Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 16;74(Pt 2):167–171. doi: 10.1107/S2056989018000725

Crystal structures of 2,3,8,9,14,15-hexa­methyl-5,6,11,12,17,18-hexa­aza­tri­naphthyl­ene and 2,3,8,9,14,15-hexa­phenyl-5,6,11,12,17,18-hexa­za­tri­naphthyl­ene di­chloro­methane disolvate

Pia Fangmann a, Marc Schmidtmann a, Rüdiger Beckhaus a,*
PMCID: PMC5956329  PMID: 29850046

2,3,8,9,14,15-Hexamethyl- and 2,3,8,9,14,15-hexa­phenyl-5,6,11,12,17,18-hexa­zatri­naphthyl­ene (HATNMe6 and HATNPh6) are derivatives of hexa­aza­tri­naphthyl­ene (HATN). In the crystal structures of the two compounds, pronounced π–π stacking dominates the packing.

Keywords: crystal structure, N-heterocycles, multidentate ligand, π–π stacking

Abstract

The crystal structures of two substituted HATN (hexa­aza­tri­naphthyl­ene) derivatives, namely 2,3,8,9,14,15-hexa­methyl- and 2,3,8,9,14,15-hexa­phenyl-5,6,11,12,17,18- hexa­zatri­naphthyl­ene (HATNMe6 and HATNPh6), are reported. Whereas the structure of the methyl-substituted derivative (HATNMe6) contains no solvent mol­ecules (C30H24N6), the hexa­phenyl-substituted structure (HATNPh6) contains two mol­ecules of di­chloro­methane (C60H36N6·2CH2Cl2). This class of planar bridging ligands is known for its electron-deficient systems and its ability to form π–π stacking inter­actions. Indeed, in both crystal structures strong π–π stacking inter­actions are observed, but with different packing features. The di­chloro­methane mol­ecules in the crystal structure of HATNPh6 are situated in the voids and are involved in C—H⋯N contacts to the nitro­gen atoms of the pyrazine units.

Chemical context  

Over the last decades, hexa­aza­tri­phenyl­ene (HAT) and its derivatives have shown numerous applications in magnetic materials, semiconductors, sensors and polymers for energy storage (Segura et al., 2015). These electron-deficient, aromatic and planar systems are known for their excellent π–π stacking ability (Alfonso & Stoeckli-Evans, 2001) and their three potential chelating positions to form metal complexes. Therefore, a variety of metal HAT or HATN (hexa­aza­tri­naphthyl­ene) complexes are known (Kitagawa & Masaoka, 2003). Complexes with ruthenium (HATN; Ghumaan et al., 2007), rhenium (HATN; Roy & Kubiak, 2010), cobalt (HATN; Moilanen et al., 2016) and titanium (HATNMe6; Piglosiewicz et al., 2005) have been investigated, in particular due to their inter­esting electrochemical, photophysical and magnetic properties. The synthesis, electrochemical and photophysical properties of the title compounds HATNMe6 (1) (Catalano et al., 1994; Fraser et al., 2011) and HATNPh6 (2) (Gao et al., 2009) have already been published. Herein we report on the corresponding crystal structures of the two HATN derivatives.

Structural commentary  

The title compound HATNMe6 (1) crystallizes without solvent mol­ecules in the ortho­rhom­bic space group Pbcn with four formula units per unit cell and half a mol­ecule of HATNMe6 in the asymmetric unit, the other half being completed by twofold rotation symmetry (Fig. 1). The mol­ecule is nearly planar with a slight deviation of the outer annulated benzene rings [2.25 (6)° for C8–C13 and 4.09 (6)° for C4–C6i; symmetry code: (i) 1 – x, y, 1/2 – z]. The central six-membered ring of 1 exhibits three longer (C1—C2, C3—C3i: average 1.474 Å) and three shorter (C2—C3, C1—C1i: average 1.427 Å) C—C bonds. The C—C bonds at the annulated benzene rings show differences in bond lengths. While the outermost bonds (C10—C11 and C6—C6i, respectively) are elongated (average 1.438 Å) the bonds to the left and right of these bonds (C5—C6, C9—C10, C11—C12) are shortened (average 1.366 Å).graphic file with name e-74-00167-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of 1 with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are given as spheres of arbitrary size. Unlabelled atoms are generated by the symmetry operation (1 − x, y, Inline graphic − z).

HATNPh6 (2) crystallizes with two mol­ecules of CH2Cl2 in the triclinic space group P Inline graphic with two formula units per unit cell (Fig. 2). The mol­ecule is, aside from the terminal phenyl groups, nearly planar with a slight deviation of the outer annulated benzene rings [9.97 (6)° for C43–C48, 8.96 (6)° for C7–C12, and 4.11 (6)° for C25–C30]. The terminal phenyl groups do not lie in this plane and are twisted [dihedral angles between the least-squares planes of the six-membered central ring system and the phenyl rings: 47.60 (7)° for C49–C54, 54.11 (7)° for C55–C60, 32.99 (6)° for C19–C24, 47.26 (6)° for C13–C18, 46.74 (6)° for C31–C36 and 44.26 (7)° for C37–C42]. The central six-membered ring of 2, like in HATNMe6 (1), exhibits three longer (C2—C3, C4—C5, C6—C1; average 1.474 Å) and three shorter (C1—C2, C3—C4, C5—C6; average 1.430 Å) C—C bonds. These distances are slightly shorter in comparison with HATN (Alfonso & Stoeckli-Evans, 2001; average 1.48 and 1.43 Å) but still longer than known for HAT(CONH2)6 (Beeson et al., 1996; average 1.46 and 1.41 Å). As has been noted for HATNMe6 (1) above as well as for HATN (Alfonso & Stoeckli-Evans, 2001), the annulated benzene ring shows differences in C—C bond lengths. For 2, the outermost bonds (C9—C10, C27—C28 and C45—C46, respectively) are elongated (average 1.449 Å) and the bonds to the left and right of these bonds (C8—C9, C10—C11, C26—C27, C28—C29, C44—C45, C46—C47) are shortened (average 1.379 Å).

Figure 2.

Figure 2

The structures of the mol­ecular entities in 2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary size.

Supra­molecular features  

As a result of the π–π stacking ability of tri­naphthyl­ene derivatives HATNMe6 (1) and HATNPh6 (2), these mol­ecules stack in layers in their respective crystal structures. In the crystal packing of HATNMe6 (1), a herringbone-like arrangement of mol­ecules is observed (Figs. 3 and 4). Individual mol­ecules are arranged in layers and have a short plane–to–plane distance (defined by the central rings) of 3.3602 (5) Å. However, the π–π overlap occurs only in small areas, as shown by the rather large parallel displacement of the mol­ecules with an angle of 31.52° and a shift of 5.48 Å between the centroids. The resulting layers within the herringbone-like structure stack at an angle of 63.1° to each other.

Figure 3.

Figure 3

A view along the b axis showing parts of the π–π inter­actions between the parallel displaced HATNMe6 (1) mol­ecules. H atoms have been omitted for clarity. Colour code: C grey, N blue spheres.

Figure 4.

Figure 4

View along the b axis showing the packing of HATNMe6 (1) in a herringbone-like arrangement. H atoms have been omitted for clarity. Colour code: C grey, N blue spheres.

The mol­ecules of HATNPh6 (2) form centrosymmetric dimers that are stacked perfectly parallel by van der Waals inter­actions but with a parallel displaced π-stacking. The plane-to-plane distance (defined by the central rings) within a dimer of 3.2518 (5) Å is shorter compared to the corres­ponding distance in 1. This distance, as well as the short centroid-to-centroid distance of 3.4018 (7) Å are both at the lower limit of ranges known for metal complexes with aromatic nitro­gen-containing ligands (Janiak, 2000). The plane-to-plane distance between adjacent dimers is 3.15 Å. The parallel displacement between the layers (Fig. 5) is much shorter than for HATNMe6 (1), with an angle of 16.8° and a shift of approximately 1 Å. Comparing the plane-to-plane distances of the title compounds with related derivatives like HATN (Alfonso & Stoeckli-Evans, 2001; 3.66 Å) and HAT(CONH2)6 (Beeson et al., 1996; 3.31 Å), the dimers of HATNPh6 (2) have the shortest contact and the shortest displacement in π-stacking. Further inter­actions between the terminal phenyl rings and the pyrazines rings inter­connect the dimers. The di­chloro­methane solvent mol­ecules are located near the electron lone pairs of the N atoms in the voids of the packed mol­ecules. They bridge two mol­ecules of 2 and consolidate the crystal packing through weak C—H⋯N hydrogen-bonding inter­actions (Table 1, Fig. 6).

