical trials216. Importantly, a 

recent controlled study on FMT from lean donors into obese individuals showed a transient 

improvement in insulin sensitivity in those recipients who had lower microbiome diversity at 

baseline (responders)217.

Recent research is also examining the potentially critical role of the microbiome in regards 

to bariatric surgery outcomes. Murine model experiments indicate that the microbiome plays 

a critical role in weight gain following transient loss of obesity218. In accordance with this 

observation, recent human translational research showed consistent increase in the Roseburia 
genus in patients with successful resolution of diabetes following both RYGB and SG 

surgery219. Such microbiome changes associated with fecal metabolite alterations, may be 

relevant for modulating epigenetic mechanisms. Importantly, Roseburia are butyrate 

producers220. Butyrate can promote epigenetic remodeling in intestinal stem cells by acting 

as a histone deacetylase inhibitor221. This example signifies the potential for bariatric 

surgery induced microbiome modification to alter host physiology, which requires intense 

exploration in the future.

(IX) Gut Microbiota and Obesity: Changes Post Bariatric Surgery – Clinical Perspective 
(John K. DiBaise)

A better understanding of the mechanisms underlying the effectiveness of bariatric 

operations is important in order to optimize patient selection and clinical outcomes of these 

operations, and may result in the development of less invasive, novel treatments. The gut 

microbiota is now recognized to contribute to host energy harvest, storage and the 

development of obesity154,222. The relationship between the intestinal microbiota and 

obesity/adiposity has generated interest into the potential role of this complex microbial 

community as a contributing factor to the success or failure of bariatric operations.

RYGB anatomical and physiological changes may contribute to dysbiosis—
Following RYGB, a variety of environmental, systemic and anatomical changes occur that 

might directly or indirectly affect the microbial composition of the gut. Reduced gastric size 

will affect diet composition and acid exposure to the nutrients. Altered nutrient flow due to 

accelerated transit through the shortened small intestine may affect oxygen and nutrient 

exposure to the more distal gut. Altered bile acids and mixing of pancreaticobiliary 

secretions with nutrients will affect gut microbes. Changes in gut hormone production (e.g., 

GLP-1, PYY) due to altered nutrient exposure in the distal gut, and vagal nerve disruption 

may also affect gut microbe composition. Finally, other factors that may affect gut microbial 

populations post-RYGB64 include the occurrence of postoperative complications (some of 

which may require altered diet and exposure to antibiotics), altered diet (e.g., food 

intolerances), pre-existing disordered eating behaviors and, potentially, changes in exercise 

and mood.
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Gut microbe changes after RYGB—To date, only a handful of studies have been 

reported. A small pilot study, using pyrosequencing on fecal samples from morbidly obese 

individuals, normal weight subjects and patients who had successful weight loss after RYGB 

showed that RYGB resulted in increased abundances of Gammaproteobacteria and 

Verrucomicrobia and decreased Clostridia62. Higher numbers of the H2-producing Prevotella 
and H2-consuming Archaea in the obese subjects were found, suggesting a syntrophic 

relationship between certain microbes that improves the efficiency of fermentation and 

contributes to the development of obesity. In a study of 30 obese individuals and 13 lean 

controls, fecal samples were collected at baseline in all subjects and 3 months and 6 months 

after RYGB in the obese individuals223. Real-time quantitative PCR was performed to 

examine seven bacterial groups. After RYGB, Escherichia coli levels were significantly 

elevated at both 3 and 6 months compared to baseline and lean controls. Faecalibacterium 
prausnitzii, a bacteria suggested to have anti-inflammatory activity, also increased in 

abundance after RYGB but only in those individuals who were diabetic preoperatively. The 

same research group then performed deep sequencing on the same patients and found an 

increase in richness and diversity of the microbiota after RYGB with 37% of the increased 

bacteria belonging to Proteobacteria224. Seven dominant genera identified post-surgery, were 

independent of reduced calorie intake and were associated with markers of anti-

inflammation and insulin sensitivity. Using a non-obese rat model comparing RYGB to a 

sham control, Li et al. performed pyrosequencing and metabolite profiling of fecal 

samples63. Similar to the studies in humans, they found a 52-fold increase in Proteobacteria 

(bloom in Enterobacter hormaechei) with smaller decreases in both Firmicutes and 

Bacteroidetes. Increased oligosaccharide fermentation (and increased short-chain fatty 

acids), biogenesis of p-cresol, and amine generation were also detected post-RYGB. The 

same group demonstrated that this shift in microbial composition post-RYGB correlated 

with an increased cytotoxic environment highlighting a potential long-term cancer risk after 

RYGB225. It has been shown that RYGB alters the microbiota along the length of the gut but 

these changes were most substantial in the Roux limb and common channel suggesting that 

changes in microbes in the small bowel may regulate the beneficial effects post-surgery226. 

