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Touchscreen typing-pattern 
analysis for detecting fine motor 
skills decline in early-stage 
Parkinson’s disease
Dimitrios Iakovakis   1, Stelios Hadjidimitriou1, Vasileios Charisis1, Sevasti Bostantzopoulou2, 
Zoe Katsarou3 & Leontios J. Hadjileontiadis   1,4

Parkinson’s disease (PD) is a degenerative movement disorder causing progressive disability that 
severely affects patients’ quality of life. While early treatment can produce significant benefits for 
patients, the mildness of many early signs combined with the lack of accessible high-frequency 
monitoring tools may delay clinical diagnosis. To meet this need, user interaction data from consumer 
technologies have recently been exploited towards unsupervised screening for PD symptoms in daily 
life. Similarly, this work proposes a method for detecting fine motor skills decline in early PD patients 
via analysis of patterns emerging from finger interaction with touchscreen smartphones during natural 
typing. Our approach relies on low-/higher-order statistical features of keystrokes timing and pressure 
variables, computed from short typing sessions. Features are fed into a two-stage multi-model 
classification pipeline that reaches a decision on the subject’s status (PD patient/control) by gradually 
fusing prediction probabilities obtained for individual typing sessions and keystroke variables. This 
method achieved an AUC = 0.92 and 0.82/0.81 sensitivity/specificity (matched groups of 18 early PD 
patients/15 controls) with discriminant features plausibly correlating with clinical scores of relevant 
PD motor symptoms. These findings suggest an improvement over similar approaches, thereby 
constituting a further step towards unobtrusive early PD detection from routine activities.

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder1, characterised primarily by motor 
symptoms that contribute to significant disability2,3. The pathological hallmark of the disease is the loss of dopa-
minergic neurons in the substantia nigra, a basal ganglia structure of the human brain, and the presence of Lewy 
body-containing alpha-synuclein3, a protein widely distributed in the brain. The clinical spectrum of the disease 
is more extensive covering also a wide range of non-motor symptoms4 due to the degeneration of other dopa-
minergic and non-dopaminergic regions of the brain, spinal cord and peripheral nervous system5–7. The resultant 
decreased availability of dopamine in the basal ganglia leads to the motor symptomatology3,8. Due to the mildness 
of many early signs, including motor symptoms2, patients may not undergo clinical examinations for PD during 
early stages and therefore, the disease may be undiagnosed for many years9.

When PD is screened non-instrumentally - that is the majority of cases - the procedure traditionally involves 
the evaluation of subject’s overall condition according to standardised scales and questionnaires, such as the com-
monly used Unified Parkinson’s Disease Rating Scale (UPDRS)10. Motor status in particular, is often assessed by 
an expert based on the individual scoring and aggregated score of UPDRS Part III items10, which cover a broad 
range of PD motor symptoms, including among others, tremor (resting and action), rigidity, and bradykinesia. 
The latter examination, as is the case with other scales/questionnaires, requires a movement disorders specialist 
and the presence of the subject at the clinic. These factors limit the frequency of evaluation and monitoring of 
PD symptoms, while results are often of subjective nature as they rely on the expert’s experience or subject’s 
self-reports11. On the other hand, the development of more accessible tools that provide objective information 
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with higher sampling rate can lead to timely diagnosis and consequent improvement of the prospective patient’s 
quality of life via early therapeutic interventions12.

To this end, data captured from electronic sensors have been used by works targeting objective PD symp-
toms monitoring, such as microphone-captured speech signals for voice impairment recognition13 and inertial 
measurement unit (IMU) data for hand tremor assessment14 or freezing of gait detection15, among others16, with 
real-life transferability potential. Moreover, the booming of mobile technology and user-mobile interaction17 has 
led to efforts of transferring PD screening and monitoring in the daily life, through mining of interaction data. 
The mPower study18 is the most prominent example of large-scale data collection for PD symptoms research, 
exploiting the deep penetration of smartphones in the general population. During the study, over 9,000 partici-
pants (PD patients and healthy users) remotely contributed multi-modal data by performing digitised tests bun-
dled with a smartphone application. However, the drop-out rate concerning certain of these tests was over 90%. 
The latter highlights a common drawback of such approaches, i.e., data collection requires the active participation 
of the user and it is therefore, subject to adherence and impacted to a certain extent by the Hawthorne effect19.

In the modern era of computers and smartphones, typing on keyboards is a common, daily user-device inter-
action that involves dense (in terms of time), coordinated and successive finger/hand movements. Quantitative 
information arising from this type of interaction has been the focus of various applications, as it can be captured 
unobtrusively in the background during routine typing, reflecting in this way, the natural behaviour of the user. 
In particular, timing information associated with keystrokes, namely keystroke dynamics, has been exploited 
towards biometric authentication20, as well as Alzheimer’s disease21 and psycho-motor impairment detection, 
such as sleep inertia22. The fact that PD patients lack on rhythm stability of their finger movements23,24, while 
rigidity and bradykinesia affect their coordination25, renders keystroke dynamics, being the product of fine motor 
skills, an attractive source of information also for PD research. In fact, recent efforts have taken advantage of 
traditional keystroke dynamics timing variables, such as the hold time (HT) (the time a key is held down) and 
flight time (FT) (the time interval between releasing a key and pressing the next one), to classify subjects as 
having PD or not. Giancardo et al.26 used statistics of HTs, emerging from typing on a hardware keyboard, and 
Support Vector Machines (SVM) ensemble regression to produce a numerical index for distinguishing early PD 
patients and healthy controls with promising results [0.81 area under the ROC curve (AUC)]. To the same end, 
Arroyo-Gallego et al.27, based on data captured during typing on a touchscreen smartphone, evaluated the uni-
variate and multivariate classification performance of various FT features and achieved a 0.91 AUC with a single 
feature. Both studies included tasks of continuous typing for more than five minutes.

