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Abstract. The widely used multireader multicase ROC study design for comparing imaging modalities is the fully
crossed (FC) design: every reader reads every case of both modalities. We investigate paired split-plot (PSP)
designs that may allow for reduced cost and increased flexibility compared with the FC design. In the PSP design,
case images from two modalities are read by the same readers, thereby the readings are paired across modalities.
However, within each modality, not every reader reads every case. Instead, both the readers and the cases are
partitioned into a fixed number of groups and each group of readers reads its own group of cases—a split-plot
design. Using aU-statistic based variance analysis for AUC (i.e., area under the ROC curve), we show analytically
that precision can be gained by the PSP design as compared with the FC design with the same number of readers
and readings. Equivalently, we show that the PSP design can achieve the same statistical power as the FC design
with a reduced number of readings. The trade-off for the increased precision in the PSP design is the cost of
collecting a larger number of truth-verified patient cases than the FC design. This means that one can trade-off
between different sources of cost and choose a least burdensome design. We provide a validation study to show
the iMRMC software can be reliably used for analyzing data from both FC and PSP designs. Finally, we dem-
onstrate the advantages of the PSP design with a reader study comparing full-field digital mammography with
screen-film mammography. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.3.031410]
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1 Introduction
In multireader multicase (MRMC) studies, a number of readers
(e.g., radiologists) read medical images of a number of patient
cases for a specified clinical task (e.g., cancer detection) and the
diagnostic performance is evaluated. In the most general case,
both readers and cases are treated as random representative sam-
ples from their respective populations. By accounting for both
reader and case variabilities, the reader-averaged diagnostic
performance can be generalized to both the reader and case pop-
ulations, thereby providing direct evidence of device efficacy.
Because both sources of variability are often substantial, suffi-
ciently large numbers of readers and cases are needed to achieve
a desired precision such that a difference in performance
between two imaging modalities can be found statistically sig-
nificant. The theme of this paper is to investigate study design
strategies for MRMC studies that may allow for reduced cost
and increased flexibility.

The most widely used MRMC study design for comparing
two modalities is the fully crossed (FC) design: every reader
reads every case of both modalities.1 By pairing both readers
and cases across modalities, the FC design builds a positive
correlation between the performances of two modalities
and reduces the variability of the performance difference.1,2

Formally, the variance of the performance difference is

EQ-TARGET;temp:intralink-;sec1;63;141Var½Âð1Þ − Âð2Þ� ¼ Var½Âð1Þ� þ Var½Âð2Þ�
− 2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarÂð1Þ

VarÂð2Þ
p

;

where ÂðiÞ is the performance estimate for modality i and ρ is
the correlation between Âð1Þ and Âð2Þ. Typically, ρ > 0 and the
correlation reduces the variability of the performance difference.

Throughout the paper, we assume the diagnostic perfor-
mance metric is the area under the receiver operating character-
istic curve (AUC) (unless noted otherwise) as this is a
meaningful and widely used metric.1 Now, by having every
reader read every case, the FC design is cost-effective in
terms of the total number of readers and the total number of
cases.3 However, as Obuchowski3 pointed out for the FC design,
“study length (i.e., the number of total readings) and the time
commitment of individual readers (i.e., the number of readings
per reader) can be great.”

Alternative study designs have been investigated in the liter-
ature. Obuchowski3 compared several designs including the
traditional FC design, unpaired designs (either the cases or the
readers or both are unpaired across modalities), and a hybrid
design in which both readers and cases were paired across
two modalities, but, within each modality, each reader read
his/her own group of cases of both modalities. Obuchowski
found that, not surprisingly, the unpaired designs had significant
power disadvantages due to lack of correlation as explained in
the previous paragraph. The FC design is powerful but requires
a long study duration and a heavy workload for each reader.
The “hybrid design” was shown to be very competitive in
terms of study length and the time commitment of individual
readers, but it requires a very large number of patient cases to
be collected and truth-verified.
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In an effort to reduce the number of cases, Obuchowski4 pro-
posed the “mixed” MRMC design in which both readers and
cases were paired across two modalities and, within each modal-
ity, they were divided into a number of independent reader or
case groups and each group of readers read their own group
of cases. Obuchowski showed that the “mixed” design was a
promising alternative borrowing strengths from both the FC
design and the hybrid design. Later, this design was called
the split-plot design and different analysis methods were
compared5 and refined.6 In this paper, we call this design the
“paired split-plot” (PSP) design to reflect the fact that both read-
ers and cases are paired across modalities, and the split-plot
design is used within each modality.

Despite the aforementioned publications showing potential
advantages of the PSP design, we have rarely seen its use in
real-world studies, either in the peer-reviewed literature or in
the premarket applications submitted to the Food and Drug
Administration for regulatory review. This is likely due to the
deeply rooted notion that the FC design is the “most” powerful
and that many validation studies for freely available software
tools assume a FC design. However, the notion that the FC
design is most powerful only means that, by having all the read-
ers read all the cases, one can obtain the most information pos-
sible from the given numbers of readers and cases. This notion
essentially considers the sample sizes (readers and cases) as the
only resource needed to achieve certain statistical power.
However, the workload of the readers (i.e., the number of read-
ings) is another cost of a study, and frequently a major one. In
this work, we show that, when both sample sizes and reader’s
workload are considered, the PSP design can be more cost-effec-
tive than the FC design, which is similar to the notion that
Obuchowski4 demonstrated by showing how the estimates of
certain Obuchowski–Rockette model parameters are affected
by different designs. In our work, we provide a mathematical
proof with easy-to-understand formulas showing statistical effi-
ciency/power gain of the PSP design compared with the FC
design when the number of readings for each reader is the
same. We then put the theoretical analysis into practical perspec-
tives by comparing different designs in terms of power and cost
trade-off under a variety of simulation conditions. Furthermore,
we present a real MRMC study, the VIPER study (validation of
imaging in premarket evaluation and regulation),7 which used
the PSP design. We use the parameters estimated from this
real study to further compare different designs. Finally, in the
appendix, we present a simulation study validating the freely
available iMRMC software8 and show that it works equally
well for for both FC and PSP designs.