Figure 5.

Figure 5

View along the plane defined by the central ring of HATNPh6 mol­ecules showing π–π inter­actions of the parallel displaced mol­ecules. H atoms and solvent mol­ecules are omitted for clarity. Colour code: C grey, N blue spheres.

Table 1. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C61—H61A⋯N1i 0.99 2.46 3.2380 (17) 135
C61—H61B⋯N2 0.99 2.40 3.2745 (17) 146
C61—H61B⋯N3 0.99 2.61 3.4923 (18) 149
C62—H62A⋯N4 0.99 2.58 3.2547 (17) 126
C62—H62A⋯N5 0.99 2.46 3.4381 (17) 169

Symmetry code: (i) Inline graphic.

Figure 6.

Figure 6

Packing diagram of HATNPh6 (2) viewed along the plane defined by the central ring of the mol­ecules. H atoms have been omitted for clarity. Dashed lines represent hydrogen bonds. Colour code: C grey, N blue, Cl green spheres.

Synthesis and crystallization  

Hexaketo­cyclo­hexane octa­hydrate and 4,5-diphenyl-1,2-di­amine were prepared according to published procedures (Fatiadi & Sager, 1962; Shao et al., 2012; Gao et al., 2009).

Synthesis of 1. HATNMe6 was synthesized by a published procedure (Catalano et al., 1994). Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of a benzene solution of 1.

Synthesis of 2. HATNPh6 was synthesized based on a literature method (Gao et al., 2009). 4,5-diphenyl-1,2-di­amine (1.8 g, 6.9 mmol) and hexa­keto­cyclo­hexane octa­hydrate (0.54 g, 1.72 mmol) in 100 ml acetic acid were heated up to 373 K for 36 h under a nitro­gen atmosphere. After cooling to room temperature the reaction mixture was filtrated and the resulting yellow solid was washed with plenty of water and 2 M KOH solution. The solid was suspended in a mixture of di­chloro­methane (100 ml) and a saturated K2CO3 solution (100 ml) overnight in order to remove all traces of acetic acid. After filtration and washing with water, the solid was dried in a vacuum to give 2 as a yellow solid in 72% yield. Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of a CH2Cl2 solution of 2.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to C atoms were located from difference-Fourier maps but were subsequently fixed to idealized positions using appropriate riding models.

Table 2. Experimental details.

  1 2
Crystal data
Chemical formula C30H24N6 C60H36N6·2CH2Cl2
M r 468.55 1010.80
Crystal system, space group Orthorhombic, P b c n Triclinic, P Inline graphic
Temperature (K) 153 100
a, b, c (Å) 11.6178 (8), 15.7762 (8), 12.8621 (7) 9.2629 (4), 16.3829 (6), 18.4366 (6)
α, β, γ (°) 90, 90, 90 64.2659 (13), 78.2616 (15), 88.3530 (17)
V3) 2357.4 (2) 2461.98 (16)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.29
Crystal size (mm) 0.50 × 0.38 × 0.25 0.30 × 0.12 × 0.10
 
Data collection
Diffractometer Stoe IPDS Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.970, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23121, 2361, 1286 87137, 14377, 11804
R int 0.057 0.043
(sin θ/λ)max−1) 0.621 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.080, 0.75 0.039, 0.107, 1.02
No. of reflections 2361 14377
No. of parameters 166 649
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15 0.84, −0.84

Computer programs: IPDS (Stoe, 1999), APEX2 and SAINT (Bruker, 2013), X-RED (Stoe, 2002), SHELXS97 (Sheldrick, 2008), SHELXT2013/1 (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989018000725/wm5431sup1.cif

e-74-00167-sup1.cif (3.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018000725/wm54311sup2.hkl

e-74-00167-1sup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018000725/wm54312sup3.hkl

e-74-00167-2sup3.hkl (1.1MB, hkl)

Supporting information file. DOI: 10.1107/S2056989018000725/wm54311sup4.cml

Supporting information file. DOI: 10.1107/S2056989018000725/wm54312sup5.cml

CCDC references: 1816408, 1816407

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Crystal data

C30H24N6 Dx = 1.320 Mg m3
Mr = 468.55 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 5493 reflections
a = 11.6178 (8) Å θ = 2.3–26.2°
b = 15.7762 (8) Å µ = 0.08 mm1
c = 12.8621 (7) Å T = 153 K
V = 2357.4 (2) Å3 Prism, yellow
Z = 4 0.50 × 0.38 × 0.25 mm
F(000) = 984

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Data collection

Stoe IPDS diffractometer Rint = 0.057
Radiation source: sealed tube θmax = 26.2°, θmin = 2.6°
φ scans h = −14→14
23121 measured reflections k = −19→19
2361 independent reflections l = −15→16
1286 reflections with I > 2σ(I)

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 0.75 (Δ/σ)max < 0.001
2361 reflections Δρmax = 0.16 e Å3
166 parameters Δρmin = −0.14 e Å3

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.56074 (10) 0.64519 (8) 0.34566 (8) 0.0255 (3)
N2 0.62730 (10) 0.49478 (7) 0.43437 (8) 0.0265 (3)
N3 0.56076 (10) 0.34059 (8) 0.33894 (7) 0.0252 (3)
C1 0.53175 (13) 0.57382 (8) 0.29813 (10) 0.0226 (3)
C2 0.56581 (11) 0.49314 (9) 0.34649 (9) 0.0225 (3)
C3 0.53343 (12) 0.41546 (9) 0.29893 (9) 0.0225 (3)
C4 0.52959 (12) 0.71863 (9) 0.29846 (10) 0.0247 (3)
C5 0.55513 (12) 0.79701 (10) 0.34611 (10) 0.0283 (3)
H5 0.592691 0.797343 0.411715 0.034*
C6 0.52734 (13) 0.87212 (9) 0.30047 (11) 0.0314 (4)
C7 0.55470 (17) 0.95456 (11) 0.35433 (13) 0.0502 (5)
H7A 0.579276 0.943076 0.425845 0.075*
H7B 0.485952 0.990540 0.355234 0.075*
H7C 0.616673 0.983645 0.316924 0.075*
C8 0.65625 (12) 0.41882 (9) 0.47584 (10) 0.0246 (3)
C9 0.72310 (13) 0.41486 (9) 0.56818 (10) 0.0288 (4)
H9 0.745094 0.466061 0.601600 0.035*
C10 0.75658 (12) 0.33909 (9) 0.61015 (10) 0.0281 (3)
C11 0.72339 (12) 0.26111 (9) 0.56134 (10) 0.0266 (3)
C12 0.65713 (13) 0.26394 (9) 0.47327 (10) 0.0269 (3)
H12 0.633497 0.212331 0.441761 0.032*
C13 0.62308 (11) 0.34154 (9) 0.42814 (9) 0.0238 (3)
C14 0.82859 (14) 0.33631 (11) 0.70797 (11) 0.0398 (4)
H14A 0.846997 0.394234 0.729895 0.060*
H14B 0.900037 0.305244 0.694236 0.060*
H14C 0.785419 0.307648 0.763184 0.060*
C15 0.76172 (14) 0.17752 (9) 0.60460 (11) 0.0367 (4)
H15A 0.729041 0.131482 0.562831 0.055*
H15B 0.735262 0.172194 0.676654 0.055*
H15C 0.845931 0.174242 0.602613 0.055*