Motivated by the aforementioned, the present work proposes a machine learning-based approach for discrim-
inating early PD patients from healthy subjects based on enriched keystroke dynamics information, acquired 
during natural typing on a touchscreen smartphone. The dataset under scrutiny was recorded from 33 subjects 
(18 early PD patients/15 healthy controls) through a more ecologically-valid experiment compared to previous 
studies26,27 (see Dataset acquisition in Methods), which included fragmentary typing of short text excerpts, rather 
than continuous typing of longer duration. A systematic process is adopted to reach an optimised classification 
configuration by leveraging traditional variables of keystroke dynamics already exploited by relevant works26,27, 
such as HT and FT, which are further enriched for the first time, with information of normalised pressure (NP) 
applied on each keystroke/tap.

Figure 1 illustrates the feature extraction process and the proposed classification pipeline. Regarding the 
former (Fig. 1(a)), features are extracted on a typing session level, by aggregating statistical characteristics of 
time-windowed keystroke dynamics variables to construct feature vectors representing the session on the HT, 
conditionally-filtered/normalised FT (NFT) and NP dimensions, individually. A leave-one-subject-out (LOSO) 
scheme with nested cross-validations is employed for feature selection, classifiers optimisation, training and test-
ing (see Classification methodology in Methods) of the proposed approach. The latter is a two-stage multi-model 
pipeline (Fig. 1(b)), in the process of which three models are employed to classify each typing session of a given 
subject based on HT, NFT and NP feature vectors, independently (First stage), followed by a classifier that uses the 
individual outcomes to produce a fused probability on whether the session belongs to a PD patient or not (Second 
stage). In the end, prediction probabilities assigned to individual typing sessions are subjected to mean-voting 
to reach a final verdict on the subject’s status against PD. The performance of our method is evaluated using the 
receiver operating characteristics (ROC) analysis (see Classification performance evaluation in Methods) and 
compared against the most recent FT-based univariate and multivariate classification approaches27. The rela-
tionship of UPDRS Part III items of interest with the most discriminant features that emerge from the analysis is 
further examined to interpret the results.

To exemplify the motivation behind the aforementioned classification approach, Fig. 2 depicts the HT, NFT, 
and NP sequences derived from 10 typing sessions of two healthy controls and two early PD patients that par-
ticipated in our experiment. It can be observed that across sessions, all subjects exhibit a constant behaviour in 
terms of all keystroke dynamics variables. Nevertheless, while healthy subjects further exhibit similar behaviour 
across variables, PD patients present with differentiations when compared to each other and controls. In the 
light of this observation and after its generalisation, the two-stage multi-model approach was conceptualised. It, 
initially, granulates decisions to account for (non-)existing between-group differences in terms of each variable 
independently and afterwards, produces a final outcome on the basis of these individual decisions.

Results
ROC-based performance comparisons between the best configuration of our classification pipeline and recent 
multivariate and univariate benchmark methods27 are presented in Fig. 3(a). The best configuration consisted of 
Ridge28 feature selection (during LOSO training) - Random Forest29 classifier combination for the three first-stage 
models and mean-voting as the final step for reaching a decision on the left-out subject (PD patient or control). 
With this configuration, an average AUC of 0.92 (0.82–0.98; 95% Confidence Interval (CI)) was achieved over 
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33 iterations of LOSO validation and 1,000 bootstraps. On the other hand, FT-based multivariate and univariate 
methods proposed by Arroyo-Gallego et al.27 had a lower performance, i.e., average AUC of 0.82 (0.73–0.94; 
95%CI) and 0.70 (0.53–0.85; 95%CI), respectively, when applied on our dataset and subjected to the same LOSO 
validation process.

The diagnostic performance [AUC, diagnostic accuracy] of the proposed method that is based on fused prob-
abilities {Pf} was also compared against the individual performance of prediction probabilities estimated based 
on each keystroke dynamics variable, i.e., {PHT}, {PNFT}, {PNP} (see Fig. 1(b) and Supplementary Material Table S.3 
for additional performance metrics). In this context, for each of the latter sets of probabilities, mean-voting was 
applied to reach a decision on the subject’s condition (PD patient or control). Results obtained for individual 
predictions ({PHT}: [82.1%, 78.8%]; {PNFT}: [77%, 66.7%]; {PNP}: [67%, 66.7%]), extracted by the best first-stage 
classification configuration, denote that by combining information of keystroke dynamics (fusion via the second 
stage), diagnostic performance is increased ({Pf}: [92%, 82%]).

To mitigate the risk of over-fitting, the classification pipeline was trained in a subject-agnostic fashion, which 
allowed the use of a larger observation space (275 typing sessions) compared to 33 input observations if features 
were a priori aggregated on a subject level. The impact of the number of the left-out (test) subject’s typing sessions 
- feature representations of which are used as input - on classification performance is illustrated in Fig. 3(b). As 
intuitively expected, performance improves as information from a larger number of typing sessions becomes 

Figure 1.  Illustration of (a) feature vector extraction from a given keystroke dynamics variable of a typing 
session and (b) classification pipeline of each subject based on hold time (HT), normalised flight time (NFT) 
and pressure (NP) information. (a) Given a keystroke dynamics variable sequence an, a ∈ {HT, NFT, NP}: (1) 
The sequence is split in subsequences an

i using 15-seconds non-overlapping time windows; (2) For each 
subsequence, the first- up to fourth-order statistical moments (mean μi, standard deviation σi, kurtosis Ki, and 
skewness Si) of the elements are computed; (3) The probability density function (PDF) f i(x) of each subsequence 
is estimated through kernel density estimation (KDE) and the matrix of sample covariance C(i, j) between the 
PDFs of all subsequences is calculated. Feature vectors va representing each typing session are formed by the 
mean •

–
 and standard deviation (std) σ⋅ of the moments extracted in (2), across time windows (subsequences), 

and the mean, std and sum of absolute values of the upper triangle CU(i, j) of the covariance matrix calculated in 
(3). (b) The proposed two-stage multi-model pipeline for classifying subjects as PD patients or healthy controls: 
(1st Stage) Feature vector sets {va} of a given subject, with each vector representing a typing session, serve as 
input to three trained models Ma, each one dedicated to a keystroke dynamics variable, a ∈ {NFT, HT, NP}. 
Models Ma yield three prediction probabilities Pa which are then grouped in new feature vectors vP; (2nd Stage) 
Feature vector set {vP} serves as input to a Logistic Regression classifier CLR that outputs the final classification 
probabilities {Pf} denoting whether each typing session belongs to a PD patient or a healthy control. Finally, the 
mean of prediction probabilities Pf is used to categorise the subject as PD patient or healthy control.
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available. Figure 3(b) also provides a comparison of two voting-schemes, i.e., median and mean, used to reach the 
final decision on the subject’s condition, with the latter yielding higher AUC values compared to the former as the 
sample of final prediction probabilities becomes larger.