2 Efficiency Gain of Paired Split-Plot Designs
In this section, we present theoretical analyses to demonstrate
that, with fixed number of readers and fixed workload per
reader, the PSP design is more efficient than the FC design
for both measuring the performance of a single modality and
for comparing two modalities.

2.1 Theoretical Analysis: Single Modality

In a FC design with NR readers each reading N0 nondiseased
cases and N1 diseased cases, the reader-averaged empirical esti-
mate of AUC for a single modality is

EQ-TARGET;temp:intralink-;e001;326;752Â ¼ ΣNR
r¼1Σ

N0

i¼1Σ
N1

j¼1sðxir; yjrÞ
NRN0N1

; (1)

where xir and yjr are the rating scores (e.g., level of confidence
that cancer is present) of reader r on the nondiseased case i and
diseased case j, respectively, and sðx; yÞ is the kernel function

EQ-TARGET;temp:intralink-;sec2.1;326;681sðx; yÞ ¼
(
1 if x < y
0.5 if x ¼ y
0 if x > y

:

Note that we use the “hat” notation for “an estimate” of
a population parameter and we will use upper-case X and Y
to denote random variables corresponding to the observations
xir and yjr, respectively.

Gallas9 showed that the MRMC variance of Â can be written
as

EQ-TARGET;temp:intralink-;e002;326;560Var Â ¼ 1

NR
ðc1M1 þ c2M2 þ c3M3 þ c4M4Þ

þ NR − 1

NR
ðc1M5 þ c2M6 þ c3M7 þ c4M8Þ −M8;

(2)

where ciði ¼ 1; : : : ; 4Þ are determined by N0 and N1

EQ-TARGET;temp:intralink-;sec2.1;326;464

c1 ¼ 1∕N0N1; c2 ¼ ðN0 − 1Þ∕N0N1;

c3 ¼ ðN1 − 1Þ∕N0N1; c4 ¼ ðN0 − 1ÞðN1 − 1Þ∕N0N1;

and the Mlðl ¼ 1; : : : ; 8Þ are the second-order moments of the
kernel function s (E denotes “expectation”)

• M1 ¼ E½sðXir; YjrÞ2�,
• M2 ¼ E½sðXir; YjrÞsðXi 0r; YjrÞ�ði ≠ i 0Þ,
• M3 ¼ E½sðXir; YjrÞsðXir; Yj 0rÞ�ðj ≠ j 0Þ,
• M4 ¼ E½sðXir; YjrÞsðXi 0r; Yj 0rÞ�ði ≠ i 0; j ≠ j 0Þ,
• M5 ¼ E½sðXir; YjrÞsðXir 0 ; Yjr 0 Þ�ðr ≠ r 0Þ,
• M6 ¼ E½sðXir; YjrÞsðXi 0r 0 ; Yjr 0 Þ�ði ≠ i 0; r ≠ r 0Þ,
• M7 ¼ E½sðXir; YjrÞsðXir 0 ; Yj 0r 0 Þ�ðj ≠ j 0; r ≠ r 0Þ,
• M8 ¼ E½sðXir; YjrÞsðXi 0r 0 ; Yj 0r 0 Þ�ði ≠ i 0; j ≠ j 0; r ≠ r 0Þ.
The unbiased estimators of these moments are provided in

Gallas.9 This approach has been developed based on a probabi-
listic foundation of MRMC analysis9–12 and was later found to
be identical to the U-statistic approach.13,14

We define two variance-component parameters. The first
decreases with the number of readers [Eq. (3)]. The second
is independent of the number of readers [Eq. (4)]

EQ-TARGET;temp:intralink-;e003;326;186

VR ≡ c1ðM1 −M5Þ þ c2ðM2 −M6Þ þ c3ðM3 −M7Þ
þ c4ðM4 −M8Þ (3)

and

EQ-TARGET;temp:intralink-;e004;326;125VC ≡ c1M5 þ c2M6 þ c3M7 − ð1 − c4ÞM8: (4)

Then, the MRMC variance in the FC design as expressed in
Eq. (2) can be written as
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EQ-TARGET;temp:intralink-;e005;63;471VarFC Â ¼ 1

NR
VR þ VC: (5)

To understand the meaning of VR and VC, note that the
MRMC variance in Eq. (2) can be decomposed into three com-
ponents: reader variability purely due to the finite number of
readers, case variability purely due to the finite number of
cases, and variability due to reader by case interactions, which
are expressed as

EQ-TARGET;temp:intralink-;e006;63;371Varreader Â ¼ 1

NR
ðM4 −M8Þ; (6)

EQ-TARGET;temp:intralink-;e007;63;329Varcase Â ¼ c1M5 þ c2M6 þ c3M7 − ð1 − c4ÞM8; (7)

and

EQ-TARGET;temp:intralink-;e008;63;290Varreader×caseÂ ¼ 1

NR
½c1M1 þ c2M2 þ c3M3 − ð1 − c4ÞM4

− c1M5 − c2M6 − c3M7 þ ð1 − c4ÞM8�;
(8)

respectively. It can be seen that VC is identical to the case vari-
ability [Eqs. (4) and (7)] and VR (when normalized by NR) is the
combination of reader variability and variability due to reader by
case interactions.