In another study using a mouse model of RYGB and comparing microbial and metabolite 

changes among two groups of mice following sham surgery with or without caloric 

restriction64 increases in Proteobacteria (Escherichia), Verrucomicrobia (Akkermansia) and 

Bacteroidetes (Alistipes) were found. These changes occurred by 1 week post-op, were 

consistent regardless of diet, were similar with both luminal and mucosal samples, and were 

detectable along the length of the gut. Moreover, when the authors transplanted the 

microbiota from all mouse groups into germ-free mice, RYGB feces recipients significantly 

decreased in body weight compared to the other groups64 providing for the first time 

empirical support for the claim that the changes in gut microbes post-RYGB contribute to 

reduced weight/adiposity.

Gut microbe changes after other bariatric operations—Important insight into the 

role of the gut microbes in the success or failure of RYGB may be obtained by studying 

changes in gut microbes occurring after other bariatric operations with less drastic 

alterations in gut anatomy and physiology. Vertical sleeve gastrectomy results in the 

resection of about 80% of the greater curvature portion of the stomach and causes a 
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restriction of food intake, acceleration of gastric emptying and alteration of gut hormones 

affecting satiety and appetite. VSG was noted to produce only modest microbial changes 

compared to RYGB219 but did lead an increase in the Bacteroidetes/Firmicutes ratio and a 

decrease in Eubacterium rectale, Ruminococcus obeum, Lachnospiraceae bacterium and F. 
prausnitzii (in those with impaired glucose tolerance only)227. VSG also led to an increase in 

malabsorption due to loss of energy-rich fatty acids in the stool, impaired bile acid 

circulation227 and resulted in greater capacity for metabolism of amino acids219. A human 

study compared gut microbial changes about 9 years after either RYGB or vertical banded 

gastroplasty (VBG), a predominantly restrictive operation228. They found significant 

differences in microbe composition between RYGB and obese patients but not between 

VBG and obesity or VBG and RYGB228. Furthermore, the two operations resulted in 

alterations of fecal and circulating metabolites in comparison to obese controls. Finally, they 

investigated a causal link by performing microbiota transplantation of human stool from the 

three groups into germ free mice. Mice colonized with RYGB and VBG microbiota 

accumulated 43% and 26% less body fat, respectively, than mice colonized with obese 

microbiota. Additionally, RYBG colonized mice had lower respiratory quotient than the 

other groups suggesting a decreased utilization of carbohydrates and an increased utilization 

of lipids. Finally, results from a retrospective study comparing RYGB and adjustable gastric 

banding (AGB), another mostly restrictive operation, to lean and obese control subjects 

found that RYGB and lean patients had higher microbial diversity and evenness than the 

other groups229. Bacilli, Gammaproteobacteria, and Prevotellaceae were the microbial 

signatures discriminating RYGB microbiota from lean and obese controls. 

Gammaproteobacteria and Bacilli also discriminated RYGB from AGB while Flavobacteriia 
and Porphyromonadacea discriminated AGB subjects from the non-surgical subjects. RYGB 

had higher butyrate, propionate and branch chain fatty acids230 (saturated fatty acids which 

have methyl branches on the carbon chain, usually noted in bacteria) than the other groups, 

implicating fatty acid signaling, which stimulate appetite regulating peptides, as a 

mechanism of action of RYGB. The available data, while encouraging, are limited by the 

small number of subjects, relatively short duration of follow-up, lack of standardization for 

obesity-related comorbidities and medication use, and different techniques used to probe the 

microbial communities present.

(X) Understanding the Clinical Implications of Therapeutic Bariatric Interventions (Robert 
G. Martindale)

The numerous potential interventions in the management of obesity are almost limitless 

today. Endeavors focused at weight loss and metabolic management of obesity using 

interventions ranging from behavioral modification, to pharmaceutical agents28, to 

endoscopic devices like intra-gastric balloons231, absorption barriers and various methods of 

gastric plication to the bariatric surgical procedures make decisions on the optimal choice of 

weight loss method difficult. Weight management now requires a very individualized 

approach232. Of these interventions the bariatric surgical procedures are currently the most 

durable with 20 year outcome data now available for RYGB and BPD and 10 year outcome 

data for sleeve gastrectomy233,234. Continued follow-up of these patients and well-designed 

trials have shown the co-morbidities associated with obesity are dramatically decreased 

following successful weight loss including type 2 DM, obstructive sleep apnea, 
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hypertension, several cancers and even mortality. Although successful in managing weight 

loss bariatric surgery is not without significant complications which are often ignored or 

understated by the “business” of bariatric surgery235.