Table 1 presents the results of group-level (early PD patients vs controls) statistical comparisons (two-sided 
Mann-Whitney U test) with respect to each individual feature, as well as the frequency of selection of each feature 
over all LOSO iterations of the best classification configuration. From Table 1, it is evident that certain features 
differ significantly between groups and are consistently selected during the LOSO training step, thereby their dis-
criminative power is highlighted. Such consistency in not observed when using benchmark27 FT feature extrac-
tion and multivariate LOSO analysis on our dataset (see Supplementary Material Table S.4).

Distributions of the most discriminant features per subject group, computed over all typing sessions, are illus-
trated in Fig. 4. In general, as compared to healthy controls, PD patients exhibit longer and more variant HTs, 
lower pressure values, and a shift towards longer FTs, as indicated by lower skewness values of the zero-mean NFT 
distributions. These relationships still hold even when the group of early PD patients is clustered and examined 
with respect to PD medication (Supplementary Material Fig. S.1). De-novo patients’ (recently diagnosed with PD 
and never taken PD medication) data form an intermediate distribution between healthy controls and early PD 
patients under medication. Both early PD patients’ subgroups differ significantly from controls in terms of feature 
distributions, but not when compared to each other. These findings are similar to those that Giancardo et al.26 
reported regarding their proposed HT-based discriminant index.

To foster an interpretation of our outcomes with respect to PD motor symptomatology, results of Spearman 
correlation analysis between the most frequently selected features (see also Table 1) and scores of UPDRS Part III 
items of interest, as well as the compound score, are tabulated in Table 2. High to moderate correlation coefficients 
(| | > .r 0 60s , p < 0.001) were obtained for scores of rigidity and finger taps (right hand), as well as body bradykin-
esia/hypokinesia and the general motor status (total UPDRS Part III score). These results point to an effect of the 

Figure 2.  Indicative examples of keystroke dynamics variable sequences of healthy controls and PD patients. 
Sequences of normalised flight time (NFT) (blue), hold time (HT) (green), and normalised pressure (NP) 
(red) derived from 10 typing sessions (S1–S10), typed by two controls (Control 1 and Control 2) and two PD 
patients (PD Patient 1 and PD Patient 2), are presented along with overlayed probability density functions of 
each sequence, estimated for each typing session. Between two consecutive sessions, there was an one-minute 
interval. It is observed that controls exhibit similar behaviour across all variables. On the other hand, there are 
differentiations in the behaviour of PD patients when compared to each other, as well as healthy subjects. PD 
Patient 1 exhibits similar values to controls in terms of NFT and NP, but clearly higher HT values. In contrast, 
PD Patient 2 produced more wide-spread values for all keystroke dynamics variables in comparison to controls.
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severity of the associated motor symptoms on keystroke dynamics and consequently, typing kinetics. On the 
other hand, scores associated with the upper-left extremity, as well as bilateral action tremor scores, yielded low 
and in certain cases, insignificant correlations ( > .p 0 05). The fact that all subjects of the study cohort were 
right-handed may explain the stronger unilateral (right side) correlations observed for all relevant clinical scores.

Figure 3.  Comparison of Receiver Operating Characteristics (ROC) curves and evolution of area under the 
ROC curve (AUC) with respect to the number of typing sessions used as input. (a) ROC curves demonstrating 
the classification performance of the proposed approach and of existing ones reported in literature and applied 
on our dataset (18 early PD patients/15 controls). The performance of the proposed model (green curve) is 
compared to the best multivariate method based on flight time (FT) features proposed by Arroyo-Gallego 
et al.27 (blue curve), as well as their best performing univariate method (red curve). Solid lines represent 
the mean ROC curve, while shadowed areas delimit the 95% confidence intervals, computed over 1,000 
bootstraps. The legend shows the AUC and the 95% confidence intervals. The two-stage multi-model approach 
described in this paper achieves an AUC of 0.92 [0.82–0.98], outperforming the univariate 0.70 [0.53–0.85] 
and multivariate 0.82 [0.69–0.94] methods27. (b) Evolution of the AUC for the best performing configuration 
of the proposed classification pipeline with respect to the number of typing sessions used as input. The blue and 
green line correspond to the AUC obtained by using the mean and median of final classification probabilities 
{Pf}, respectively, as the voting scheme to reach a decision on whether the subject has PD or not based on 
her/his individually classified typing sessions (see also Fig. 1(b)). As intuitively expected, as the number of 
typing sessions increases, a clear improvement in the classification performance is noticed, while the mean of 
probabilities produces better results compared to the median value.