We now consider a PSP design with G groups (PSPG). For
comparison, we assume that the total number of readers and the
workload of each reader are the same as those in the FC design,
i.e., NR readers each reading N0 nondiseased cases and N1 dis-
eased cases. The difference is that all the readers read the same
N0 þ N1 cases in the FC design whereas, in the PSP design,
different groups of readers read different groups of cases.
Within each group, however, all the readers read the same
group of cases. These are schematically shown in Fig. 1 for
the FC design and a PSP2 design. As each group is FC, the

variance of the AUC averaged over the NRg
readers in the

g’th group is given as

EQ-TARGET;temp:intralink-;sec2.1;326;449Var Âg ¼
1

NRg

VR þ VC:

As all the groups are independent, the performance estimates
Âgðg ¼ 1; : : : ; GÞ in the G groups are independent (i.e., zero
covariance across groups). Noting that ΣG

g¼1NRg
¼ NR, the vari-

ance of the average performance Â ¼ ΣG
g¼1NRg

Âg∕NR is given
as
EQ-TARGET;temp:intralink-;e009;326;349

VarPSPG Â ¼ 1

N2
R
ΣG
g¼1N

2
Rg
Var Âg

¼ 1

NR
VR þ

ΣG
g¼1N

2
Rg

N2
R

VC; (9)

EQ-TARGET;temp:intralink-;e010;326;274¼ 1

NR
VR þ 1

G
VC ðif NR1

¼ : : : ¼ NRG
Þ: (10)

Comparing Eq. (5) with Eqs. (9) and (10), we see that, for
study designs having the same number of readers with each

reader reading the same number of cases, VarPSPG Â <

VarFC Â, i.e., the PSP design is statistically more efficient in esti-
mating the performance of a single modality. More specifically,
we see that the precision gain of the PSP design with G groups is
due to the shrinkage of the case variability component VC by a
factor of 1∕G. Of course the gain of efficiency is not free as
when the number of cases read by each reader is held constant,
the total number of cases in the PSPG design is G times that in
the FC design. Basic statistics principles tell us that, when we
have more case samples, we gain more information from cases
and the uncertainty of the measured performance due to the
finite case sample decreases. The theoretical analysis provided
here shows how this happens exactly in the MRMC setting.

Fig. 1 Illustration of the FC design and the PSP design (assuming the two groups have the same number
of readers and each reader reads the same number of cases).

Journal of Medical Imaging 031410-3 Jul–Sep 2018 • Vol. 5(3)

Chen, Gong, and Gallas: Paired split-plot designs of multireader multicase studies



On the one hand, when the total case sample size increases in
the PSP design, the case variability decreases correspondingly
although the number of cases read by each reader is the same.
On the other hand, the other component in the total variance,
namely VR, is the same across designs because it is a function
of the number of readers and the number of cases read per
reader, which are set to be the same across designs.

2.2 Theoretical Analysis: Comparing Two Modalities

To compare two imaging modalities by testing the null hypoth-
esis that the performances of the two modalities, Að1Þ and Að2Þ,

are equal, we need to estimate the performance difference cΔA ¼dAð1Þ − dAð2Þ and its variance
d

VarcΔA and construct a test statistic

z ¼ cΔA∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffid
VarcΔAq

. Note that we use superscript ðiÞ to denote
modality. For the FC design, we have

EQ-TARGET;temp:intralink-;sec2.2;63;254

cΔA ¼ ΣNR
r¼1Σ

N0

i¼1Σ
N1

j¼1½sð1Þðxir; yjrÞ − sð2Þðxir; yjrÞ�
NRN0N1

:

Comparing this equation with Eq. (1), we see that we just
replace the kernel function s in the single-modality AUC
formula with sð1Þ − sð2Þ in the AUC difference formula here.
It is straightforward to see that the variance formulas in
Eqs. (2)–(10) for a single-modality AUC would hold for the

variance of cΔA if we just replace s with sð1Þ − sð2Þ in computing
the moment parameters. For example, in the single-modality sit-
uation we have M1 ¼ E½sðxir; yjrÞ2�. Then for the correspond-

ing moment MΔ
1 for the variance of cΔA, we have MΔ

1 ¼
Ef½sð1Þðxir; yjrÞ − sð2Þðxir; yjrÞ�2g. Note that MΔ

1 ¼ Mð1Þ
1 þ

Mð2Þ
1 − 2Mð1×2Þ

1 , where MðiÞ
1 ¼ E½sðiÞðxir; yjrÞ2� is the moment

parameter for the variance of AUC of modality i and Mð1×2Þ
1 ¼

E½sð1Þðxir; yjrÞsð2Þðxir; yjrÞ� is the moment parameter for the
covariance between the two AUCs. The other seven moment
parameters MΔ

k ðk ¼ 2; : : : ; 8Þ are defined similarly with similar
properties.

We define VΔ
R and VΔ

C in a fashion similar to VR and VC in
Eqs. (3) and (4) by replacing the Mk parameters with
MΔ

k ðk ¼ 1; : : : ; 8Þ. In the end, under the setting that the FC
design and the PSPG design have the same number of readers
each reading the same number of cases, we have the variance of
AUC difference for these two designs in Eqs. (11) and (12),
respectively. Again, we see that the VΔ

C component of the vari-
ance would shrink by a factor of G in the PSPG design as com-
pared with the FC design. Because statistical power is inversely
related to the variance of the AUC difference, the PSPG design
is more powerful in comparing two modalities given that the
number of readers and the number of cases read per reader
(workload) are the same

EQ-TARGET;temp:intralink-;e011;326;242VarFC cΔA ¼ 1

NR
VΔ
R þ VΔ

C; (11)

EQ-TARGET;temp:intralink-;e012;326;200VarPSPG bA ¼ 1

NR
VΔ
R þ ΣG

g¼1N
2
Rg

N2
R

VΔ
C

¼ 1

NR
VΔ
R þ 1

G
VΔ
C ðif NR1 ¼ · · ·¼ NRgÞ: (12)

3 Comparison of Paired Split-Plot with Fully
Crossed Using Analytical Computations
under the Roe and Metz Simulation Model

The purpose of this section is twofold. First, we put the theo-
retical variance analysis in the previous section into a more

Table 1 Simulation parameters for the Roe and Metz model.

