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Fatty liver disease is one of the leading causes of chronic damage in western countries. Approximately 
25% of adults in the United States have fatty livers in the absence of excessive alcohol consumption, 
a condition termed nonalcoholic fatty liver disease (NAFLD). Little is known about the prevalence and 
genetic background of NAFLD or the factors that determine its development. In this study, we used 
the Gene-Cloud of Biotechnology Information bioinformatics platform to carry out a comprehensive 
bioinformatics analysis identifying differentially expressed genes (DEGs), key biological processes and 
intersecting pathways. We imported 3 Gene Expression Omnibus datasets (GSE66676, GSE49541, and 
GSE83452). Then, we assessed the expression of the DEGs in clinical samples. We found that CD24 was 
the only gene co-expressed in all 3 datasets. “Glycolysis/gluconeogenesis”, “p53 signaling pathway” 
and “glycine, serine and threonine metabolism” were 3 common pathways related to the fatty liver 
process. In NAFLD tissues, CD24, COL1A1, LUM, THBS2 and EPHA3 were upregulated, and PZP was 
downregulated. CD24 is a core gene among these DEGs and have not yet been studied of its impact on 
NAFLD. Co-expressed genes, common biological processes and intersecting pathways identified in the 
study might play an important role in NAFLD progression. Further studies are needed to elucidate the 
mechanism of these potential genes and pathways in NAFLD.

Nonalcoholic fatty liver disease (NAFLD) and its subtype nonalcoholic steatohepatitis (NASH) have become an 
increasingly important clinical and economic burden for public health1,2. NAFLD is the leading cause of liver 
damage and dysfunction in the western world and is strongly associated with obesity and insulin resistance3. 
Fatty liver could subsequently develop to malignancy and end-stage liver failure4–6. Currently, NAFLD is a leading 
indication for liver transplantation in the United States7. Mechanistic, preclinical, and clinical studies provided 
an initial view into NAFLD progression along with the process from NAFLD to NASH and fibrosis8,9. However, 
owing to the epidemics of NAFLD and the unclear mechanism of NAFLD progression, it is important to elucidate 
the underlying NAFLD mechanisms in detail.

Gene profiling experiments in cross-sectional studies have been useful in identifying factors involved in 
NAFLD progression10–12. Gene profiling studies identified novel targets of NAFLD and demonstrated the roles 
of specific metabolic and repair pathways in the disease11. In the present study, we carried out a comprehen-
sive bioinformatics analysis between normal liver tissues and NAFLD/NASH tissues on the Gene-Cloud of 
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Biotechnology Information (GCBI) bioinformatics platform. Based on the comprehensive bioinformatics analy-
sis, we determined to identify key differentially expressed genes (DEGs), biological processes and pathways that 
are closely associated with NAFLD/NASH.

Materials and Methods
Gene expression omnibus datasets.  The Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/gds) is a public repository at the National Center of Biotechnology Information for storing high-throughput 
gene expression datasets. We selected potential GEO datasets according to the following inclusion criteria: 1) 
specimens had histological diagnosis; 2) human liver tissues diagnosed as hepatocyte steatosis for the experi-
mental group; 3) normal liver tissues used as controls; 4) expression profiling by array and raw data had the CEL 
format; 5) performed on the GPL570 platform ([HGU133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array) and Human Exon 1.0 ST v1 Array; and 6) supported by GCBI analysis laboratory. Datasets with specimens 
from other organisms, expression profiling by RT-PCR (or genome variation profiling by SNP array/SNP geno-
typing by SNP array), analyses on platforms other than GPL570, or sample size <10 were excluded.

We used the search terms “Fatty liver” [MeSH Terms] AND “Homo sapiens” [Organism] and “Non-alcoholic” 
[Description] and “CEL” [Supplementary Files] and “Expression profiling by array” [DataSet Type] in the GEO 
DataSets to identify potential datasets. Then, we further screened these datasets according to the above inclusion 
criteria. Finally, 3 GEO datasets, GSE66676, GSE49541, and GSE83452, were included in our study.