Feature

NFT HT NP

Statistical 
Significance

Times 
selected (%)

Statistical 
Significance

Times 
Selected (%)

Statistical 
Significance

Times 
Selected (%)

μi
— — p < 0.001 100% p < 0.001 100%

σμi
— — p < 0.001 3% p < 0.001 0%

σi p < 0.001 0% p < 0.001 94% p = 0.013 0%

σσi
p < 0.001 0% p < 0.001 3% p = 0.040 0%

Si p < 0.001 91% p = 0.010 0% p < 0.001 0%

σSi
p = 0.136 0% p < 0.001 0% p < 0.001 0%

Ki p < 0.001 9% p = 0.028 0% p < 0.001 0%

σKi
p < 0.001 0% p = 0.165 0% p = 0.247 0%

CU p = 0.248 0% p < 0.001 0% p = 0.468 0%

σCU
p = 0.002 0% p < 0.001 0% p < 0.001 0%

∑| |CU p < 0.001 0% p < 0.001 0% p < 0.001 0%

Table 1.  Results of statistical comparisons between the two groups (Early PD patients/Controls) for each 
extracted feature, along with the percentage of times the feature was selected during the leave-one-subject-out 
validation process. Statistical significance is computed using the non-parametric two-sided Mann-Whitney U 
test. The percentage of times each feature is selected is computed over 33 loops of the leave-one-subject-out 
validation process for the best-performing configuration. Features selected consistently (>90% of times) are 
presented in bold and in all cases, they differ significantly between the two subject groups (p < 0.001). See 
Supplementary Material Table S.1 and Table S.2 for more detailed information on features.
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Figure 4.  Group-wise comparison of distributions of the most frequently selected features as derived by the 
proposed approach. Box plots represent the distribution of HT μi, HT σi, NFT Si, NP μi (see also Table 1) of PD 
patients and healthy controls, computed over 144 and 131 typing sessions, respectively. Each box plot visualises 
the interquartile range (height of rectangle), spanning the first (bottom) to the third quartile (top), the median 
value (horizontal line inside the rectangle), the minimum and maximum values (ends of “whiskers” below and 
above the box, respectively) still within the interquartile range, and outlier values (individual points below and 
above “whiskers”). The groups exhibit significant differences (two-sided Mann-Whitney U test) across all 
features of interest. **Statistically significant difference (p < 0.001).

Selected 
Feature

UPDRS Part III Single Items

Total UPDRS 
Part III Score

Finger 
Tapping (RH)

Finger 
Tapping (LH)

Rigidity 
UE (RH)

Rigidity 
UE (LH)

Action 
Tremor (RH)

Action 
Tremor (LH) BK/HK

HT μi 0.60† 0.33† 0.69† 0.30† 0.39† 0.05n.s. 0.50† 0.53†

HT σi 0.64† 0.49† 0.71† 0.47† 0.42† 0.16n.s. 0.63† 0.62†

NFT Si −0.48† −0.46† −0.51† −0.45† −0.35† −0.11n.s −0.58† −0.51†

NP μi −0.60† −0.56† −0.55† −0.52† −0.40† −0.31† −0.62† −0.62†

Table 2.  Results of correlation analysis between the most frequently selected features and UPDRS Part III 
single-item scores of interest/total score. Values of Spearman’s correlation coefficient rs are presented after 
correlating the most frequently selected features (HT μi, HT σi, NFT Si, NP μi) (see also Table 1) with UPDRS 
Part III single-item scores of relevant PD motor symptoms, i.e., rigidity of upper extremities, action tremor, and 
bradykinesia (finger tapping and body bradykinesia-hypokinesia), as well as with the total UPDRS Part III 
score, across all subjects (both early PD patients and controls). All healthy controls were assigned a value of zero 
for each UPDRS Part III item. As the latter renders each UPDRS item variable skewed, Spearman’s rank 
correlation was employed for this analysis. BK/HK: Bradykinesia/Hypokinesia; RH: Right Hand; LH: Left Hand; 
UE: Upper Extremity; †p < 0.001; n.s.: p > 0.05.
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Discussion
Digital transformation has the potential to deliver quantitative tools and personalised solutions to satisfy unmet 
societal health care needs. High-frequency, easily-accessible monitoring means can allow for availability of behav-
ioural and biometric data that in turn, when analysed properly and combined with standard medical practices, 
can pave the way for the prognosis of diseases in early stages, with consequent benefits for patients. That is the 
case of PD, i.e., a disorder that is usually left undiagnosed for years due to the mildness of many early symptoms, 
while early treatment can significantly improve patients’ quality of life over the course of the disease. For this 
reason, PD detection and monitoring based on objective data arising from user-mobile interaction has been in 
the spotlight during recent years. The ability of unobtrusive capturing of such data further enhances their objec-
tive character as the information reflects the user’s natural behaviour and in addition, helps overcome issues of 
adherence that plague approaches requiring users’ active participation. Our method attempted to amalgamate all 
these desired parameters towards our aspiration to develop a tool for early PD screening in daily life. Results are 
rather promising, as classification performance denotes satisfactory discrimination between early PD patients 
and controls, based on features with plausible correlations with clinical scores of relevant symptoms.

In this study, data from a PD patients’ and a healthy controls’ group, matched in terms of demographics (see 
Table 3), were acquired and analysed. Data acquisition was based on a protocol emulating real-life conditions that 
included fragmentary typing of short text excerpts, which is common in daily user-mobile interaction, rather 
than continuous typing of longer duration (>5 min) that was employed in similar studies26,27. Resting intervals 
between short typing sessions also contributed towards the minimisation of fatigue effects on typing kinetics that 
could be otherwise amplified due to a continuous typing effort. Regarding the 18 early PD patients involved 
(Table 3), four of them have never received PD medication (de-novo) and all of them were at early stages 
(Hoehn-Yahr stages I or II, mean UPDRS Part III score/std 16.9/7.8) and recently diagnosed (mean disease onset 
yrs./std 2.5/1.6). These clinical characteristics of the study cohort strengthen the significance of the study out-
comes, as the proposed method satisfactorily differentiates healthy controls from PD patients even at early stages 
of the disease.

Furthermore, this work explored for the first time the combined discriminative potential of enriched key-
stroke variables (associated with both timing and pressure), unlike previous research efforts that focused on a sole 
dimension of traditional keystroke dynamics, i.e., the HT26 or FT27. Based on this combinatory approach, the best 
classification performance achieved here (0.92 AUC, 0.82/0.81 sensitivity/specificity) suggests an improvement 
over benchmark methods27 applied on our dataset (Fig. 3(a)), as well as on single keystroke variable-based vari-
ants of our method (Supplementary Material Table S.3). Moreover, the adopted classification pipeline brought to 
light statistical features of keystroke dynamics (HT μi, HT σi, NFT Si, NP μi) that differ significantly between 
subject groups and are in addition, consistently selected during LOSO training (Table 1). The discriminative 
power of these features is complemented by their explainable significant correlations with clinical scores (UPDRS 
Part III items) of PD motor symptoms (Table 2) that may affect typing kinetics, i.e., muscle rigidity and bradyki-
nesia - hypokinesia. We further discuss these results in detail below as they provide evidence on the internal 
validity of our approach.