The previous concept of bariatric surgery being a decision between malabsorption procedure 

and restrictive procedure is very naive and the metabolic changes associated with bariatric 

surgery are much more complex than ever anticipated. The future is bright for the study and 

management of obesity with the recent exponential increase in understanding of the 

complexity of obesity. With “Big Data”, a better understanding of the >30+ peptides 

involved in appetite control, the importance of bile salts and the microbiome in metabolic 

regulation has offered a new focus for the metabolic management of obesity236,237. The 

potential for therapeutic interventions with bile salts or their receptor antagonist30,39,238 has 

changed the focus and approach to the bariatric patient. Emerging data also points to a 

rebalancing of satiety signals post-surgery via resensitization of the gut-brain axis which 

could be a contributor to the improved outcomes239. Mechanistic pathways mediating such 

signaling remain a major research focus.

Potential answers and approaches to the global obesity crisis are within reach but this will 

take a concerted effort on not only with the health care professionals but also the general 

public. Government incentives and sponsored education to all levels of the public focused to 

draw attention to the problem of obesity will be needed. The importance of major dietary 

changes and exercise cannot be understated in any successful approach to weight 

management.

Final Remarks

The theme of the A.S.P.E.N. 2017 RW was to focus on research evaluating the role of the 

gut gut-derived signals in modulating outcomes post Bariatric Surgery. Gastric Bypass 

results in significant loss of fat mass. Additionally there is improvement in glucose/insulin 

signaling, hepatic steatosis and NAFLD, which by far outweigh the benefits of associated 

weight loss.

Manipulation of the gastro-intestinal tract as in RYGB results in marked increase in bile 

acids and its sub-fractions, which in gut epithelial cells activate Farnesoid X Receptor (FXR) 

followed by stimulation of Fibroblast Growth Factor – 19 (FGF19) signaling to liver, thus in 

turn regulating bile acid synthesis. Additionally GLP-1 rapidly increases after RYGB with 

favorable lipid and glycemic effects. Furthermore, hepatic and gut nuclear factors as well as 

bile acid pathways, (specifically FXR, TGR5 and GLP axis), modulated post bariatric 

surgery, are also known to influence gut microbiota colonization.

Recent data also highlights the importance of applied microbial metabolomics to understand 

the role of gut microbiome as a mediator between diet and metabolism. Coupling microbial 

analysis with targeted and untargeted metabolomics analysis of not only circulating 

metabolites but also stool and gut tissue analysis, coupled with sophisticated statistical 

methods applied to multi-omics analysis, will allow us to discover mechanistic links and 

pathways associating microbial metabolism with health and disease. However, the 
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complexity of microbiome metabolism, with multiple cross-talk between bacteria species, 

represent a challenge to identify novel treatment targets.

Overall, given the remarkable durability, after bariatric surgery in obesity and its related co-

morbidities, lessons learned at this workshop point to the irrefutable role of gut derived 

signals in modulating the post-operative course after bariatric surgery. Efforts exploring this 

exciting pathway may even lead to novel non-invasive/non-surgical interventions for the 

worldwide obesity epidemic.

In summary the 2017 ASPEN Research Workshop focused on the novel idea that gut derived 

signals modulates gastric bypass outcomes. The workshop brought together clinicians and 

researchers across the scientific spectrum. Such unique interaction and exchange of 

knowledge between investigators and clinicians greatly promoted an engaging discussion 

with a great potential for translation of basic findings into clinical practice. Further, the 

research workshop engaged in direct outreach to other research communities and greatly 

helped in collaborations across organizations and disciplines.
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FGF19 Fibroblast Growth Factor 19

FXR Farnesoid X Receptor

SHP Small heterodimer partner

RYGB Roux-en-Y gastric bypass

VSG Vertical sleeve gastrectomy

AGB Adjustable gastric banding

NASH Nonalcoholic Steatohepatitis

NAFLD Non Alcoholic Fatty Liver Disease
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