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0268 (6) 0.0259 (7) 0.0237 (5) −0.0006 (6) −0.0010 (5) 0.0007 (5)
N2 0.0279 (6) 0.0280 (7) 0.0235 (6) −0.0014 (6) −0.0026 (5) 0.0015 (5)
N3 0.0279 (6) 0.0277 (7) 0.0201 (5) 0.0003 (6) −0.0001 (5) 0.0010 (5)
C1 0.0211 (7) 0.0255 (9) 0.0213 (6) −0.0007 (6) 0.0018 (6) −0.0005 (5)
C2 0.0209 (7) 0.0265 (8) 0.0201 (6) 0.0010 (7) 0.0028 (6) 0.0001 (6)
C3 0.0224 (7) 0.0259 (8) 0.0191 (6) 0.0008 (6) 0.0034 (6) 0.0006 (5)
C4 0.0225 (7) 0.0271 (9) 0.0244 (7) −0.0003 (7) 0.0010 (6) 0.0011 (6)
C5 0.0274 (8) 0.0313 (9) 0.0262 (7) −0.0004 (7) −0.0058 (6) −0.0017 (6)
C6 0.0311 (8) 0.0272 (9) 0.0360 (8) −0.0017 (7) −0.0061 (6) −0.0015 (6)
C7 0.0685 (13) 0.0294 (10) 0.0526 (9) 0.0004 (9) −0.0288 (9) −0.0037 (8)
C8 0.0236 (8) 0.0277 (9) 0.0225 (7) 0.0009 (6) 0.0014 (6) 0.0025 (6)
C9 0.0311 (9) 0.0301 (9) 0.0254 (7) −0.0031 (7) −0.0033 (6) −0.0006 (6)
C10 0.0267 (8) 0.0323 (9) 0.0253 (6) −0.0006 (7) −0.0011 (6) 0.0061 (6)
C11 0.0261 (8) 0.0287 (9) 0.0252 (7) 0.0031 (6) 0.0044 (6) 0.0049 (6)
C12 0.0306 (8) 0.0257 (8) 0.0246 (7) 0.0003 (6) 0.0025 (6) −0.0011 (5)
C13 0.0238 (7) 0.0277 (8) 0.0198 (6) 0.0012 (7) 0.0027 (5) 0.0010 (6)
C14 0.0426 (9) 0.0399 (10) 0.0370 (8) −0.0030 (8) −0.0141 (7) 0.0061 (7)
C15 0.0385 (10) 0.0365 (10) 0.0350 (8) 0.0033 (8) −0.0042 (7) 0.0063 (6)

2,3,8,9,14,15-Hexamethyl-5,6,11,12,17,18-hexaazatrinaphthylene (1). Geometric parameters (Å, º)

N1—C1 1.3248 (17) C7—H7C 0.9800
N1—C4 1.3571 (18) C8—C13 1.4181 (19)
N2—C2 1.3374 (15) C8—C9 1.4205 (19)
N2—C8 1.3541 (18) C9—C10 1.368 (2)
N3—C3 1.3270 (17) C9—H9 0.9500
N3—C13 1.3568 (16) C10—C11 1.434 (2)
C1—C1i 1.441 (3) C10—C14 1.5115 (19)
C1—C2 1.4709 (19) C11—C12 1.3703 (19)
C2—C3 1.4203 (19) C11—C15 1.4990 (19)
C3—C3i 1.479 (3) C12—C13 1.4115 (19)
C4—C5 1.412 (2) C12—H12 0.9500
C4—C4i 1.424 (3) C14—H14A 0.9800
C5—C6 1.361 (2) C14—H14B 0.9800
C5—H5 0.9500 C14—H14C 0.9800
C6—C6i 1.445 (3) C15—H15A 0.9800
C6—C7 1.507 (2) C15—H15B 0.9800
C7—H7A 0.9800 C15—H15C 0.9800
C7—H7B 0.9800
C1—N1—C4 116.83 (11) C13—C8—C9 118.20 (12)
C2—N2—C8 116.65 (12) C10—C9—C8 121.58 (14)
C3—N3—C13 116.47 (12) C10—C9—H9 119.2
N1—C1—C1i 121.77 (8) C8—C9—H9 119.2
N1—C1—C2 118.16 (12) C9—C10—C11 120.03 (12)
C1i—C1—C2 120.07 (7) C9—C10—C14 120.74 (14)
N2—C2—C3 121.48 (13) C11—C10—C14 119.24 (13)
N2—C2—C1 118.97 (13) C12—C11—C10 119.02 (13)
C3—C2—C1 119.55 (11) C12—C11—C15 120.17 (13)
N3—C3—C2 122.52 (12) C10—C11—C15 120.81 (12)
N3—C3—C3i 117.11 (7) C11—C12—C13 121.71 (13)
C2—C3—C3i 120.37 (8) C11—C12—H12 119.1
N1—C4—C5 119.83 (12) C13—C12—H12 119.1
N1—C4—C4i 121.37 (7) N3—C13—C12 119.18 (13)
C5—C4—C4i 118.80 (8) N3—C13—C8 121.36 (12)
C6—C5—C4 121.70 (12) C12—C13—C8 119.45 (11)
C6—C5—H5 119.1 C10—C14—H14A 109.5
C4—C5—H5 119.1 C10—C14—H14B 109.5
C5—C6—C6i 119.44 (8) H14A—C14—H14B 109.5
C5—C6—C7 120.19 (13) C10—C14—H14C 109.5
C6i—C6—C7 120.36 (9) H14A—C14—H14C 109.5
C6—C7—H7A 109.5 H14B—C14—H14C 109.5
C6—C7—H7B 109.5 C11—C15—H15A 109.5
H7A—C7—H7B 109.5 C11—C15—H15B 109.5
C6—C7—H7C 109.5 H15A—C15—H15B 109.5
H7A—C7—H7C 109.5 C11—C15—H15C 109.5
H7B—C7—H7C 109.5 H15A—C15—H15C 109.5
N2—C8—C13 121.52 (12) H15B—C15—H15C 109.5
N2—C8—C9 120.27 (13)
C4—N1—C1—C1i −1.1 (2) C2—N2—C8—C13 0.12 (18)
C4—N1—C1—C2 179.08 (13) C2—N2—C8—C9 178.97 (12)
C8—N2—C2—C3 −0.44 (17) N2—C8—C9—C10 −178.02 (13)
C8—N2—C2—C1 179.87 (12) C13—C8—C9—C10 0.9 (2)
N1—C1—C2—N2 −1.96 (18) C8—C9—C10—C11 −0.5 (2)
C1i—C1—C2—N2 178.26 (15) C8—C9—C10—C14 179.46 (14)
N1—C1—C2—C3 178.35 (13) C9—C10—C11—C12 −0.7 (2)
C1i—C1—C2—C3 −1.4 (2) C14—C10—C11—C12 179.35 (13)
C13—N3—C3—C2 −0.70 (18) C9—C10—C11—C15 178.43 (14)
C13—N3—C3—C3i 179.36 (15) C14—C10—C11—C15 −1.56 (19)
N2—C2—C3—N3 0.77 (19) C10—C11—C12—C13 1.5 (2)
C1—C2—C3—N3 −179.54 (13) C15—C11—C12—C13 −177.59 (13)
N2—C2—C3—C3i −179.28 (15) C3—N3—C13—C12 −178.55 (12)
C1—C2—C3—C3i 0.4 (2) C3—N3—C13—C8 0.36 (17)
C1—N1—C4—C5 178.39 (14) C11—C12—C13—N3 177.78 (13)
C1—N1—C4—C4i −1.1 (2) C11—C12—C13—C8 −1.2 (2)
N1—C4—C5—C6 178.74 (15) N2—C8—C13—N3 −0.1 (2)
C4i—C4—C5—C6 −1.7 (2) C9—C8—C13—N3 −178.96 (13)
C4—C5—C6—C6i −1.5 (3) N2—C8—C13—C12 178.83 (14)
C4—C5—C6—C7 179.25 (15) C9—C8—C13—C12 −0.04 (18)

Symmetry code: (i) −x+1, y, −z+1/2.

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Crystal data

C60H36N6·2CH2Cl2 Z = 2
Mr = 1010.80 F(000) = 1044
Triclinic, P1 Dx = 1.364 Mg m3
a = 9.2629 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 16.3829 (6) Å Cell parameters from 9893 reflections
c = 18.4366 (6) Å θ = 2.3–30.0°
α = 64.2659 (13)° µ = 0.29 mm1
β = 78.2616 (15)° T = 100 K
γ = 88.3530 (17)° Block, yellow
V = 2461.98 (16) Å3 0.30 × 0.12 × 0.10 mm

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Data collection

Bruker APEX-II CCD diffractometer 11804 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.043
φ and ω scans θmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −13→13
Tmin = 0.970, Tmax = 1.000 k = −23→23
87137 measured reflections l = −25→25
14377 independent reflections

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: difference Fourier map
wR(F2) = 0.107 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.050P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
14377 reflections (Δ/σ)max = 0.001
649 parameters Δρmax = 0.84 e Å3
0 restraints Δρmin = −0.84 e Å3