Overall, as all study participants were right-handed and they mainly used their dominant hand (alone or in 
combination with the left hand) to type during the experiment, correlations obtained for right-hand UPDRS Part 
III scores, where applicable, were consistently higher than those produced for the left extremity. Probing further, 
all discriminant features significantly differ between the two subject groups (see Fig. 4) and exhibit significant 
correlations (0.51 ≤ |rs| ≤ 0.62) with the total UPDRS Part III score that reflects the subject’s overall motor status. 

Early PD patients Controls Statistical Significance

n (total n = 33) 18 15 N.A.

Demographics

Women # (%) 4 (22%) 7 (46%) n.s. (p = 0.24)

Men # (%) 14 (78%) 8 (54%) n.s. (p = 0.24)

Avg. Age, years (std) 61 (8.4) 57 (3.9) n.s. (p = 0.67)

Subjects #/# who completed Education Level H/U 4/14 1/14 n.s. (p = 0.31)

Avg. Years of Smartphone Usage (std) 3.4 (1.6) 2.8 (2.6) n.s. (p = 0.15)

Clinical characteristics

Avg. Disease onset, years (std) 2.5 (1.6) N.A. N.A.

Avg. UPDRS Part III score (std) 16.9 (7.8) 0.0 (0.0) sig. (p < 0.001)

PD patients #/# under treatment/De-novo 14/4 N.A. N.A.

PD patients #/# with right/left most affected side 13/5 N.A. N.A.

Subjects #/#/# with dominant hand Right/Left/Ambidextrous 18/0/0 15/0/0 N.A.

Avg. LEDDa, mg (std) 247 (110) N.A. N.A.

Table 3.  Summary of complete study cohort (33 subjects) demographic and clinical characteristics with respect 
to each group (Early PD patients and Controls). With the exception of clinical characteristics (UPDRS Part III 
score), the two groups are reasonably matched in terms of demographics as no significant differences (p < 0.05) 
are observed (two-sided Mann-Whitney U test). aAvg. Levodopa Equivalent Daily Dose (LEDD) concerns only 
PD patients under treatment (n = 14). N.A.: not applicable; sig.: significant; n.s.: non-significant.
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However, as the compound score includes evaluations of motor symptoms that are unlikely to affect typing kinet-
ics, e.g., speech and facial expression, focusing on correlations with scores of more relevant symptoms (finger 
tapping, rigidity and action tremor of upper extremities, and body bradykinesia/hypokinesia) would provide 
more solid conclusions. For instance, and according to our results, action tremor appears to have moderate to low 
impact on typing kinetics, as correlation values of all discriminant features with the associated UPDRS Part III 
single-item score were generally low (|rs| ≤ 0.4) and in certain cases, insignificant ( > .p 0 05). This was the case 
for correlations of left hand action tremor with all features, except for the NP μi, which may denote a minor effect 
of this symptom on pressure values.

On the other hand, as derived from distributions of the most discriminant HT features (HT μi, HT σi), PD 
patients produced significantly longer (HT μi mean/std: PD 0.15/0.06 vs. controls 0.09/0.03) and more variant 
HTs (HT σi mean/std: PD 0.03/0.01 vs. controls 0.02/0.00) compared to controls. These results might constitute a 
projection of the effects of rigidity (muscle stiffness) and bradykinesia (slowness of movement), as denoted by the 
moderate to high positive correlations (0.50 ≤ rs ≤ 0.71) of these HT features with corresponding UPDRS Part III 
single-item scores (bradykinesia/hypokinesia and right-hand finger tapping, rigidity). These motor symptoms 
may slow down finger reflexes causing PD patients to hold down keys for longer and inconsistent time intervals. 
Rigidity, and especially bradykinesia, may also have an impact on the latency between keystrokes, as derived by 
significant negative correlations of the skewness-related FT feature (NFT Si) with corresponding UPDRS Part III 
single-item scores, i.e., bradykinesia/hypokinesia (rs = −0.58) and right/left-hand rigidity (rs = −0.51/rs = −0.45). 
PD patients exhibited on average lower values of NFT distributions skewness across typing sessions as compared 
to controls (NFT Si mean/std: PD 0.90/0.53 vs. controls 1.51/0.61). Provided that the NFT distributions of both 
subject groups are of zero-mean, due to normalisation of FT values, lower skewness denotes a shift of the mass of 
patients’ NFT distributions towards higher values (see also Fig. 2 for indicative examples); this indicates the exist-
ence of longer latencies between keystrokes during typing, possibly due to slower movements. In our case, PD 
patients and controls also exhibit significant differences in terms of pressure applied to initiate keystrokes, as 
denoted by the NP feature distributions (NP μi mean/std: PD 0.51/0.06 vs. controls 0.60/0.08). Significant nega-
tive correlations of this feature with right/left-hand finger tapping (rs = −0.60/rs = −0.56) and body bradykinesia/
hypokinesia (rs = −0.62) scores indicate that, as the severity of the associated symptom increases, pressure applied 
on touchscreen keys decreases on average. The latter could be attributed to inadequately-scaled movements (in 
terms of speed and amplitude) that constitute manifestations of hypokinesia that is present in PD23. On a side 
note, unilateral upper extremities rigidity (rs = −0.55/rs = −0.52 right/left hand) and action tremor 
(rs = −0.40/rs = −0.31 right/left hand) appear to have moderate to low projection on average pressure values, 
respectively.