Gene-Cloud of Biotechnology Information (GCBI).  GCBI (Shanghai, China, https://www.gcbi.com.cn) 
is an online comprehensive bioinformatics analysis platform that combines a variety of research findings, genetic 
information, sample information, data algorithms and bioinformatics to create a “gene knowledge base,” which 
involves GEO datasets. GCBI platform can systematically analyze GEO dataset-derived gene expression infor-
mation13, including more than 120 million copies of genomic samples. In the present study, GCBI was used to 
identify DEGs between NAFLD/NASH liver tissues and normal liver tissues. In the Differential Gene Expression 
Analysis module on the GCBI platform, we identified DEGs with a fold expression change >5 at cut off values 
Q < 0.05 and P < 0.05. Venn diagrams were used to compare the top 100 DEGs from 3 cohorts by Venny (http://
bioinfogp.cnb.csic.es/tools/venny/index.html). Based on the DEGs, we further performed gene ontology (GO) 
analysis in terms of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in 
terms of pathway analysis. The top 20 biological functions and pathways are presented. Furthermore, a pathway 
relation network module was used to identify the core networks and pathway connections. Then, we applied the 
Gene Co-expression Network module on the GCBI platform to build gene co-expression networks for the DEGs 
to determine core genes in the networks.

Tissue specimens, RNA extraction and qRT-PCR analysis.  15 healthy liver tissues and 10 fatty liver 
tissues from liver donors were enrolled in our study to validate the expression levels of co-expressed DEGs. Prior 
patient consent and ethical approval from the ethics committee of the First Affiliated Hospital, Sun Yat-sen were 
obtained. All methods were performed in accordance with the ethics guidelines and regulations. We selected 8 

Figure 1.  Flow diagram of the study design. NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic 
steatohepatitis; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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co-expressed DEGs, including CD24, PZP, COL1A1, COL1A2, LUM, VCAN, THBS2 and EPHA3, for validation. 
All tissues were histologically diagnosed. Total RNA from the tissue specimens was isolated using TRIzol reagent 
(Invitrogen, Carlsbad, California, USA), and qRT-PCR was performed with SYBR® Green dye (TaKaRa, Shiga, 
Japan), following the manufacturer’s instructions. The primer sequences are provided in Supplementary Table S1. 
β-tubulin was used as a reference gene.

Ethics statement.  The research protocol was reviewed and approved by the Research Ethics Committee of 
the First Affiliated Hospital, Sun Yat-sen. All experiments were conducted in accordance with approved guide-
lines of the First Affiliated Hospital, Sun Yat-sen University.

Figure 2.  (a–c) Heat maps for potential DEGs between fatty liver and normal liver tissues in 3 cohorts. Heat 
maps for potential DEGs in GSE66676 (containing 33 NAFLD/NASH tissues and 34 normal liver tissues) (a), 
GSE49541 (containing contained 32 advanced NAFLD tissues and 40 mild NAFLD tissues) (b), and GSE83452 
(126 NASH tissues and 98 normal liver tissues) (c).

Rank Probe Set ID Gene Symbol Gene Description Regulation

1 7903765 GSTM1 glutathione S-transferase mu 1 Downregulated

2 8096301 SPP1 secreted phosphoprotein 1 Upregulated

3 8151532 FABP4 fatty acid binding protein 4 Upregulated

4 7960984 PZP pregnancy-zone protein Downregulated

5 7914000 NR0B2 nuclear receptor subfamily 0, group B, member 2 Downregulated

6 8174474 ACSL4 acyl-CoA synthetase long-chain family member 4 Upregulated

7 7908481 CFHR3 complement factor H-related 3 Upregulated

8 8136336 AKR1B10 aldo-keto reductase family 1, member B10 Upregulated

9 8150920 CYP7A1 cytochrome P450, family 7, subfamily A, polypeptide 1 Upregulated

10 7948420 FABP5 fatty acid binding protein 5 Upregulated

Table 1.  Top 10 differentially expressed genes in Cohort 1.

Rank Probe Set ID
Gene 
Symbol Gene Description Regulation

1 201842_s_at EFEMP1 EGF containing fibulin-like extracellular matrix protein 1 Upregulation

2 201843_s_at EFEMP1 EGF containing fibulin-like extracellular matrix protein 1 Upregulation

3 205422_s_at ITGBL1 integrin, beta-like 1 Upregulation

4 201744_s_at LUM lumican Upregulation

5 214247_s_at DKK3 dickkopf WNT signaling pathway inhibitor 3 Upregulation

6 213071_at DPT dermatopontin Upregulation

7 1557080_s_at ITGBL1 integrin, beta-like 1 (with EGF-like repeat domains) Upregulation