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.11926 (11) 0.44967 (7) 0.60814 (6) 0.01193 (18)
N2 0.18060 (11) 0.60400 (7) 0.45277 (6) 0.01252 (19)
N3 0.41523 (11) 0.61360 (7) 0.33603 (6) 0.01264 (19)
N4 0.59471 (11) 0.46401 (7) 0.36209 (6) 0.01232 (19)
N5 0.53889 (11) 0.31547 (7) 0.51241 (6) 0.01196 (18)
N6 0.27642 (11) 0.29872 (7) 0.62955 (6) 0.01280 (19)
C1 0.22651 (12) 0.45307 (8) 0.54672 (7) 0.0107 (2)
C2 0.25958 (12) 0.53194 (8) 0.46923 (7) 0.0111 (2)
C3 0.38735 (12) 0.53672 (8) 0.40497 (7) 0.0110 (2)
C4 0.47903 (12) 0.46219 (8) 0.41903 (7) 0.0109 (2)
C5 0.44562 (13) 0.38091 (8) 0.49903 (7) 0.0110 (2)
C6 0.31672 (12) 0.37406 (8) 0.55998 (7) 0.0113 (2)
C7 0.04205 (13) 0.52505 (8) 0.59315 (7) 0.0116 (2)
C8 −0.06780 (13) 0.53019 (8) 0.65653 (7) 0.0132 (2)
H8 −0.088884 0.479364 0.709104 0.016*
C9 −0.14549 (13) 0.60696 (8) 0.64431 (7) 0.0128 (2)
C10 −0.12054 (13) 0.68304 (8) 0.56292 (7) 0.0128 (2)
C11 −0.01485 (13) 0.67705 (8) 0.50117 (7) 0.0142 (2)
H11 0.000554 0.725739 0.447369 0.017*
C12 0.07124 (13) 0.60140 (8) 0.51484 (7) 0.0122 (2)
C13 −0.24727 (13) 0.60780 (8) 0.71806 (7) 0.0140 (2)
C14 −0.34319 (14) 0.53190 (9) 0.77210 (8) 0.0175 (2)
H14 −0.344709 0.480483 0.761037 0.021*
C15 −0.43664 (15) 0.53104 (10) 0.84210 (8) 0.0229 (3)
H15 −0.502156 0.479426 0.878182 0.028*
C16 −0.43391 (16) 0.60558 (11) 0.85904 (9) 0.0244 (3)
H16 −0.497906 0.605196 0.906536 0.029*
C17 −0.33734 (16) 0.68085 (10) 0.80636 (9) 0.0233 (3)
H17 −0.334699 0.731629 0.818261 0.028*
C18 −0.24461 (15) 0.68200 (9) 0.73633 (8) 0.0181 (2)
H18 −0.178930 0.733655 0.700611 0.022*
C19 −0.20291 (13) 0.76731 (8) 0.53886 (7) 0.0139 (2)
C20 −0.35316 (14) 0.76736 (9) 0.57128 (8) 0.0161 (2)
H20 −0.404730 0.713178 0.614174 0.019*
C21 −0.42778 (14) 0.84646 (9) 0.54103 (8) 0.0185 (2)
H21 −0.529303 0.845922 0.564415 0.022*
C22 −0.35570 (15) 0.92581 (9) 0.47732 (8) 0.0197 (3)
H22 −0.408316 0.978749 0.455846 0.024*
C23 −0.20617 (15) 0.92744 (9) 0.44508 (8) 0.0193 (2)
H23 −0.155738 0.981790 0.401845 0.023*
C24 −0.13024 (14) 0.84933 (9) 0.47618 (8) 0.0172 (2)
H24 −0.027381 0.851395 0.454697 0.021*
C25 0.53512 (13) 0.61711 (8) 0.27859 (7) 0.0127 (2)
C26 0.57330 (13) 0.69798 (8) 0.20488 (7) 0.0144 (2)
H26 0.516697 0.749110 0.198040 0.017*
C27 0.69015 (13) 0.70462 (8) 0.14283 (7) 0.0134 (2)
C28 0.77379 (13) 0.62586 (8) 0.15212 (7) 0.0136 (2)
C29 0.74119 (13) 0.54812 (8) 0.22552 (7) 0.0145 (2)
H29 0.799147 0.497494 0.232495 0.017*
C30 0.62378 (13) 0.54171 (8) 0.29071 (7) 0.0124 (2)
C31 0.72725 (13) 0.79506 (8) 0.07089 (7) 0.0135 (2)
C32 0.61387 (14) 0.84510 (9) 0.03578 (8) 0.0161 (2)
H32 0.515374 0.818781 0.054791 0.019*
C33 0.64453 (15) 0.93319 (9) −0.02681 (8) 0.0183 (2)
H33 0.566824 0.966807 −0.050029 0.022*
C34 0.78795 (15) 0.97199 (9) −0.05534 (8) 0.0184 (2)
H34 0.808594 1.032244 −0.097779 0.022*
C35 0.90129 (15) 0.92247 (9) −0.02165 (8) 0.0186 (2)
H35 0.999785 0.948852 −0.041568 0.022*
C36 0.87189 (14) 0.83442 (9) 0.04111 (8) 0.0168 (2)
H36 0.950247 0.801027 0.063748 0.020*
C37 0.88799 (14) 0.62319 (8) 0.08340 (7) 0.0145 (2)
C38 0.86264 (15) 0.65702 (9) 0.00340 (8) 0.0192 (2)
H38 0.774443 0.686153 −0.008436 0.023*
C39 0.96540 (16) 0.64836 (10) −0.05883 (8) 0.0222 (3)
H39 0.946888 0.671517 −0.112837 0.027*
C40 1.09477 (16) 0.60612 (9) −0.04259 (9) 0.0226 (3)
H40 1.164511 0.600156 −0.085274 0.027*
C41 1.12205 (15) 0.57251 (9) 0.03644 (9) 0.0206 (3)
H41 1.210638 0.543670 0.047843 0.025*
C42 1.01925 (14) 0.58124 (9) 0.09874 (8) 0.0172 (2)
H42 1.038596 0.558314 0.152556 0.021*
C43 0.50237 (13) 0.23986 (8) 0.58462 (7) 0.0120 (2)
C44 0.59874 (13) 0.16847 (8) 0.60277 (7) 0.0136 (2)
H44 0.691680 0.176693 0.566382 0.016*
C45 0.56063 (13) 0.08732 (8) 0.67207 (7) 0.0127 (2)
C46 0.41889 (13) 0.07453 (8) 0.72707 (7) 0.0132 (2)
C47 0.32768 (13) 0.14531 (8) 0.71244 (7) 0.0142 (2)
H47 0.236793 0.137546 0.750318 0.017*
C48 0.36715 (13) 0.22959 (8) 0.64178 (7) 0.0126 (2)
C49 0.67019 (13) 0.01680 (8) 0.68874 (7) 0.0133 (2)
C50 0.74324 (14) −0.00492 (9) 0.62584 (8) 0.0165 (2)
H50 0.717486 0.022263 0.573447 0.020*
C51 0.85324 (15) −0.06598 (9) 0.63947 (8) 0.0197 (3)
H51 0.901409 −0.080790 0.596500 0.024*
C52 0.89332 (15) −0.10554 (9) 0.71539 (8) 0.0198 (3)
H52 0.970025 −0.146296 0.724094 0.024*
C53 0.82030 (15) −0.08504 (9) 0.77862 (8) 0.0189 (2)
H53 0.846503 −0.112295 0.830896 0.023*
C54 0.70939 (14) −0.02491 (9) 0.76543 (8) 0.0162 (2)
H54 0.659286 −0.011860 0.809141 0.019*
C55 0.36807 (13) −0.01519 (8) 0.79842 (7) 0.0143 (2)
C56 0.36616 (16) −0.09418 (9) 0.78719 (8) 0.0212 (3)
H56 0.397645 −0.090807 0.733542 0.025*
C57 0.31856 (18) −0.17757 (9) 0.85392 (9) 0.0259 (3)
H57 0.316230 −0.230743 0.845538 0.031*
C58 0.27434 (16) −0.18366 (9) 0.93285 (9) 0.0226 (3)
H58 0.243054 −0.240893 0.978501 0.027*
C59 0.27614 (15) −0.10594 (9) 0.94456 (8) 0.0184 (2)
H59 0.246541 −0.109943 0.998515 0.022*
C60 0.32114 (14) −0.02160 (8) 0.87767 (8) 0.0153 (2)
H60 0.319801 0.031642 0.886143 0.018*
Cl1 0.11062 (5) 0.83590 (3) 0.26669 (2) 0.03512 (10)
Cl2 0.17654 (4) 0.72871 (3) 0.17281 (2) 0.02962 (9)
C61 0.10609 (16) 0.72602 (9) 0.27127 (8) 0.0218 (3)
H61A 0.002980 0.699304 0.291784 0.026*
H61B 0.165617 0.686843 0.310597 0.026*
Cl3 0.70558 (5) 0.30628 (3) 0.27367 (2) 0.03072 (9)
Cl4 0.84801 (4) 0.18745 (2) 0.40649 (2) 0.02374 (8)
C62 0.78838 (16) 0.29773 (9) 0.35492 (9) 0.0208 (3)
H62A 0.716264 0.311995 0.394731 0.025*
H62B 0.874064 0.342747 0.332468 0.025*