Structure AUC1 AUC2 σ2R σ2τR σ2C σ2RC σ2τC σ2E

HH 0.65 0.70 0.011 0.011 0.3 0.2 0.3 0.2

0.80 0.85 0.030 0.030 0.3 0.2 0.3 0.2

0.90 0.95 0.056 0.056 0.3 0.2 0.3 0.2

HL 0.65 0.70 0.0055 0.0055 0.3 0.2 0.3 0.2

0.80 0.85 0.0055 0.0055 0.3 0.2 0.3 0.2

0.90 0.95 0.0055 0.0055 0.3 0.2 0.3 0.2

LH 0.65 0.70 0.011 0.011 0.1 0.2 0.1 0.6

0.80 0.85 0.030 0.030 0.1 0.2 0.1 0.6

0.90 0.95 0.056 0.056 0.1 0.2 0.1 0.6

LL 0.65 0.70 0.0055 0.0055 0.1 0.2 0.1 0.6

0.80 0.85 0.0055 0.0055 0.1 0.2 0.1 0.6

0.90 0.95 0.0055 0.0055 0.1 0.2 0.1 0.6

Note: HH, high data correlation, high reader variance; HL, high data correlation, low reader variance; LH, low data correlation, high reader variance;
LL, low data correlation, low reader variance.

Journal of Medical Imaging 031410-4 Jul–Sep 2018 • Vol. 5(3)

Chen, Gong, and Gallas: Paired split-plot designs of multireader multicase studies



practical perspective by comparing the statistical power between
the PSP design and the FC design under a variety of simulation
conditions. This is not a simulation study, but we use a simu-
lation model to explore different levels of reader and case vari-
ability (variance-component structures). Second, we show that
a trade-off can be made between the total number of cases and
the workload per reader in choosing the most cost-effective
design for achieving the same power. In practice, the computa-
tional procedure presented here can be used to choose a cost-
effective design based on real parameters (e.g., measured in
a pilot study) rather than the simulation parameters as we
do here.

The simulation model and simulation parameters were ini-
tially developed by Roe and Metz15 and have been frequently
used in validating analysis methods. Roe and Metz15 developed
a linear mixed effect model to simulate reader study data

EQ-TARGET;temp:intralink-;e013;63;576Xijkt ¼ μit þ Rjt þ Ckt þ ½RC�jkt þ ½τR�ijt þ ½τC�ikt þ Eijkt;

(13)

where Xijkt denotes the rating by reader j using modality i for
the likelihood of case k being diseased (e.g., a malignant lesion
is present in the image), whereas the truth state is t (t ¼ 0 for
nondiseased and t ¼ 1 for diseased). The Greek letter μ denotes
a fixed modality effect and the remaining terms denote random
effects, which are independent zero-mean Gaussian random var-
iables with variance parameters denoted as σ2R, σ

2
C, σ

2
RC, σ

2
τR, σ

2
τC,

σ2E, respectively. These variance parameters can vary with the
modality and the truth state in general,16 but, for simplicity,
they were set in Roe and Metz15 to be the same across modalities
and across truth states. Roe and Metz15 provided several sets of
variance parameters, which we adopt as shown in Table 1. These
parameters have different combinations of high or low data cor-
relation (the first H or L letter in the “structure” column of

Table 1) and high or low reader variability (the second H or
L letter in the “structure” column of Table 1). To simulate
three levels of AUC values (expectation over the population
of readers and the population of cases), we change the separa-
tion of the scores from nondiseased and diseased cases by
setting the μit parameter as μi0 ¼ 0 and μi1 ¼ Φ−1½AðiÞ� ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ σ2R þ σ2τRÞ
p

, where Φ−1 is the inverse cumulative distri-
bution function of the standard normal distribution and the “1”
in this formula comes from the constraint that Roe and Metz15

set: σ2C þ σ2RC þ σ2τC þ σ2E ¼ 1.
Given the Roe and Metz simulation parameters, we can ana-

lytically compute the moment parameters MðiÞ
l ði ¼ 1;2Þ and

Mð1×2Þ
l ðl ¼ 1; : : : ; 8Þ using the method developed by Gallas

and Hillis,16 which has been implemented in the iRoeMetz
software.17 Using these moment parameters and specified sam-
ple sizes, we can compute the variance of the AUC difference
using the methods described in Sec. 2. Under normal approxi-
mation, the statistical power for a two-sided test at the signifi-
cant level α with critical values �zα∕2 is

EQ-TARGET;temp:intralink-;e014;326;532Power ¼ Φ
�

ΔAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΔAÞp − zα∕2

�
þΦ

�
−

ΔAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΔAÞp − zα∕2

�
; (14)

where zα∕2 ¼ 1.96 for α ¼ 0.05.
Specifying the number of readers NR ¼ 16 with each reader

reading N0 ¼ 80 nondiseased cases and N1 ¼ 60 diseased
cases, we computed the variance and statistical power for the
FC design and PSP designs (with 2, 4, and 8 groups, respec-
tively) for each set of the Roe and Metz model parameters
(Table 1). The results are shown in Table 2.

Table 2 Comparison between the FC design and PSP designs in terms of statistical efficiency/power by holding constant the number of readings
per reader.