8 206070_s_at EPHA3 EPH receptor A3 Upregulation

9 207173_x_at CDH11 cadherin 11, type 2, OB-cadherin Upregulation

10 209291_at ID4 inhibitor of DNA binding 4 Upregulation

Table 2.  Top 10 differentially expressed genes in Cohort 2.
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Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the ethical committee of the First Affiliated Hospital, Sun Yat-sen University were 
obtained and with the 1964 Helsinki Declaration and its later amendments or comparable. NO tissues were pro-
cured from prisoners. All the livers were procured in Organ Transplant Center, The First Affiliated Hospital, Sun 
Yat-sen University.

Ethical standards.  Informed consent was obtained from all individual participants included in the study.

Statistical analysis.  Data are presented as the mean ± SD for continuous variables. Student’s t-test and anal-
ysis of variance were used to evaluate significant differences in demographic data. All P values were two-sided, 
and P < 0.05 was defined as statistically significant. Analyses were carried out by the Statistical Package for the 
Social Science (SPSS) 22.0 (IBM, USA).

Results
Study design.  The flow diagram of our study design is shown in Fig. 1. Our initial aim was to identify core 
genes in the development of fatty liver. We used 3 GEO datasets (GSE66676, GSE49541, and GSE83452) in the 
GCBI bioinformatics analysis platform. We extracted gene expression data of NAFLD/NASH and normal liver 
tissues to identify DEGs between the two histological diagnosis types in these 3 cohorts. Co-expressed DEGs were 
identified based on these DEGs. Biological function and KEGG pathway analyses were then performed. Finally, 
we verified expression of the core co-expressed genes in clinical samples to confirm the results.

Rank Probe Set ID Gene Symbol Gene Description Regulation

1 16829985 ENO3 enolase 3 (beta, muscle) Upregulation

2 16766132 APOF apolipoprotein F Downregulation

3 16895179 TP53I3 tumor protein p53 inducible protein 3 Upregulation

4 17104259 MSN moesin (MSN) Upregulation

5 16789484 ADSSL1 adenylosuccinate synthase like 1 (ADSSL1) Upregulation

6 16977052 CXCL10 chemokine (C-X-C motif) ligand 10 Upregulation

7 16890891 VIL1 villin 1 Downregulation

8 16909401 SLC16A14 solute carrier family 16, member 14 Upregulation

9 16811975 TSPAN3 tetraspanin 3 Upregulation

10 16841768 CENPV centromere protein V Downregulation

Table 3.  Top 10 differentially expressed genes in Cohort 3.

Figure 3.  The Venn diagram shows the top 100 DEGs and co-expressed genes among cohort 1 (GSE66676), 
cohort 2 (GSE49541) and cohort 3 (GSE83452).
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Major characteristics of samples in 3 datasets.  GEO datasets GSE66676 (Cohort 1), GSE49541 
(Cohort 2), and GSE83452 (Cohort 3) were enrolled in our study. All 3 datasets were available in the GCBI 
bioinformatics analysis platform. GSE66676 contained 33 NAFLD or NASH tissues and 34 normal liver tissues. 
GSE49541 contained 32 advanced NAFLD tissues and 40 mild NAFLD tissues. GSE83452 included 126 NASH 
tissues and 98 normal liver tissues.

DEGs between NAFLD/NASH and normal liver tissues.  We identified 8503, 1538, and 94 potential 
DEGs in GSE66676, GSE49541, and GSE83452, respectively (Fig. 2a–c). The top 10 DEGs from 3 cohorts are 
shown in Tables 1–3. After removing duplicate genes and expression values lacking specific gene symbols, we 
used the top 100 DEGs from GSE66676 and GSE49541 and 93 DEGs from GSE83452 to create a Venn diagram. 
The intersection of these 3 datasets in Fig. 3 shows that CD24 was the only co-expressed DEG found in all 3 
cohorts. Twelve genes were co-expressed in Cohort 1 and Cohort 2, including COL1A1, COL1A2, MOXD1, 
LUM, VCAN, EFEMP1, THBS2, MGP, COL3A1, EPHA3, BICC1, and COL6A3, all of which were upregulated. 
Seventeen genes were co-expressed in Cohort 1 and Cohort 3, including SPP1, FABP4, PZP, UTY, SLC1A2, 
GPNMB, DDX3Y, SAA1, MT1M, FAT1, USP9Y, LYZ, CXCL10, VIL1, EIF1AY, UBD, and CYP3A43. Further 

Figure 4.  (a–c) Top 20 biological functions in terms of GO analysis related to DEGs in cohort 1 (a), cohort 2 
(b) and cohort 3 (c).
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investigation showed that the regulation of MT1M, SLC1A2, CYP3A43 and VIL1 was not consistent. Therefore, 
13 genes were co-expressed in Cohort 1 and Cohort 3.

Biological process analysis.  In the present study, GO analysis was applied to investigate the biological 
function of the DEGs. The biological process analysis (Fig. 4a–c) revealed that “small molecule metabolic pro-
cess” was a common biological function in 3 cohorts. “Cellular lipid metabolic process” and “cell adhesion” were 
the common biological processes in Cohort 2 and Cohort 3. Four common biological processes in Cohort 1 and 
Cohort 2 were “blood coagulation, transmembrane transport, positive regulation of transcription from RNA 
polymerase II promoter and signal transduction”. Metabolic processes, such as “alpha-linolenic acid metabolic 
process, unsaturated fatty acid metabolic process, mRNA/RNA metabolic process” and other biological processes, 
were also vital in each cohort.

Figure 5.  (a–c) Top 20 pathways in terms of KEGG pathway analysis related to DEGs in cohort 1 (a), cohort 2 
(b) and cohort 3 (c). (d–f) Pathway relation network in 3 cohorts.
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Pathway analysis.  KEGG pathway analysis were used to investigate the pathway based on the DEGs identi-
fied. Figure 5a–c shows the top 20 pathways involved in each cohort. Among them, glycine, serine and threonine 
metabolism; cytokine-cytokine receptor interaction; PI3K-Akt signaling pathway; p53 signaling pathway; and 
metabolic pathways were 5 common pathways related to the fatty liver process. Among the top ten pathways in 
the pathway relation network in 3 cohorts, “glycolysis/gluconeogenesis”, “p53 signaling pathway” and “glycine, 
serine and threonine metabolism” were 3 intersecting pathways in the relation network (Table 4). MAPK signal-
ing pathway, apoptosis, pathways in cancer, cell cycle, Wnt signaling pathway and pyruvate metabolism were the 
other intersecting pathways in pairwise comparisons.

The validation of core genes expression in clinical samples.  To further determine which genes might 
play a significant role in the progression of fatty liver, we used real-time qPCR to detect the expression of 8 DEGs 
using clinical samples, including CD24, PZP, COL1A1, COL1A2, LUM, VCAN, THBS2 and EPHA3. 15 healthy 
liver tissues and 10 fatty liver tissues from liver donors were enrolled. We noted that CD24, COL1A1, LUM, 
THBS2 and EPHA3 were usually upregulated in fatty liver tissues comparing to normal liver tissues, which is 
consistent with the results of bioinformatics analysis above (Fig. 6a–f). PZP was significantly downregulated in 
fatty livers compared with normal livers, which is also consistent with the co-expressed results (Fig. 6h).

Discussion
Non-alcoholic steatohepatitis is strongly associated with strong genetic component and dietary component1. A 
number of genes could be associated with the susceptibility and development of NAFLD and NASH1,2. In our 
present study, we imported three GEO datasets into the GCBI comprehensive analysis platform to extract gene 
expression data of NAFLD/NASH tissue comparing to normal liver tissue or NASH tissue comparing to NAFLD 
liver tissue. We identified co-expressed DEGs, common biological processes and pathways between NAFLD/
NASH and normal liver tissues through differential expression analysis in GCBI.

We found that CD24, PZP, COL1A1, COL1A2, LUM, VCAN, THBS2 and EPHA3 were potential biomarkers 
for distinguishing NAFLD/NASH. Further validation by clinical samples, the expression of CD24, PZP, COL1A1, 
LUM, THBS2 and EPHA3 were significantly regulated. Moreover, CD24 is a core gene among these DEGs and 
have not yet been studied of its impact on hepatocyte steatosis. CD24 encodes a sialoglycoprotein that is expressed 
on mature granulocytes and B cells and modulates growth and differentiation signals to these cells13. Several 

Figure 6.  (a–h) Real-time qPCR validation of 8 co-expressed DEGs in 10 NAFLD and 15 normal liver tissues. 
*P < 0.05, **P < 0.01, NS represents no significant difference, analysis by non-paired t tests.

Rank Cohort 1 Cohort 2 Cohort 3

1 MAPK signaling pathway MAPK signaling pathway Pyruvate metabolism

2 Apoptosis Pathways in cancer Glycolysis/Gluconeogenesis

3 Pathways in cancer Apoptosis Fatty acid biosynthesis

4 Cell cycle Cell cycle Glycine, serine and threonine metabolism

5 Glycolysis/Gluconeogenesis p53 signaling pathway Prostate cancer

6 p53 signaling pathway Pyruvate metabolism Cytokine-cytokine receptor interaction

7 Glycine, serine and threonine metabolism Glycolysis/Gluconeogenesis Toll-like receptor signaling pathway

8 Calcium signaling pathway Wnt signaling pathway p53 signaling pathway

9 Citrate cycle (TCA cycle) Focal adhesion

10 Wnt signaling pathway Glycine, serine and threonine metabolism

Table 4.  Top 10 pathways in pathway relation network of the 3 cohorts.
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studies have reported that CD24 is widely distributed, including on hematopoietic cells14 and non-hematopoietic 
cells15,16. CD24 has been studied to be associated with various pathophysiological processes, including tracking 
divergent states of cells17, regulating CD8 (+) T cell activation18 and participating in mutant-IDH1-dependent 
chromatin state reprogramming19. Accumulating evidence showed that this protein is overexpressed in many 
types of cancers, resulting in cancer cell growth, proliferation and metastasis20. Previous studies have reported 
that CD24 is overexpressed in nearly 70% of human cancers, and intracellular CD24 disrupts the ARF-NPM 
interaction and enables mutational and viral oncogene-mediated p53 inactivation21. CD24 is significantly corre-
lated with tumorigenesis genes, such as non-coding RNAs22. It was previously demonstrated that a subpopulation 
of adipocyte progenitor cells was identified with the expression of the cell surface molecule CD24 being critically 
important for reconstitution of white adipose tissue function in vivo23. CD24 was shown to be important in 
the reconstitution of white adipocyte (WAT) function in vivo, as well as a specific regulator of adipogenesis in 
vitro23,24. Furthermore, it was demonstrated that losing CD24 in male mice leads to a generalized reduction of 
WAT and metabolic disturbances24. Fairbridge et al.25. reported that the global absence of CD24 affects adipocyte 
cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose home-
ostasis and free fatty acid levels. However, the precise function of CD24 and the underlying mechanisms of its 
activity in NAFLD/NASH progression remain unclear. This is the first study to identify the prominent correlation 
between CD24 and NAFLD/NASH.

Insulin resistance (IR) is central in the pathogenesis of NAFLD. NAFLD often significantly impacts glucose 
and lipid metabolism by exacerbating hepatic IR26. CD24 can regulate lipid raft occupancy and may affect glucose 
uptake by regulating lipid raft protein localization27. Additional studies will be required to identify whether there 
is a potential mechanism among CD24, glucose uptake, and insulin resistance. IR is a major factor for hepatic fat 
accumulation28. Several studies only focused on a single protein, which ignored the various potential pathways 
in this complex disease29. In our study, we found that “glycolysis/gluconeogenesis”, “p53 signaling pathway” and 
“glycine, serine and threonine metabolism” were 3 intersecting pathways in the relation network. Several studies 
have reported that glycolysis/gluconeogenesis30, the p53 signaling pathway31, and glycine metabolism32 were each 
associated with IR. The biological process “small molecule metabolic process” was reported to be vital in cancer33, 
hepatic metabolism disorder like IR34. We supposed it to be a key biological process in fatty liver. Further studies 
will be required to determine whether the co-expressed DEGs including CD24 could activate one of these path-
ways or other mechanisms to induce NAFLD/NASH in humans.

In summary, we first used the GCBI bioinformatics analysis platform to identify DEGs between NAFLD/
NASH tissues and normal liver tissues, which showed that CD24 is the hub gene and identify 3 intersecting path-
ways in the relation network. Then, using qRT-PCR analysis, we concluded that the mRNA expression of CD24 is 
upregulated in fatty liver. Further studies are required to elucidate the function and underlining mechanisms of 
this potential biomarker in the progression of hepatocyte steatosis.
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