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0112 (4) 0.0113 (4) 0.0130 (4) 0.0012 (4) −0.0023 (4) −0.0051 (4)
N2 0.0130 (4) 0.0120 (5) 0.0124 (4) 0.0027 (4) −0.0030 (4) −0.0051 (4)
N3 0.0135 (5) 0.0116 (5) 0.0116 (4) 0.0015 (4) −0.0019 (4) −0.0044 (4)
N4 0.0124 (4) 0.0119 (5) 0.0112 (4) 0.0011 (4) −0.0016 (4) −0.0041 (4)
N5 0.0127 (4) 0.0112 (5) 0.0111 (4) 0.0017 (4) −0.0029 (4) −0.0040 (4)
N6 0.0127 (4) 0.0119 (5) 0.0120 (4) 0.0020 (4) −0.0020 (4) −0.0040 (4)
C1 0.0102 (5) 0.0105 (5) 0.0117 (5) 0.0010 (4) −0.0033 (4) −0.0046 (4)
C2 0.0110 (5) 0.0108 (5) 0.0114 (5) 0.0011 (4) −0.0026 (4) −0.0047 (4)
C3 0.0106 (5) 0.0109 (5) 0.0110 (5) 0.0006 (4) −0.0022 (4) −0.0043 (4)
C4 0.0110 (5) 0.0107 (5) 0.0108 (5) 0.0008 (4) −0.0025 (4) −0.0043 (4)
C5 0.0112 (5) 0.0112 (5) 0.0102 (5) 0.0005 (4) −0.0021 (4) −0.0044 (4)
C6 0.0112 (5) 0.0110 (5) 0.0115 (5) 0.0013 (4) −0.0031 (4) −0.0046 (4)
C7 0.0113 (5) 0.0113 (5) 0.0122 (5) 0.0009 (4) −0.0024 (4) −0.0051 (4)
C8 0.0128 (5) 0.0128 (5) 0.0127 (5) 0.0003 (4) −0.0015 (4) −0.0048 (4)
C9 0.0111 (5) 0.0142 (5) 0.0135 (5) 0.0004 (4) −0.0018 (4) −0.0070 (4)
C10 0.0122 (5) 0.0120 (5) 0.0150 (5) 0.0021 (4) −0.0034 (4) −0.0064 (4)
C11 0.0150 (5) 0.0128 (5) 0.0132 (5) 0.0034 (4) −0.0035 (4) −0.0042 (4)
C12 0.0122 (5) 0.0121 (5) 0.0121 (5) 0.0012 (4) −0.0032 (4) −0.0049 (4)
C13 0.0123 (5) 0.0162 (6) 0.0142 (5) 0.0032 (4) −0.0038 (4) −0.0069 (5)
C14 0.0157 (6) 0.0183 (6) 0.0179 (6) 0.0006 (5) −0.0021 (5) −0.0079 (5)
C15 0.0184 (6) 0.0267 (7) 0.0185 (6) −0.0012 (5) 0.0012 (5) −0.0072 (5)
C16 0.0208 (6) 0.0340 (8) 0.0176 (6) 0.0055 (6) 0.0006 (5) −0.0129 (6)
C17 0.0267 (7) 0.0270 (7) 0.0212 (6) 0.0066 (6) −0.0037 (5) −0.0160 (6)
C18 0.0190 (6) 0.0181 (6) 0.0174 (6) 0.0019 (5) −0.0021 (5) −0.0089 (5)
C19 0.0152 (5) 0.0140 (5) 0.0146 (5) 0.0040 (4) −0.0051 (4) −0.0075 (5)
C20 0.0152 (5) 0.0163 (6) 0.0190 (6) 0.0027 (4) −0.0039 (5) −0.0098 (5)
C21 0.0140 (5) 0.0202 (6) 0.0252 (6) 0.0056 (5) −0.0055 (5) −0.0132 (5)
C22 0.0216 (6) 0.0173 (6) 0.0236 (6) 0.0089 (5) −0.0095 (5) −0.0104 (5)
C23 0.0228 (6) 0.0140 (6) 0.0185 (6) 0.0033 (5) −0.0044 (5) −0.0048 (5)
C24 0.0158 (6) 0.0175 (6) 0.0178 (6) 0.0037 (5) −0.0022 (5) −0.0080 (5)
C25 0.0127 (5) 0.0127 (5) 0.0120 (5) 0.0010 (4) −0.0023 (4) −0.0048 (4)
C26 0.0150 (5) 0.0117 (5) 0.0138 (5) 0.0025 (4) −0.0031 (4) −0.0032 (4)
C27 0.0135 (5) 0.0125 (5) 0.0121 (5) 0.0011 (4) −0.0031 (4) −0.0032 (4)
C28 0.0129 (5) 0.0142 (5) 0.0117 (5) 0.0007 (4) −0.0015 (4) −0.0044 (4)
C29 0.0142 (5) 0.0128 (5) 0.0139 (5) 0.0028 (4) −0.0012 (4) −0.0043 (4)
C30 0.0131 (5) 0.0114 (5) 0.0117 (5) 0.0010 (4) −0.0026 (4) −0.0041 (4)
C31 0.0153 (5) 0.0117 (5) 0.0108 (5) 0.0008 (4) −0.0014 (4) −0.0030 (4)
C32 0.0140 (5) 0.0176 (6) 0.0137 (5) 0.0018 (4) −0.0018 (4) −0.0046 (5)
C33 0.0222 (6) 0.0172 (6) 0.0135 (5) 0.0059 (5) −0.0049 (5) −0.0046 (5)
C34 0.0265 (7) 0.0135 (6) 0.0117 (5) 0.0006 (5) −0.0018 (5) −0.0033 (5)
C35 0.0179 (6) 0.0164 (6) 0.0171 (6) −0.0037 (5) 0.0008 (5) −0.0051 (5)
C36 0.0155 (6) 0.0153 (6) 0.0169 (6) 0.0012 (4) −0.0032 (5) −0.0047 (5)
C37 0.0158 (5) 0.0126 (5) 0.0122 (5) −0.0013 (4) 0.0007 (4) −0.0043 (4)
C38 0.0226 (6) 0.0170 (6) 0.0150 (6) 0.0012 (5) −0.0023 (5) −0.0052 (5)
C39 0.0304 (7) 0.0204 (6) 0.0127 (6) −0.0022 (5) 0.0003 (5) −0.0063 (5)
C40 0.0258 (7) 0.0195 (6) 0.0197 (6) −0.0052 (5) 0.0071 (5) −0.0108 (5)
C41 0.0176 (6) 0.0182 (6) 0.0236 (6) −0.0008 (5) 0.0026 (5) −0.0098 (5)
C42 0.0177 (6) 0.0158 (6) 0.0154 (6) 0.0005 (5) −0.0008 (5) −0.0054 (5)
C43 0.0136 (5) 0.0116 (5) 0.0104 (5) 0.0013 (4) −0.0021 (4) −0.0048 (4)
C44 0.0137 (5) 0.0138 (5) 0.0122 (5) 0.0032 (4) −0.0017 (4) −0.0052 (4)
C45 0.0148 (5) 0.0125 (5) 0.0112 (5) 0.0032 (4) −0.0031 (4) −0.0055 (4)
C46 0.0156 (5) 0.0116 (5) 0.0113 (5) 0.0012 (4) −0.0027 (4) −0.0041 (4)
C47 0.0143 (5) 0.0130 (5) 0.0122 (5) 0.0013 (4) −0.0006 (4) −0.0035 (4)
C48 0.0129 (5) 0.0120 (5) 0.0121 (5) 0.0014 (4) −0.0025 (4) −0.0046 (4)
C49 0.0143 (5) 0.0102 (5) 0.0134 (5) 0.0018 (4) −0.0024 (4) −0.0035 (4)
C50 0.0197 (6) 0.0153 (6) 0.0144 (5) 0.0038 (5) −0.0033 (5) −0.0067 (5)
C51 0.0227 (6) 0.0182 (6) 0.0196 (6) 0.0066 (5) −0.0030 (5) −0.0105 (5)
C52 0.0206 (6) 0.0162 (6) 0.0233 (6) 0.0073 (5) −0.0063 (5) −0.0090 (5)
C53 0.0228 (6) 0.0162 (6) 0.0172 (6) 0.0062 (5) −0.0079 (5) −0.0056 (5)
C54 0.0189 (6) 0.0151 (6) 0.0144 (5) 0.0044 (5) −0.0035 (5) −0.0065 (5)
C55 0.0143 (5) 0.0117 (5) 0.0135 (5) 0.0012 (4) −0.0022 (4) −0.0028 (4)
C56 0.0297 (7) 0.0156 (6) 0.0164 (6) −0.0010 (5) −0.0013 (5) −0.0066 (5)
C57 0.0372 (8) 0.0130 (6) 0.0238 (7) −0.0034 (6) −0.0002 (6) −0.0073 (5)
C58 0.0266 (7) 0.0133 (6) 0.0200 (6) −0.0026 (5) −0.0006 (5) −0.0015 (5)
C59 0.0193 (6) 0.0169 (6) 0.0137 (5) 0.0003 (5) 0.0000 (5) −0.0033 (5)
C60 0.0153 (5) 0.0136 (5) 0.0147 (5) 0.0012 (4) −0.0015 (4) −0.0048 (5)
Cl1 0.0569 (3) 0.01799 (17) 0.02317 (17) −0.00789 (16) −0.00341 (17) −0.00389 (14)
Cl2 0.03465 (19) 0.0337 (2) 0.01836 (16) 0.00290 (15) −0.00656 (14) −0.00909 (14)
C61 0.0273 (7) 0.0158 (6) 0.0156 (6) −0.0027 (5) −0.0028 (5) −0.0013 (5)
Cl3 0.0449 (2) 0.02792 (18) 0.01921 (16) −0.00109 (16) −0.01175 (15) −0.00788 (14)
Cl4 0.02025 (15) 0.02240 (16) 0.02590 (16) 0.00880 (12) −0.00300 (12) −0.00941 (13)
C62 0.0233 (6) 0.0187 (6) 0.0233 (6) 0.0049 (5) −0.0087 (5) −0.0106 (5)