Structure AUC1 AUC2

VarðΔAÞ × 103 Power (%)

FC PSP2 PSP4 PSP8 FC PSP2 PSP4 PSP8

HH 0.65 0.70 1.42 0.83 0.53 0.38 26.4 41.2 58.2 72.3

0.80 0.85 0.96 0.63 0.46 0.38 36.4 51.4 64.4 73.1

0.90 0.95 0.42 0.30 0.24 0.21 68.0 82.0 89.5 93.0

HL 0.65 0.70 1.34 0.75 0.45 0.30 27.6 44.9 65.7 82.5

0.80 0.85 0.77 0.43 0.26 0.17 43.7 67.6 87.7 96.9

0.90 0.95 0.28 0.15 0.09 0.06 85.1 98.0 99.9 100

LH 0.65 0.70 0.71 0.52 0.43 0.38 46.6 58.9 67.5 72.5

0.80 0.85 0.55 0.45 0.40 0.38 56.9 65.5 70.6 73.3

0.90 0.95 0.27 0.23 0.22 0.21 86.5 90.5 92.4 93.3

LL 0.65 0.70 0.63 0.44 0.34 0.30 51.4 66.5 76.9 82.7

0.80 0.85 0.35 0.25 0.20 0.17 75.8 88.5 94.4 96.8

0.90 0.95 0.12 0.083 0.067 0.059 99.7 100 100 100
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There are two kinds of cost that can be considered in com-
paring study designs. One is the cost associated with the radi-
ologist’s time, which can be represented by the total number of
readings. The other is the cost for collecting and truth-verifying
patient cases, which can be represented by the total number of
cases. For the results shown in Table 2, we held the total number
of readings the same across study designs and showed that
the PSP designs gain efficiency/power with increased cost of
collecting and truth-verifying more cases. We can also compare
the number of readings and the number of cases needed to
achieve the same statistical power, allowing a trade-off between
the two kinds of cost being made such that the total cost is
minimized.

We again assumed 16 readers in each of the four designs: FC,
PSP2, PSP4, and PSP8. Utilizing Eq. (14), the fixed number of
readers (i.e., 16), and a fixed ratio (3:4) of the number of dis-
eased cases to the number of nondiseased cases, we iteratively
solved the number of cases each reader needs to read such that a
power of 80% is achieved. The results are shown as “cases per
reader” in Table 3. Then, the total number of readings is simply
the “case per reader” times 16 and therefore they are equivalent
for comparison purpose. The total number of cases that need to
be collected and truth-verified is the number of cases per reader
times 1, 2, 4, and 8 for the FC, PSP2, PSP4, and PSP8 designs,
respectively (shown as “total number of cases” in Table 3). From
this table, we can see that one can make a trade-off between
“cases per reader” and the “total number of cases” to choose
the most cost-effective design. If patient cases are precious,
one would certainly choose the FC design as it requires the
least number of cases. If many cases are already available
and reader’s time is the major cost of the study, which is typical
in many retrospective studies, one can choose a PSP design to
reduce the workload of readers.

4 VIPER Study
From the results in Sec. 3, we have seen that the relative advan-
tage of one design over the other would depend on the variance-
component structure. It is known that some of the Roe and Metz
simulation parameters may not be realistic.18 Thus, it is useful to
further compare different designs with realistic variance param-
eters estimated from real data. We used the iMRMC software8 to
analyze a real dataset, and, based on the estimated parameters,
we compared the PSP design to the FC design. We have
validated our software to analyze both FC and PSP data (see
Appendix A, for a validation study using simulations).

The real dataset is a study on design methodologies sur-
rounding the validation of imaging premarket evaluation and
regulation called VIPER.7 The VIPER study compared full-
field digital mammography (FFDM) to screen-film mammog-
raphy (SFM) for women with heterogeneously dense or
extremely dense breasts. All cases and corresponding images
were sampled from Digital Mammographic Imaging Screening
Trial19 archives. This is a retrospective reader study contracted
to Medical University of South Carolina (MUSC). The institu-
tional review board of MUSC approved the study.

Here, we analyze one of the VIPER reader studies and use
the estimated variance parameters to compare a PSP design with
a related FC design. In this VIPER reader study, we used the
PSP4 design with 20 readers divided into four groups (i.e.,
each group had five readers). Using design, each group of read-
ers were to read 60 cases with an enriched cancer prevalence of
∼50%. However, the split was not perfectly balanced and the
numbers of diseased and nondiseased cases per group are
slightly different from the original design. The case sample
sizes for the four groups are shown in Table 4. In this table,
we also show the moment parameters estimated from this data-
set using our iMRMC software along with the AUC values, their

Table 3 Comparison between the FC design and PSP designs in terms of the number of cases read by each reader and the total number of cases
to achieve 80% power (16 readers are assumed for all the designs and so the total number readings is 16 times the “case per reader”).

Structure AUC1 AUC2

Cases per reader Total number of cases

FC PSP2 PSP4 PSP8 FC PSP2 PSP4 PSP8

HH 0.65 0.70 1197 630 352 198 1197 1260 1408 1584

0.80 0.85 1348 709 410 237 1348 1418 1640 1896

0.90 0.95 249 137 81 51 249 274 324 408

HL 0.65 0.70 774 398 217 128 774 796 868 1024

0.80 0.85 385 202 112 67 385 404 448 536

0.90 0.95 144 77 46 28 144 154 184 224

LH 0.65 0.70 513 333 249 198 513 666 996 1584

0.80 0.85 578 375 305 237 578 750 1220 1896

0.90 0.95 104 74 60 51 104 148 240 408

LL 0.65 0.70 333 217 153 125 333 434 612 1000

0.80 0.85 158 104 79 65 158 208 316 520

0.90 0.95 56 39 30 27 56 78 120 216

Journal of Medical Imaging 031410-6 Jul–Sep 2018 • Vol. 5(3)

Chen, Gong, and Gallas: Paired split-plot designs of multireader multicase studies



difference, and the associated standard errors. The results show
that FFDM’s AUC is slightly inferior to the SFM’s by 0.025
with a standard error (SE) of 0.025 and an ∼95% confidence
interval (CI) of (−0.07 and 0.02).