One possible limitation of our study is that patients under dopaminergic therapy were asked to refrain from 
taking their medication at least eight hours before their morning visit to participate in the experiment. This time 
interval might not have been sufficient enough for certain patients to be in the “practically off ” condition, a transi-
tion that usually requires 12 hours after the last dose30. The latter, combined with potential effects of long-duration 
response to Levodopa31,32, may have improved the psychomotor state of these patients and consequently, their 
typing cadence, leading to a reduced discrimination performance across classification methods tested. From an 
overall perspective however, the best configuration of our approach exhibits a very promising potential in cor-
rectly classifying early PD patients and controls (average AUC = 0.92), despite any “echoing” effects of dopamin-
ergic therapy on certain study participants’ fine motor skills.

Since the proposed approach is based on the analysis of quantitative data that can be collected in an unob-
trusive fashion during an activity of daily living, privacy issues should be considered. In fact, our method is 
privacy-aware, as it is based on timing and pressure variables of keystrokes, without requiring the actual content 
of the typed text. Nevertheless, results of this work, as well as of similar research efforts, indicate that this source of 
information can provide insights into users’ health status and therefore, it belongs, by definition, to the category of 
sensitive personal data. The ability to unobtrusively integrate the recording of typing patterns with routine activ-
ities highlights even more the need to ensure that users are aware in advance of what data will be recorded, when 
and to which end, before using relevant applications. In this context, future commercial applications exploiting 
such patterns towards the recognition of psycho-motor impairments must comply with ethical guidelines and 
data protection regulations, as per standard practices in similar cases involving recordings of biometrics and 
health data.

In summary, our work provided evidence on a machine-learning method that satisfactorily detected 
early-stage PD in a relatively small cohort, based on the projection of fine-motor skills decline on keystroke 
dynamics variables during natural typing. Correlation results indicate the potential of evolving the binary clas-
sification problem into a regression analysis for estimating the severity of individual PD motor symptoms based 
on relevant statistical features of keystroke variables. A future deployment of the latter could assist physicians to 
gain objective, granular and explainable insights into the subject’s condition against PD. Beyond this study, our 
vision is to extend and validate the developed method on longitudinal data, unobtrusively captured from a large 
pool of subjects and their day-to-day typing interaction with their smartphone. This vision is consequent to the 
overarching aim to develop accessible, non-intrusive tools for early PD screening in daily life of the European 
Horizon 2020 project “i-PROGNOSIS” (www.i-prognosis.eu), within the framework of which the present work 
was realised.

Methods
A feature extraction and classification pipeline is presented for classifying subjects as PD patients or healthy con-
trols based on data derived from sporadic typing sessions on a touchscreen smartphone. The data of interest com-
prise sequences of hold times (HT) (the time between pressing and releasing a key) and flight times (FT) (the time 
between releasing a key and pressing the next one), produced from captured time stamps, as well as normalised 

http://www.i-prognosis.eu
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pressure (NP) sequences. Each typing session is characterised via three independent feature vectors, each com-
posed of lower-order (mean, standard deviation) and higher-order (kurtosis, skewness, and covariance) statistics 
representing the HT, FT and NP sequences, respectively. For each typing session, a two-stage multi-model clas-
sification scheme is adopted with the first stage yielding classification probabilities based on each of the feature 
vectors of HT, FT, and NP sequences and the second stage fusing these probabilities to produce a final prediction 
probability for the particular session (belonging to a PD patient or a healthy control). The mean of the probability 
distribution formed by classifying all typing sessions of a subject is used to reach the final decision on her/his 
condition (PD patient or healthy control).

Study procedures.  The study protocol was approved by the Aristotle University of Thessaloniki, Greece 
(Bioethics Committee of Medical School, approval no. 359/3.4.17). Informed consent was obtained from all sub-
jects prior to their participation in the study. Subjects held the right to withdraw from the procedure at any time, 
without providing any justification. Recruitment and study procedures were carried out according to institutional 
and international guidelines on research involving adult human beings.

Study cohort.  The study cohort comprised two groups, i.e., the early PD patients’ group that consisted of 18 
subjects (Hoehn-Yahr stages I or II) with a confirmed diagnosis of less than five years and the controls’ group that 
included 15 healthy subjects without any sign of Parkinsonism. The two groups were matched in terms of gender, 
age, education level, and years of experience with smartphones. All subjects were native Greek speakers, 40 years 
of age or older, and right-handed. Demographic and clinical characteristics of the study cohort are tabulated in 
Table 3. Only participants who self-reported that they used a touchscreen-equipped smartphone for at least a 
year were considered eligible. Subjects with other diagnosed psycho-motor impairments (including drug abuse 
and sleep disorders), cognitive dysfunctions, upper limb functional limitations (including recoveries from recent 
surgery) or uncorrected vision problems were excluded from the study. Subjects were recruited from two neuro-
logical clinics in Thessaloniki (Greece) and the Aristotle University of Thessaloniki (Greece). The study protocol 
(typing experiment and clinical evaluation) was conducted during a single morning visit of each subject at one 
of the clinics. Patients receiving symptomatic relief medication for PD were asked to refrain from taking it for at 
least eight hours before their visit, i.e., they practically underwent all study procedures in the “off-state”, before 
their morning dose.

Dataset acquisition.  Each visit included a typing experiment and a clinical evaluation. During the typing 
experiment, subjects were asked to transcribe 11 text excerpts of the famous fairy-tale “The Little Prince” in 
Greek, using an Android smartphone (LG Nexus 5X with a screen of 5.2 inches in diagonal and a resolution of 
1080 × 1920 pixels, running native Android 7.0) and a custom mobile application with an editable text place-
holder. The text excerpts were presented on a 17-inch laptop in front of the subject. The first excerpt was 200 
characters-long and it was the same for all subjects, in order to familiarise themselves with the software keyboard 
and the mobile device. Data acquired during this session were not included in the analysis. Following this, each 
subject typed 10 short text excerpts (46–115 characters-long), pseudo-randomly and uniformly drawn from the 
fairy-tale, with an one minute-interval between two consecutive excerpts. Subjects were instructed to sit com-
fortably and to type using their own typing style (one or both hands) and capital letters only. There were no time 
constraints for typing the excerpts and participants were at liberty to adjust their posture and to correct typing 
errors or not. The goal was to simulate real-life, natural typing interaction with mobile devices, i.e., sporadic 
short typing sessions during the day, so as to acquire a dataset as ecologically-valid as possible in a laboratory 
environment. A custom software keyboard was developed for the Android Operating System (OS) to capture the 
raw data of interest in the background, while typing. These included the raw time stamps of the press and release 
touch events for each key tapped (in milliseconds) and the normalised pressure (0.000–1.000) applied on each 
key tap, as outputted by native functions of the OS; raw pressure values are not exposed by the OS. The captured 
time stamps and pressure values were recorded in a separate .txt file for each typing session, stored on the device 
internal storage memory. The filename of each file included the coded ID assigned to the subject at the beginning 
of the experiment. The keyboard did not support any “long press” actions that would constitute noise artefacts. 
Nevertheless, in a more advanced keyboard that supports such actions, relevant key presses can be easily flagged 
and excluded from a subsequent analysis.