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Geometric parameters (Å, º)

N1—C1 1.3278 (15) C31—C32 1.4001 (17)
N1—C7 1.3588 (15) C32—C33 1.3925 (18)
N2—C2 1.3231 (15) C32—H32 0.9500
N2—C12 1.3513 (15) C33—C34 1.3854 (19)
N3—C3 1.3279 (15) C33—H33 0.9500
N3—C25 1.3529 (15) C34—C35 1.3875 (19)
N4—C4 1.3296 (15) C34—H34 0.9500
N4—C30 1.3585 (15) C35—C36 1.3923 (18)
N5—C5 1.3268 (15) C35—H35 0.9500
N5—C43 1.3528 (15) C36—H36 0.9500
N6—C6 1.3286 (15) C37—C42 1.3978 (18)
N6—C48 1.3567 (15) C37—C38 1.4004 (17)
C1—C2 1.4305 (16) C38—C39 1.3899 (18)
C1—C6 1.4763 (16) C38—H38 0.9500
C2—C3 1.4713 (16) C39—C40 1.387 (2)
C3—C4 1.4263 (16) C39—H39 0.9500
C4—C5 1.4755 (16) C40—C41 1.391 (2)
C5—C6 1.4328 (16) C40—H40 0.9500
C7—C8 1.4159 (16) C41—C42 1.3915 (18)
C7—C12 1.4192 (16) C41—H41 0.9500
C8—C9 1.3851 (16) C42—H42 0.9500
C8—H8 0.9500 C43—C44 1.4136 (16)
C9—C10 1.4526 (17) C43—C48 1.4244 (16)
C9—C13 1.4939 (16) C44—C45 1.3759 (17)
C10—C11 1.3792 (16) C44—H44 0.9500
C10—C19 1.4934 (16) C45—C46 1.4440 (16)
C11—C12 1.4103 (16) C45—C49 1.4868 (16)
C11—H11 0.9500 C46—C47 1.3770 (17)
C13—C18 1.3973 (17) C46—C55 1.4905 (16)
C13—C14 1.3984 (18) C47—C48 1.4179 (16)
C14—C15 1.3948 (18) C47—H47 0.9500
C14—H14 0.9500 C49—C54 1.3977 (17)
C15—C16 1.388 (2) C49—C50 1.3979 (17)
C15—H15 0.9500 C50—C51 1.3891 (18)
C16—C17 1.391 (2) C50—H50 0.9500
C16—H16 0.9500 C51—C52 1.3880 (19)
C17—C18 1.3907 (18) C51—H51 0.9500
C17—H17 0.9500 C52—C53 1.3911 (19)
C18—H18 0.9500 C52—H52 0.9500
C19—C20 1.3987 (17) C53—C54 1.3858 (17)
C19—C24 1.4075 (18) C53—H53 0.9500
C20—C21 1.3949 (17) C54—H54 0.9500
C20—H20 0.9500 C55—C60 1.3949 (17)
C21—C22 1.386 (2) C55—C56 1.3976 (18)
C21—H21 0.9500 C56—C57 1.3889 (19)
C22—C23 1.3877 (19) C56—H56 0.9500
C22—H22 0.9500 C57—C58 1.389 (2)
C23—C24 1.3915 (18) C57—H57 0.9500
C23—H23 0.9500 C58—C59 1.3818 (19)
C24—H24 0.9500 C58—H58 0.9500
C25—C26 1.4124 (16) C59—C60 1.3957 (17)
C25—C30 1.4237 (16) C59—H59 0.9500
C26—C27 1.3736 (17) C60—H60 0.9500
C26—H26 0.9500 Cl1—C61 1.7665 (14)
C27—C28 1.4489 (17) Cl2—C61 1.7812 (14)
C27—C31 1.4865 (16) C61—H61A 0.9900
C28—C29 1.3798 (17) C61—H61B 0.9900
C28—C37 1.4920 (16) Cl3—C62 1.7695 (14)
C29—C30 1.4155 (16) Cl4—C62 1.7713 (14)
C29—H29 0.9500 C62—H62A 0.9900
C31—C36 1.3983 (17) C62—H62B 0.9900
C1—N1—C7 116.30 (10) C33—C32—C31 120.44 (12)
C2—N2—C12 116.39 (10) C33—C32—H32 119.8
C3—N3—C25 116.16 (10) C31—C32—H32 119.8
C4—N4—C30 116.49 (10) C34—C33—C32 120.24 (12)
C5—N5—C43 116.77 (10) C34—C33—H33 119.9
C6—N6—C48 116.57 (10) C32—C33—H33 119.9
N1—C1—C2 121.85 (10) C33—C34—C35 119.71 (12)
N1—C1—C6 118.82 (10) C33—C34—H34 120.1
C2—C1—C6 119.30 (10) C35—C34—H34 120.1
N2—C2—C1 122.22 (10) C34—C35—C36 120.55 (12)
N2—C2—C3 117.20 (10) C34—C35—H35 119.7
C1—C2—C3 120.56 (10) C36—C35—H35 119.7
N3—C3—C4 122.47 (10) C35—C36—C31 120.13 (12)
N3—C3—C2 117.23 (10) C35—C36—H36 119.9
C4—C3—C2 120.26 (10) C31—C36—H36 119.9
N4—C4—C3 121.81 (10) C42—C37—C38 118.35 (11)
N4—C4—C5 118.87 (10) C42—C37—C28 120.41 (11)
C3—C4—C5 119.32 (10) C38—C37—C28 121.10 (11)
N5—C5—C6 121.65 (10) C39—C38—C37 120.58 (13)
N5—C5—C4 117.87 (10) C39—C38—H38 119.7
C6—C5—C4 120.48 (10) C37—C38—H38 119.7
N6—C6—C5 121.95 (10) C40—C39—C38 120.43 (13)
N6—C6—C1 118.34 (10) C40—C39—H39 119.8
C5—C6—C1 119.70 (10) C38—C39—H39 119.8
N1—C7—C8 120.43 (11) C39—C40—C41 119.76 (12)
N1—C7—C12 121.41 (10) C39—C40—H40 120.1
C8—C7—C12 118.14 (10) C41—C40—H40 120.1
C9—C8—C7 122.09 (11) C40—C41—C42 119.84 (13)
C9—C8—H8 119.0 C40—C41—H41 120.1
C7—C8—H8 119.0 C42—C41—H41 120.1
C8—C9—C10 119.46 (10) C41—C42—C37 121.05 (12)
C8—C9—C13 117.04 (11) C41—C42—H42 119.5
C10—C9—C13 123.45 (10) C37—C42—H42 119.5
C11—C10—C9 118.05 (10) N5—C43—C44 119.26 (10)
C11—C10—C19 116.27 (11) N5—C43—C48 121.46 (11)
C9—C10—C19 125.65 (10) C44—C43—C48 119.27 (11)
C10—C11—C12 122.52 (11) C45—C44—C43 121.32 (11)
C10—C11—H11 118.7 C45—C44—H44 119.3
C12—C11—H11 118.7 C43—C44—H44 119.3
N2—C12—C11 118.80 (11) C44—C45—C46 119.37 (11)
N2—C12—C7 121.68 (11) C44—C45—C49 118.20 (11)
C11—C12—C7 119.51 (11) C46—C45—C49 122.40 (10)
C18—C13—C14 118.81 (11) C47—C46—C45 119.76 (11)
C18—C13—C9 121.17 (11) C47—C46—C55 119.40 (11)
C14—C13—C9 119.97 (11) C45—C46—C55 120.83 (10)
C15—C14—C13 120.58 (12) C46—C47—C48 121.10 (11)
C15—C14—H14 119.7 C46—C47—H47 119.4
C13—C14—H14 119.7 C48—C47—H47 119.4
C16—C15—C14 119.99 (13) N6—C48—C47 119.90 (11)
C16—C15—H15 120.0 N6—C48—C43 121.16 (11)
C14—C15—H15 120.0 C47—C48—C43 118.94 (11)
C15—C16—C17 119.89 (12) C54—C49—C50 118.52 (11)
C15—C16—H16 120.1 C54—C49—C45 121.15 (11)
C17—C16—H16 120.1 C50—C49—C45 120.21 (11)
C16—C17—C18 120.19 (13) C51—C50—C49 120.42 (12)
C16—C17—H17 119.9 C51—C50—H50 119.8
C18—C17—H17 119.9 C49—C50—H50 119.8
C17—C18—C13 120.53 (13) C52—C51—C50 120.52 (12)
C17—C18—H18 119.7 C52—C51—H51 119.7
C13—C18—H18 119.7 C50—C51—H51 119.7
C20—C19—C24 117.96 (11) C51—C52—C53 119.49 (12)
C20—C19—C10 122.87 (11) C51—C52—H52 120.3
C24—C19—C10 118.98 (11) C53—C52—H52 120.3
C21—C20—C19 120.42 (12) C54—C53—C52 120.07 (12)
C21—C20—H20 119.8 C54—C53—H53 120.0
C19—C20—H20 119.8 C52—C53—H53 120.0
C22—C21—C20 120.84 (12) C53—C54—C49 120.96 (11)
C22—C21—H21 119.6 C53—C54—H54 119.5
C20—C21—H21 119.6 C49—C54—H54 119.5
C21—C22—C23 119.57 (12) C60—C55—C56 118.87 (11)
C21—C22—H22 120.2 C60—C55—C46 120.40 (11)
C23—C22—H22 120.2 C56—C55—C46 120.73 (11)
C22—C23—C24 119.89 (12) C57—C56—C55 120.45 (12)
C22—C23—H23 120.1 C57—C56—H56 119.8
