Skip to main content
. 2018 Mar 13;10:260–268. doi: 10.1016/j.dadm.2018.02.004

Table 6.

Performance of classifiers separating HCs from AD patients

Learner Features Accuracy Sensitivity Specificity Precision F-score AUC
Average performance
 RFC Ling 0.72 0.76 0.67 0.74 0.75 0.72
 SVM Ling 0.75 0.75 0.74 0.77 0.76 0.75
 RFC Cov 0.73 0.78 0.67 0.73 0.75 0.72
 SVM Cov 0.74 0.80 0.67 0.74 0.77 0.74
 RFC Phon 0.59 0.66 0.52 0.62 0.64 0.59
 SVM Phon 0.62 0.70 0.52 0.63 0.66 0.61
 RFC Cov + Ling 0.78 0.84 0.72 0.78 0.81 0.78
 SVM Cov + Ling 0.79 0.79 0.78 0.82 0.80 0.79
 RFC Best 0.75 0.78 0.71 0.76 0.77 0.74
 SVM Best 0.79 0.81 0.77 0.81 0.81 0.79
Best model
 RFC Ling 0.81 0.77 0.86 0.87 0.82 0.82
 SVM Ling 0.85 0.85 0.86 0.88 0.86 0.85
 RFC Cov 0.85 0.88 0.82 0.85 0.87 0.85
 SVM Cov 0.85 0.88 0.82 0.85 0.87 0.85
 RFC Phon 0.67 0.65 0.68 0.71 0.68 0.67
 SVM Phon 0.72 0.84 0.57 0.70 0.76 0.71
 RFC Cov + Ling 0.94 1.00 0.86 0.90 0.95 0.93
 SVM Cov + Ling 0.88 0.81 0.95 0.95 0.88 0.88
 RFC Best 0.85 0.85 0.86 0.88 0.86 0.85
 SVM Best 0.87 0.80 0.95 0.95 0.87 0.88

Abbreviations: AD, Alzheimer's disease; AUC, area under the curve of receiver operating characteristics; HCs, healthy elderly controls; RFC, Random Forests Classifier; SVM, Support Vector Machine classifier; Ling, set of all linguistic features; Cov, set of all information coverage features; Phon, set of all phonetic features; Cov + Ling, a combination of all linguistic and information coverage features.

NOTE. The best results are indicated in bold.

A combination of all features with P value < .001 when correlating with cognitive impairment.