Regarding clinical evaluation, after completing the typing experiment, each participant was subjected once to 
evaluation in terms of the motor section of the Unified Parkinson’s Disease Rating Scale (UPDRS-Part III)10 that 
was performed by a specialised neurologist. UPDRS-Part III scores were afterwards logged, along with demo-
graphic data, in a spreadsheet file and mapped to the subjects’ coded IDs by the neurologist.

Feature vector extraction.  Let tn
p and tn

r be monotonically increasing sequences of time stamps (ms) cor-
responding to the press (p) and release (r) of key n = 1, 2, …, N, respectively, where N is the total number of keys 
pressed during a typing session. A lower bound of 20 characters per minute is set for the typing rate per typing 
session; sessions which did not meet this bound were omitted from the subsequent analysis. The sequences of HTs 
and FTs are defined as = −HT t tn n

r
n
p, n = 1, 2, …, N, and = −+FT t tn n

p
n
r

1 , n = 1, 2, …, N-1, respectively, and the 
normalised pressure sequence as =NP NP t( )n n

p , n = 1, 2, …, N, where NP(t) is the varying normalised pressure 
applied during the pressing of each key.

To further minimize the effects of varying typing dexterity amongst subjects and remove outlier values 
(due to subjects stalling key presses because of reading the text to be transcribed on the laptop screen), condi-
tional filtering is applied to the FT sequence which is affected the most by these factors. The filtering approach27 
of Arroyo-Gallego et al. was adopted here for the analysis results to be comparable. FT values exceeding a 3 
s-threshold are removed from the sequence, FTn sequences are further detrended and values outside the 99% 
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interval of a real-life data distribution [−1.27,1.7] (s) are filtered out. The latter real-life data distribution was esti-
mated by leveraging an external dataset of ten healthy participants who used our Android custom keyboard for 
typing in their daily life for more than three weeks. Thus, the conditionally-filtered FTn sequence for each typing 
session, hereby referred to as the normalised flight time sequence NFTn, can be written as:

= − ∈ − . . = ... − .NFT FT FT NFT s n N, [ 1 27, 1 7] , 1, 2, , 1 (1)n n n n

On the other hand, HT values (usually in the range of 100 milliseconds), being the relatively short timing 
outcome of a finger reflex - the finger presses down (to initiate the action) and releases the key (upon success of 
the intended action) after visual or haptic feedback that the key was registered - are not expected to be affected by 
the aforementioned collateral factors. For example, HT, unlike FT, is almost unaffected by interruptions during 
typing. Non-pathological factors that affect HT values, such as the type of medium (hardware with key travel or 
touch-based virtual keyboard), deliberate long-presses or the type of key feedback, were mitigated by the exper-
iment protocol as no long-presses were supported and the virtual keyboard and key feedback (visual) was com-
mon among all subjects. In this context, no conditional filtering/normalisation is applied on the HT sequence, on 
par with works that exploited features of raw HTs for psycho-motor impairment detection22,26.

Thereafter, we define subsequences of HTn, NFTn, NPn based on a time window w with duration T (T = 15 s in 
our implementation as in Arroyo-Gallego et al.27) as:

HT HT n n n n t i T t iT

NP NP n n n n t i T t iT

NFT NFT n n n n t i T t iT
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where i denotes the increasing index of the window and k = 1, 2, ..., nw − n1 + 1 the index of the elements in  
the window. A minimum of five elements per subsequence (nw − n1 >4) is considered in order to extract mean-
ingful statistical features; subsequences not meeting this criterion were omitted from further analysis. For  
simplicity, we denote any of the valid subsequences as ak

i. Statistical features extracted to represent the i-th subse-
quence are: the mean μ = ∑ − +a n n/( 1)i k k

i
w 1 , standard deviation σ μ= ∑ − −k a n n( )/( )i k

i
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 of the samples of the subsequence. 

Moreover, an approximation of the probability density function (PDF) f i(X) of the i-th subsequence is estimated 
by employing Kernel Density Estimation (KDE)22 with a Gaussian kernel. In the present implementation, ten 
quantization levels (L = 10) are used and the bandwidth parameter (b) of the Gaussian kernels is calculated by 
applying the Sheather-Jones method33 on the aforementioned external dataset, resulting in b = 0.0060, 0.0289, 
and 0.0300 for HT, NFT, and NP data respectively. For each typing session, we construct three feature vectors, 
each representing a type of sequence (HTn, FTn or NPn), by aggregating the statistical representations of all subse-
quences as:

v S K C C[ , , , , , , , , , , ] , (3)a i i i S i K U C U ai i i i U ∑µ σ σ σ σ σ σ= | |µ σ

where a∈{HT, NFT, NP} and σ• ⋅
–

,  denote the mean and the standard deviation of the corresponding values, 
respectively. CU is the upper triangle of the covariance matrix formed by the values of sample covariance between 
the estimated PDFs f i(X) of all subsequences, i.e., = ∑ − −

−
C f X f X f X f X[ ( ) ( )][ ( ) ( ) ]i j L X

i i j j
,

1
1

, and ∑| |CU  is 
the sum of absolute values of CU. In the case of flight time, μi and σμi

 are omitted as NFTn is of zero mean due to 
the aforementioned conditional filtering. After applying the feature vector extraction approach on all typing ses-
sions from all subjects, three feature vector sets are produced, i.e., IHT = {vHT}, INFT = {vNFT}, and INP = {vNP}.

Classification methodology.  A two-stage classification pipeline is adopted for classifying subjects as hav-
ing PD or not. In the first stage, three models (feature selection and classifier combination) are employed, with 
each one learning and predicting based on the representations of HT (vHT), NFT (vNFT), and NP (vNP) of each 
typing session, respectively, and the labels inherited from the corresponding subject’s condition (PD patient or 
healthy control). This approach was conceptualised after observing differences in each of these keystroke dynam-
ics variables amongst PD patients (see Fig. 2). In the second stage, prediction probabilities produced by each of 
the three first-stage models are combined into a single vector (vp) and serve as input to a single classifier that 
yields a fused prediction probability on whether or not the particular typing session belongs to a PD patient or 
a healthy control. A leave-one-subject-out (LOSO) scheme with inner k-fold cross-validations is employed to 
evaluate the discrimination potential of the proposed approach. The training and testing procedures of the classi-
fication approach are illustrated in Figs. 5 and 1(b), respectively.

For the training step of each LOSO loop, each of the I′HT, I′NFT, I′NP feature vector sets, derived from the 
complete IHT, INFT, INP sets by leaving out a subject’s typing sessions, is randomly split to a training I′a,TRN (80%) 
and a testing I′a,TST subset (20%), a∈{HT, NFT, NP}. Training subsets I′a,TRN are subjected to a recursive feature 
elimination procedure that updates feature vectors by selecting the most discriminant features. An upper limit of 
five selected features is set to avoid the “curse of dimensionality”34. The updated I′a,TRN serve to train each of the 
first-stage classifiers. For each classifier, grid search is performed at first, using the updated I′a,TRN and an inner 
4-fold cross-validation for hyper parameter optimization. The outcomes of this process are three optimised mod-
els in terms of discriminant features and classifier parameters. Following this, the testing subsets I′a,TST are used to 
test the optimised models. Testing probabilities Pa, a∈{HT, NFT, NP}, outputted from the three first-stage models, 
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are afterwards grouped into three-element vectors vp = [PHT, PNFT, PNP], which populate the training subset I′P 
for the second-stage classifier. The latter is again optimised in terms of parameters based on the I′P and a 4-fold 
cross-validation. The output of the optimised classifier is the final probability Pf that denotes whether a typing 
session belongs to a PD patient or a healthy control.

Once the training step completes, the left-out subject’s feature vector sets ′ = ′I I I\a
C

a a, where C denotes the 
complement set and a∈{HT, NFT, NP}, are fed to the classification pipeline to test it under the optimised scenario 
(selected features and trained classifiers with optimised hyper parameters). The output of the pipeline is a set of 
prediction probabilities {Pf} formed by classifying all typing sessions of the subject. Eventually, the left-out subject 
is classified as having PD or not by taking the mean of the set {Pf}. The LOSO scheme is completed when all sub-
jects are left out and afterwards evaluated against PD. For the first stage of the proposed methodology, combina-
tions of four types of classifiers, i.e., Linear Support-Vector Machine35, Logistic Regression36, Random Forest29, 
and k-Nearest Neighbours, with three feature ranking-selection methods, i.e., Lasso, Ridge28, and Gini Impurity37, 
were examined in terms of classification performance. A Logistic Regression classifier was used in the second 
stage of the methodology, in all cases.

Classification performance evaluation.  Different classification pipeline configurations (different com-
binations of classifiers and feature selection methods) conceived here, as well as existing classification methods 
described in literature, are evaluated using the receiver operating characteristic (ROC) analysis. ROC analysis is 
an iterative process of varying the discrimination threshold of a binary classifier and outputting the (Sensitivity, 
Specificity) pair for each threshold. The ROC curve is then formed by plotting the output pairs of (1 − Specificity, 
Sensitivity). The analysis provides reliable insights into the performance of a classification model even when 
datasets are not completely balanced (45.5% healthy controls, 54.5% early PD patients in our case). To assess the 
statistical significance of classification results, sampling with replacement (1,000 bootstraps) is further used here 
to define a ROC curve distribution. The average value and the confidence intervals of the area under the ROC 
curve (AUC) over 1,000 bootstraps are used to evaluate the performance of each binary (PD patient vs. control) 
classification approach. Where reported, sensitivity/specificity values correspond to the optimal threshold for 
equal cost of misclassifying PD patients and healthy controls.

Data Availability.  All data generated and analysed during the current study are available from the corre-
sponding author on a reasonable request.

Figure 5.  Training procedure of each leave-one-subject-out loop. (1) The computed Ia feature vector sets, 
a∈{HT,NFT,NP}, with each feature vector representing a typing session, are split in two parts, i.e., I′a and ′I a

C 
(the left-out subject feature vector sets). The I′a sets are further split in two subsets, i.e., the I′a,TRN (80%) and the 
I′a,TST (20%). (2) The I′a,TRN subsets are used for feature selection, hyper parameter optimisation using an inner 
4-fold cross-validation, and training of three classifiers, resulting in three independent models Ma, each one 
dedicated to a specific keystroke dynamics variable (HT, NFT and NP). (3) The I′a,TST subsets are then used to 
test the three Ma models, resulting in three classification probabilities sets {Pa}, a∈{HT,NFT,NP}. (4) Sets {PHT}, 
{PNFT}, and {PNP} are fused in single feature vectors, forming a set {vP} that serves to optimise (as in (2)) and 
train a Logistic Regression classifier CLR. The end product of the training procedure is a configuration of three 
optimised/trained models (first stage) that independently classify each typing session according to each 
keystroke dynamics variable, and an optimised/trained Logistic Regression classifier (second stage) that 
aggregates the latter decisions to reach a final verdict on whether the typing session belongs to a PD patient or 
not. The latter two-stage configuration is tested using the left-out subject’s ′I a

C sets (see also Fig. 1(b)).
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