C24—C23—H23 120.1 C55—C56—H56 119.8
C23—C24—C19 121.27 (12) C56—C57—C58 120.36 (13)
C23—C24—H24 119.4 C56—C57—H57 119.8
C19—C24—H24 119.4 C58—C57—H57 119.8
N3—C25—C26 118.94 (11) C59—C58—C57 119.58 (12)
N3—C25—C30 121.74 (11) C59—C58—H58 120.2
C26—C25—C30 119.32 (11) C57—C58—H58 120.2
C27—C26—C25 121.72 (11) C58—C59—C60 120.47 (12)
C27—C26—H26 119.1 C58—C59—H59 119.8
C25—C26—H26 119.1 C60—C59—H59 119.8
C26—C27—C28 119.20 (11) C55—C60—C59 120.26 (12)
C26—C27—C31 117.00 (11) C55—C60—H60 119.9
C28—C27—C31 123.74 (11) C59—C60—H60 119.9
C29—C28—C27 119.15 (11) Cl1—C61—Cl2 111.51 (7)
C29—C28—C37 118.19 (11) Cl1—C61—H61A 109.3
C27—C28—C37 122.53 (11) Cl2—C61—H61A 109.3
C28—C29—C30 121.82 (11) Cl1—C61—H61B 109.3
C28—C29—H29 119.1 Cl2—C61—H61B 109.3
C30—C29—H29 119.1 H61A—C61—H61B 108.0
N4—C30—C29 120.21 (11) Cl3—C62—Cl4 111.38 (7)
N4—C30—C25 121.24 (10) Cl3—C62—H62A 109.4
C29—C30—C25 118.52 (11) Cl4—C62—H62A 109.4
C36—C31—C32 118.92 (11) Cl3—C62—H62B 109.4
C36—C31—C27 121.40 (11) Cl4—C62—H62B 109.4
C32—C31—C27 119.51 (11) H62A—C62—H62B 108.0
C7—N1—C1—C2 0.39 (16) C25—C26—C27—C28 1.87 (18)
C7—N1—C1—C6 178.51 (10) C25—C26—C27—C31 −175.41 (11)
C12—N2—C2—C1 3.53 (16) C26—C27—C28—C29 −4.81 (18)
C12—N2—C2—C3 −174.71 (10) C31—C27—C28—C29 172.28 (11)
N1—C1—C2—N2 −3.64 (17) C26—C27—C28—C37 171.17 (11)
C6—C1—C2—N2 178.24 (10) C31—C27—C28—C37 −11.75 (18)
N1—C1—C2—C3 174.54 (10) C27—C28—C29—C30 2.96 (18)
C6—C1—C2—C3 −3.57 (16) C37—C28—C29—C30 −173.19 (11)
C25—N3—C3—C4 1.04 (16) C4—N4—C30—C29 −177.43 (11)
C25—N3—C3—C2 178.61 (10) C4—N4—C30—C25 0.63 (16)
N2—C2—C3—N3 1.24 (16) C28—C29—C30—N4 179.89 (11)
C1—C2—C3—N3 −177.04 (10) C28—C29—C30—C25 1.78 (18)
N2—C2—C3—C4 178.87 (10) N3—C25—C30—N4 −2.53 (18)
C1—C2—C3—C4 0.59 (16) C26—C25—C30—N4 177.19 (11)
C30—N4—C4—C3 1.96 (16) N3—C25—C30—C29 175.56 (11)
C30—N4—C4—C5 −177.66 (10) C26—C25—C30—C29 −4.72 (17)
N3—C3—C4—N4 −2.97 (18) C26—C27—C31—C36 130.02 (13)
C2—C3—C4—N4 179.52 (10) C28—C27—C31—C36 −47.12 (18)
N3—C3—C4—C5 176.64 (10) C26—C27—C31—C32 −45.20 (16)
C2—C3—C4—C5 −0.86 (16) C28—C27—C31—C32 137.66 (13)
C43—N5—C5—C6 3.42 (16) C36—C31—C32—C33 −1.07 (18)
C43—N5—C5—C4 −177.02 (10) C27—C31—C32—C33 174.26 (11)
N4—C4—C5—N5 4.35 (16) C31—C32—C33—C34 0.42 (19)
C3—C4—C5—N5 −175.28 (10) C32—C33—C34—C35 0.43 (19)
N4—C4—C5—C6 −176.09 (10) C33—C34—C35—C36 −0.6 (2)
C3—C4—C5—C6 4.28 (16) C34—C35—C36—C31 −0.1 (2)
C48—N6—C6—C5 2.78 (16) C32—C31—C36—C35 0.90 (19)
C48—N6—C6—C1 −176.00 (10) C27—C31—C36—C35 −174.34 (12)
N5—C5—C6—N6 −6.51 (18) C29—C28—C37—C42 −43.08 (17)
C4—C5—C6—N6 173.94 (10) C27—C28—C37—C42 140.91 (13)
N5—C5—C6—C1 172.25 (10) C29—C28—C37—C38 132.67 (13)
C4—C5—C6—C1 −7.29 (16) C27—C28—C37—C38 −43.34 (18)
N1—C1—C6—N6 7.57 (16) C42—C37—C38—C39 0.43 (19)
C2—C1—C6—N6 −174.26 (10) C28—C37—C38—C39 −175.40 (12)
N1—C1—C6—C5 −171.24 (10) C37—C38—C39—C40 −0.1 (2)
C2—C1—C6—C5 6.93 (16) C38—C39—C40—C41 −0.2 (2)
C1—N1—C7—C8 −175.81 (10) C39—C40—C41—C42 0.2 (2)
C1—N1—C7—C12 2.53 (16) C40—C41—C42—C37 0.2 (2)
N1—C7—C8—C9 177.93 (11) C38—C37—C42—C41 −0.48 (19)
C12—C7—C8—C9 −0.46 (17) C28—C37—C42—C41 175.38 (12)
C7—C8—C9—C10 3.64 (18) C5—N5—C43—C44 −179.04 (11)
C7—C8—C9—C13 −173.85 (11) C5—N5—C43—C48 2.65 (16)
C8—C9—C10—C11 −2.59 (17) N5—C43—C44—C45 −174.46 (11)
C13—C9—C10—C11 174.73 (11) C48—C43—C44—C45 3.89 (18)
C8—C9—C10—C19 175.49 (11) C43—C44—C45—C46 0.48 (18)
C13—C9—C10—C19 −7.18 (18) C43—C44—C45—C49 −177.63 (11)
C9—C10—C11—C12 −1.63 (18) C44—C45—C46—C47 −4.07 (17)
C19—C10—C11—C12 −179.89 (11) C49—C45—C46—C47 173.96 (11)
C2—N2—C12—C11 178.93 (11) C44—C45—C46—C55 174.32 (11)
C2—N2—C12—C7 −0.57 (17) C49—C45—C46—C55 −7.66 (17)
C10—C11—C12—N2 −174.68 (11) C45—C46—C47—C48 3.20 (18)
C10—C11—C12—C7 4.83 (18) C55—C46—C47—C48 −175.21 (11)
N1—C7—C12—N2 −2.59 (18) C6—N6—C48—C47 −176.64 (11)
C8—C7—C12—N2 175.78 (11) C6—N6—C48—C43 3.29 (17)
N1—C7—C12—C11 177.91 (11) C46—C47—C48—N6 −178.90 (11)
C8—C7—C12—C11 −3.71 (17) C46—C47—C48—C43 1.18 (18)
C8—C9—C13—C18 131.14 (13) N5—C43—C48—N6 −6.33 (18)
C10—C9—C13—C18 −46.24 (17) C44—C43—C48—N6 175.36 (11)
C8—C9—C13—C14 −46.20 (16) N5—C43—C48—C47 173.60 (11)
C10—C9—C13—C14 136.41 (12) C44—C43—C48—C47 −4.71 (17)
C18—C13—C14—C15 1.27 (19) C44—C45—C49—C54 128.73 (13)
C9—C13—C14—C15 178.68 (12) C46—C45—C49—C54 −49.32 (17)
C13—C14—C15—C16 −0.6 (2) C44—C45—C49—C50 −47.16 (17)
C14—C15—C16—C17 −0.3 (2) C46—C45—C49—C50 134.79 (13)
C15—C16—C17—C18 0.7 (2) C54—C49—C50—C51 −0.62 (19)
C16—C17—C18—C13 0.0 (2) C45—C49—C50—C51 175.38 (12)
C14—C13—C18—C17 −0.95 (19) C49—C50—C51—C52 −0.7 (2)
C9—C13—C18—C17 −178.32 (12) C50—C51—C52—C53 1.3 (2)
C11—C10—C19—C20 143.00 (12) C51—C52—C53—C54 −0.6 (2)
C9—C10—C19—C20 −35.12 (18) C52—C53—C54—C49 −0.8 (2)
C11—C10—C19—C24 −31.82 (16) C50—C49—C54—C53 1.35 (19)
C9—C10—C19—C24 150.07 (12) C45—C49—C54—C53 −174.61 (12)
C24—C19—C20—C21 0.87 (18) C47—C46—C55—C60 −54.54 (16)
C10—C19—C20—C21 −174.00 (11) C45—C46—C55—C60 127.07 (13)
C19—C20—C21—C22 1.38 (19) C47—C46—C55—C56 125.28 (14)
C20—C21—C22—C23 −2.2 (2) C45—C46—C55—C56 −53.11 (17)
C21—C22—C23—C24 0.8 (2) C60—C55—C56—C57 −0.1 (2)
C22—C23—C24—C19 1.5 (2) C46—C55—C56—C57 −179.94 (13)
C20—C19—C24—C23 −2.31 (19) C55—C56—C57—C58 −1.0 (2)
C10—C19—C24—C23 172.76 (11) C56—C57—C58—C59 0.8 (2)
C3—N3—C25—C26 −178.15 (11) C57—C58—C59—C60 0.4 (2)
C3—N3—C25—C30 1.57 (17) C56—C55—C60—C59 1.33 (19)
N3—C25—C26—C27 −177.36 (11) C46—C55—C60—C59 −178.84 (12)
C30—C25—C26—C27 2.91 (18) C58—C59—C60—C55 −1.5 (2)