Given the components of variance in Table 4, we can esti-
mate the variance of an FC study where 20 readers read the
same 27 diseased cases and the same 32 nondiseased cases
in both modalities [using Eq. (2) or Eq. (5)]. The SE of
the AUC difference from such an FC study would be 0.039
[∼95% CI (−0.10 and 0.05)]. Compared with the PSP4
study, the FC study has 25% the cases (59/239) and the
same number of reads per reader and in total. The trade-off
for the reduced cost of collecting and truth-verifying 25% of
the cases is more uncertainty: the SE of the AUC difference
from the FC study would be 56% larger than the PSP4 study.

For demonstration, we also show how to size a noninferiority
study to achieve a specific power. A reasonable hypothesis to
establish is that the diagnostic performance of FFDM is nonin-
ferior to that of SFM.We assume an effect sizeΔA ¼ 0 based on
the fact that their technological characteristics are similar and

the clinical performance reported in the literature shows that
FFDM is generally noninferior to the SFM. We specify a non-
inferiority margin δ of 0.05 in AUC. In addition, we assume the
ratio of the number of diseased cases to the number of non-
diseased cases to be 0.75. Then for a fixed number of readers,
we iteratively solve the number of cases needed for a target
power of 80%. The computational procedure was similar to
that in Sec. 3 except that the power for a noninferiority study
is (using normal approximation)

EQ-TARGET;temp:intralink-;sec4;326;185Powernoninferiority ¼ Φ
�

ΔAþ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΔAÞp − zα∕2

�
:

We set the number of readers as 16 or 20 for the following
designs: FC, PSP2, and PSP4. The results are shown in the bot-
tom section of Table 4. We demonstrate again that one can
assess the following in choosing a cost-effective design: how
many readers are available, the cost of collecting and truth-
verifying patient cases, and the cost of reading the cases by
the readers. If a large number of cases are already available

Table 4 VIPER’s high-prevalence reader study results and sizing new studies based on these results.

Retrospective reader study comparing SFM and FFDM

Sample sizes: 20 readers in four groups

Group 1 Group 2 Group 3 Group 4 Total

N0 32 31 32 35 130

N1 28 29 28 24 109

Estimated moment parameters

M1 M2 M3 M4 M5 M6 M7 M8

FFDM 0.7091 0.5904 0.5531 0.5060 0.5686 0.5509 0.5202 0.5075

SFM 0.7345 0.61470 0.5922 0.5433 0.59756 0.5774 0.5570 0.5439

Cross 0.5718 0.5549 0.5379 0.5239 0.5625 0.5519 0.5330 0.5257

Estimated AUC (with standard error)

FFDM 0.713 (0.024) SFM 0.738 (0.022)

Difference −0.025 (0.025) ∼95% CI ð−0.07; 0.02Þ

FC with the same workload for each reader (Nr ¼ 20, N0 ¼ 32, N1 ¼ 27):

SE ¼ 0.0394, ∼95% CI ð−0.10; 0.05Þ

Size a noninferiority study (for 80% power, noninferiority margin δ ¼ 0.05)

Assume effect size ΔA ¼ 0, diseased to nondiseased case ratio = 0.75

Cases per reader Total number of cases

FC PSP2 PSP4 FC PSP2 PSP4

Nr ¼ 16 408 237 153 408 474 612

Nr ¼ 20 364 207 132 364 414 528
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and the cost of collecting and truth-verifying cases is thus min-
imal, then a PSP design is preferred because the workload of
each reader and the total number of reads are substantially
reduced. For example, when Nr ¼ 16, using the PSP4 design
each reader would need to read 153 cases as compared with
408 in the FC design.

5 Discussions and Conclusion
In this work, we investigated the PSP design for MRMC reader
studies and compared it with the widely used FC design. From
the theoretical perspective, we analytically showed how statis-
tical efficiency can be gained by the PSP design as compared
with the FC design when the number of readings is the same
across designs. We then used analytical computations to com-
pare the two designs under a broad range of model parameters in
terms of statistical efficiency/power, the number of reads per
reader, and the number of cases that have to be collected and
truth-verified. The results in Tables 2 and 3 showed that a
trade-off can be made between the reader’s workload and the
collection and truth-verification of patient cases. Moreover,
such a trade-off would depend on the true variance-component
structure. Therefore, we further compared the two designs using
variance-components estimated in a real study. The VIPER
study results indicated that substantial precision can be gained
by the PSP design with the same reading workload and more
patient cases.

This means that, when the same cases are read again and
again by multiple readers, the benefit of adding readers is sub-
jected to diminishing returns. On the other hand, by having the
readers read different cases (PSP) rather than the same cases
(FC), substantial precision can be gained with fewer number
of reads. In the meantime, it should be noted that this gain
of precision may be associated with the extra cost of collecting
and truth-verifying more cases. We further note that, in addition
to these cost considerations, the PSP design offers practical flex-
ibilities. For example, the study duration may be shortened
because each reader reads fewer cases. Furthermore, in a
study that involves multiple institutions, the readers may read
the cases from their own institution thereby avoiding the
need for shipping the cases around the country, assuming the
study conditions can be well controlled and readers and patient
cases from each institution are representative of their respective
population. These findings are consistent with those of
Obuchowski4 who compared the PSP design with the FC design
by showing how the Obuchowski–Rockette (OR) model param-
eters vary across the two designs. In this work, we employed
the U-statistic variance analysis of the AUC to explicitly show
the variance difference between the two designs using simple
analytical formulas (Fig. 1).

These investigations have important practical implications.
When patient cases are precious, one may choose the FC design
to take full advantage of the cases that are available. On the other
hand, when many cases are available and the study is mainly
limited by the cost of the radiologist’s time, one may choose
to have the radiologists read fewer but different cases in a
PSP design. If variance-component parameters are available
(e.g., from pilot studies or previously published similar studies),
one can quantify various sources of cost and compare the overall
cost of different designs to choose the most cost-effective one.

We have assumed the same number of readers in comparing
the FC design with the PSP design throughout this paper. This is
mainly to make the analytical comparison easier. For example,

in Fig. 1, we show that with the same number of readers each
reading the same number of cases, the PSP design is more effi-
cient (less variance) and it requires more cases. Graphically, the
shaded area (that represents the number of readings) in this fig-
ure for the PSP design is the same as the FC design, but they are
split in the vertical direction. Alternatively, we can split the
shaded area in the horizontal direction and show that the PSP
in that way is more efficient than the FC design. This is a setting
that requires more readers. In reality, one may typically collect
more cases, recruit more readers, or both, in the PSP design than
in the FC design. The benefit is, as we have showed, fewer read-
ings are needed to achieve the same precision (efficiency).

We note that the amount of PSP-versus-FC efficiency gain
given the same reader workload depends on the variance com-
ponents of the problem, as we have showed in Table 2. This is
also evident from our analytical results in Eqs. (11) and (12).
Because only one variance component, namely VC, is reduced
in the PSP design compared with the FC design, the efficiency
gain can be small if this component is very small compared with
the other variance components (i.e., VC ≪ VR). Similar analyti-
cal results may be obtained in terms of the OR model parameters
using the marginal-mean ANOVA approach developed by
Hillis.6 This is interesting future work because one can survey
the published studies analyzed by either methods to compare
study designs in a broad range of real-world applications.
For readers who are familiar with the OR model, we showed
a connection between the U-statistic parameters (VC and VR)
and the OR model parameters in Appendix B.

The iMRMC8 and iRoeMetz17 software can be used to aid the
design process as it can compute the variance and statistical
power for different designs and sample sizes. We also validated
the iMRMC software’s statistical inference functionality using
simulations and showed that it can be reliably used to analyze
data from both the FC and PSP designs. However, we should
point out that the current version of the iMRMC software only
supports the binary performance endpoint (e.g., sensitivity and
specificity) and the AUC endpoint estimated by the trapezoidal/
Wilcoxon method, which is appropriate for ROC data collected
on the multilevel ordinal or the (quasi-)continuous scale.
Alternatively, one can use the software from the University
of Iowa20 that implements the Obuchowski–Rockette method
for MRMC study sizing and analysis,5,21,22 especially when par-
tial AUC or semiparametric estimate of AUC is the preferred
endpoint.

In conclusion, the PSP design is a useful alternative to the
widely used FC design in MRMC studies. The PSP design
may substantially reduce the cost of reader studies as compared
with the FC design in many applications.

Appendix A: Validation of the iMRMC Software
in Analyzing Paired Split-Plot Study Data
The freely available iMRMC software8 can be used to aid the
design (sizing) of an MRMC study and analyze data for both the
FC and PSP designs. The software is platform independent with
a graphical user interface (see Fig. 2 for screen shots). It is well
documented and actively maintained. In its core, the software
uses the trapezoidal/Wilcoxon method to estimate the AUC
(a U statistic) and applies the U-statistic method to estimate
the MRMC variance, which has been validated as an unbiased
estimator.9,13,23 For statistical inference, the test statistic
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EQ-TARGET;temp:intralink-;x1;63;346t ¼ jdAð1Þ − dAð2Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
Var½dAð1Þ − dAð2Þ�

r ;

is modeled as a Student’s t statistic.5

We validated the statistical inference functionality of the soft-
ware by simulating data under the null hypothesis (i.e., two
modalities have equal AUC performance) and investigated
the empirical type I error rate, which we expected to be
close to the nominal level of 5%. Specifically, we simulated
MRMC datasets using the Roe and Metz model [Eq. (13)]
with specified parameters and analyzed it with our iMRMC soft-
ware to see if the difference of performance between the two
modalities was statistically significant at the significant level
0.05. We repeated the simulations 100,000 times and computed
the proportion of experiments that showed a statistically signifi-
cant AUC difference, which is the empirical type I error rate.
We did such simulation validation for three study designs:
FC, PSP2, and PSP3. For each design, we varied the following
parameters in a fully factorial fashion:

• Variance component parameters with three AUC levels:
we used the 12 sets of parameters in Table 1 except
that we changed the values of AUC2 such that AUC2 ¼
AUC1 because we intended to simulate a null hypothesis,

• The total number of readers: NR ¼ 6;12; 18, and

• The total number of cases: NC ¼ 48;90 cases per class.

The simulation results are plotted in Fig. 3. The results
showed that the iMRMC software controlled the type I error
rate reliably across a broad range of simulation parameters
and study designs.

We do not recommend a reader study with too few readers
because they may not represent the reader population. But just to
test our software with extreme parameter values, we further per-
formed simulation studies simulating only three readers reading
25þ 25 cases in an FC fashion. The summary results (Fig. 4)
show that the type I error is controlled below the nominal
level of 0.05 across all the simulations (though it is a little
conservative for some simulation conditions).

Appendix B Relationship between
the U-Statistic Variance Parameters and
the Obuchowski–Rockette Model Parameters
In Sec. 2.2, we showed that the variance of the estimate of

difference in AUC ½cΔA ¼ Âð1Þ − Âð2Þ� in a FC design can be
expressed in terms of U-statistic parameters as

Fig. 2 Graphical user interface of the iMRMC software.
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EQ-TARGET;temp:intralink-;e015;63;219VarU cΔA ¼ 1

NR
VΔ
R þ VΔ

C; (15)

where NR is the number of readers VΔ
R ≡ c1ðMΔ

1 −MΔ
5 Þ þ

c2ðMΔ
2 −MΔ

6 Þ þ c3ðMΔ
3 −MΔ

7 Þ þ c4ðMΔ
4 −MΔ

8 Þ, VΔ
C≡c1MΔ

5 þ
c2MΔ

6 þc3MΔ
7 −ð1−c4ÞMΔ

8 , and MΔ
k ¼Mð1Þ

k þMð2Þ
k − 2Mð1×2Þ

k .
The estimate of variance of cΔA can be expressed in terms of

OR parameters as6

EQ-TARGET;temp:intralink-;e016;63;124

d
VarORðcΔAÞ ¼ 2

NR
MSðT � RÞ þ 2Maxð dCOV2 − dCOV3; 0Þ;

(16)

where MSðT � RÞ is modality × reader mean squares, COV2 is
the between-reader within-modality covariance of AUC, COV3

is the between-reader between-modality covariance of AUC,

and Max is a constraint of setting dCOV2 − dCOV3 to zero if
it is negative.

Note that the U-statistic variance expression [Eq. (15)] is for
population parameters, whereas the OR expression [Eq. (16)] is
an estimator. The main purpose of this appendix is to show
the expectation (“E”) of the latter equals to the former, i.e.,

E½ d
VarORðcΔAÞ� ¼ VarU cΔA. More specifically, we will show that

EQ-TARGET;temp:intralink-;e017;326;322VΔ
R ¼ 2E½MSðT � RÞ� (17)

and

EQ-TARGET;temp:intralink-;e018;326;279VΔ
C ¼ 2ðCOV2 − COV3Þ: (18)

Hillis6 has shown that

EQ-TARGET;temp:intralink-;e019;326;241E½MSðT � RÞ� ¼ σ2TR þ σ2ϵ − COV1 − COV2 þ COV3;

(19)

where σ2TR is the variance of the modality × reader interaction
term in the OR model, σ2ϵ is the expected variance of a fixed-
reader AUC, and COV1 is the within-reader between-modality
covariance of AUC. Next, we express each of the parameters on
the r.h.s of Eq. (19) in terms of U-statistic parameters.

The empirical fixed-reader AUC is

EQ-TARGET;temp:intralink-;x2;326;130Âr ¼
ΣN0

i¼1Σ
N1

j¼1sðxir; yjrÞ
N0N1

;

and its U-statistic variance is given by Refs. 9 and 14
VarðÂrjrÞ ¼ c1M1jr þ c2M2jr þ c3M3jr þ ðc4 − 1ÞM4jr, where
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Fig. 3 Validation of the iMRMC software for analyzing MRMC data.
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Mkjr is the Mk conditional on reader r. For example,
M1jr ¼ E½sðXir; YjrÞ2jr�. Then Mk is the expectation of
Mkjr over the reader population, i.e., Mk ¼ ErðMkjrÞ.
In the two-modality FC setting, σ2ϵ ¼ ðErfVar½bAð1Þ

r jr�g þ
ErfVar½bAð2Þ

r jr�gÞ∕2. So we have

EQ-TARGET;temp:intralink-;e020;63;690σ2ϵ ¼
1

2
Σ2
i¼1½c1MðiÞ

1 þ c2M
ðiÞ
2 þ c3M

ðiÞ
3 þ ðc4 − 1ÞMðiÞ

4 �:
(20)

Similarly, we have

EQ-TARGET;temp:intralink-;e021;63;624COV1 ¼ c1M
ð1×2Þ
1 þ c2M

ð1×2Þ
2 þ c3M

ð1×2Þ
3 þ ðc4 − 1ÞMð1×2Þ

4 ;

(21)

EQ-TARGET;temp:intralink-;e022;63;577COV2 ¼
1

2
Σ2
i¼1½c1MðiÞ

5 þ c2M
ðiÞ
6 þ c3M

ðiÞ
7 þ ðc4 − 1ÞMðiÞ

8 �;
(22)

and

EQ-TARGET;temp:intralink-;e023;63;517COV3 ¼ c1M
ð1×2Þ
5 þ c2M

ð1×2Þ
6 þ c3M

ð1×2Þ
7 þ ðc4 − 1ÞMð1×2Þ

8 :

(23)

To express σ2TR in terms of U-statistic parameters, we first
apply the conditional variance identity theorem24

EQ-TARGET;temp:intralink-;x2;63;447Var½Âð1Þ
r − Âð2Þ

r � ¼ EfVar½Âð1Þ
r − Âð2Þ

r �jrg
þ VarfE½Âð1Þ

r − Âð2Þ
r jr�g;

to the OR model, then we have VarfE½Âð1Þ
r − Âð2Þ

r jr�g ¼ 2σ2TR.

On the other hand, based onU-statistics,VarfE½Âð1Þ
r − Âð2Þ

r jr�g¼
MΔ

4 −MΔ
8 . So we have

EQ-TARGET;temp:intralink-;e024;63;351σ2TR ¼ 1

2
ðMΔ

4 −MΔ
8 Þ: (24)

By inserting Eqs. (20)–(24) back to Eqs. (17)–(19), one can
find Eqs. (17) and (18) hold.
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