2,3,8,9,14,15-Hexaphenyl-5,6,11,12,17,18-hexazatrinaphthylene dichloromethane disolvate (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C61—H61A···N1i 0.99 2.46 3.2380 (17) 135
C61—H61B···N2 0.99 2.40 3.2745 (17) 146
C61—H61B···N3 0.99 2.61 3.4923 (18) 149
C62—H62A···N4 0.99 2.58 3.2547 (17) 126
C62—H62A···N5 0.99 2.46 3.4381 (17) 169

Symmetry code: (i) −x, −y+1, −z+1.

Funding Statement

This work was funded by Nano- and Energy Research, State of Lower Saxony, Germany grant to Pia Fangmann.

References

  1. Alfonso, M. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, o242–o244.
  2. Beeson, J. C., Czarnik, A. W., Fitzgerald, L. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 724–729.
  3. Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Catalano, V. J., Larson, W. E., Olmstead, M. M. & Gray, H. B. (1994). Inorg. Chem. 33, 4502–4509.
  6. Fatiadi, A. J. & Sager, W. F. (1962). Org. Synth. 42, 90.
  7. Fraser, M. G., Clark, C. A., Horvath, R., Lind, S. J., Blackman, A. G., Sun, X.-Z., George, M. W. & Gordon, K. C. (2011). Inorg. Chem. 50, 6093–6106. [DOI] [PubMed]
  8. Gao, B., Liu, Y., Geng, Y., Cheng, Y., Wang, L., Jing, X. & Wang, F. (2009). Tetrahedron Lett. 50, 1649–1652.
  9. Ghumaan, S., Sarkar, B., Patil, M. P., Fiedler, J., Sunoj, R. B., Kaim, W. & Lahiri, G. K. (2007). Polyhedron, 26, 3409–3418.
  10. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  11. Kitagawa, S. & Masaoka, S. (2003). Coord. Chem. Rev. 246, 73–88.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Moilanen, J. O., Chilton, N. F., Day, B. M., Pugh, T. & Layfield, R. A. (2016). Angew. Chem. Int. Ed. 55, 5521–5525. [DOI] [PMC free article] [PubMed]
  14. Piglosiewicz, I. M., Beckhaus, R., Saak, W. & Haase, D. (2005). J. Am. Chem. Soc. 127, 14190–14191. [DOI] [PubMed]
  15. Roy, S. & Kubiak, C. P. (2010). Dalton Trans. 39, 10937–10943. [DOI] [PubMed]
  16. Segura, J. L., Juárez, R., Ramos, M. & Seoane, C. (2015). Chem. Soc. Rev. 44, 6850–6885. [DOI] [PubMed]
  17. Shao, J., Chang, J. & Chi, C. (2012). Org. Biomol. Chem. 10, 7045–7052. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Stoe (1999). IPDS. Stoe & Cie, Darmstadt, Germany.
  22. Stoe (2002). X-RED. Stoe & Cie, Darmstadt, Germany.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989018000725/wm5431sup1.cif

e-74-00167-sup1.cif (3.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018000725/wm54311sup2.hkl

e-74-00167-1sup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018000725/wm54312sup3.hkl

e-74-00167-2sup3.hkl (1.1MB, hkl)

Supporting information file. DOI: 10.1107/S2056989018000725/wm54311sup4.cml

Supporting information file. DOI: 10.1107/S2056989018000725/wm54312sup5.cml

CCDC references: 1816408, 1816407

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES