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Abstract

We study additive function-on-function regression where the mean response at a particular time 

point depends on the time point itself, as well as the entire covariate trajectory. We develop a 

computationally efficient estimation methodology based on a novel combination of spline bases 

with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new 

response trajectory, propose an inference procedure that accounts for total variability in the 

predicted response curves, and construct pointwise prediction intervals. The estimation/inferential 

procedure accommodates realistic scenarios, such as correlated error structure as well as sparse 

and/or irregular designs. We investigate our methodology in finite sample size through simulations 

and two real data applications. Supplementary Material for this article is available online.

Keywords

Functional data analysis; Eigenbasis; Nonlinear models; Orthogonal projection; Penalized B-
splines; Prediction

1 Introduction

Regression models where both the response and the covariate are curves have become 

common in many scientific fields such as medicine, finance, and agriculture. These models 

are often called function-on-function regression. One of the commonly known models is the 

functional concurrent model where the current response relates to the current values of the 

covariate/s; see for example, Ramsay and Silverman (2005); Sentürk and Nguyen (2011); 
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Kim et al. (2016). When the current response depends on the past values of the covariate/s, 

the historical functional linear model (Malfait and Ramsay, 2003) is more appropriate.

We consider functional regression models that relate the current response to the full 

trajectory of the covariate. The functional linear model (Ramsay and Silverman, 2005; Yao 

et al., 2005b; Wu et al., 2010) assumes that the relationship is linear: the effect of the full 

covariate trajectory is modeled through a weighted integral using an unknown bivariate 

coefficient function as the weights. The linearity assumption was extended to the functional 

additive model (FAM) of Müller and Yao (2008), which models the effect of the covariate by 

a sum of smooth functions of the functional principal component scores of the covariate. A 

limitation of this approach is that the estimated effects are not easily interpretable. This 

paper considers flexible nonlinear regression models that can capture complex relationships 

between the response and the full covariate trajectory more directly.

Additive models have enjoyed great popularity since they were introduced by Friedman and 

Stuetzle (1981) for a scalar response and scalar predictors. Their model replaces the linear 

model Yi = β0 +β1Xi,1 + ⋯ +βpXi,p +εi, where each of Yi, Xi,1, …, Xi,p, i = 1, …, n, is 

scalar by, Yi = β0 + f1(Xi,1) + ⋯ fp(Xi,p) + εi. Here f1, …, fp are smooth functions. Additive 

models allow nonparametric modeling of the relationship between the response and the 

predictors while avoiding the so-called curse of dimensionality and being easily interpreted. 

Additive and generalized additive models for a scalar response and functional predictors 

were introduced by McLean et al. (2014) and Müller et al. (2013).

Additive function-on-function regression models where the current mean response depends 

on the time point itself as well as the full covariate trajectory were introduced by Scheipl et 

al. (2015), but the present paper is the first to investigate them fully. We develop a novel 

estimation procedure that is an order of magnitude faster than the existing algorithm and 

discuss inference for the predicted response curves. The methodology is applicable for 

realistic scenarios involving densely and/or sparsely observed functional responses and 

predictors, as well as various residual dependence structures.

There are three major contributions in this paper. First, we combine B-spline bases for the 

covariate function, X(s), and for its argument, s, (Marx and Eilers, 2005; Wood, 2006; 

McLean et al., 2014) with a functional principal component basis for the argument, t, of the 

response function; see (2) below. The replacement of the spline basis used by Scheipl et al. 

(2015) for the argument of the response function with an eigenbasis is a key step to creating 

a computationally efficient algorithm. Second, we develop inferential methods for out-of-

sample prediction of the full response trajectories, accounting for correlation in the error 

process. Finally, our method accommodates realistic scenarios such as densely or sparsely 

observed functional responses and covariates, possibly corrupted by measurement error. We 

show numerically that when the true relationship is nonlinear, our model provides improved 

predictions over the functional linear model. At the same time, when the true relationship is 

linear, our model maintains prediction accuracy and its fit is comparable to that of a 

functional linear model.

Kim et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2018 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Section 2 introduces our modeling framework and a novel estimation procedure, that we call 

AFF-PC (additive function-on-function regression with a principal component basis). 

Additionally it discusses implementation details and extensions. Section 3 discusses out-of-

sample prediction inference. In Section 4, we investigate the performance of AFF-PC 

through simulations. Section 5 presents an application of AFF-PC to a bike share study. A 

second application, to yield curves, is in the Supplementary Material. Section 6 provides a 

brief discussion.

2 Methodology

2.1 Statistical Framework and Modeling

Suppose for i = 1, …, n we observe {(Xik, sik) : k = 1, …, mi} and {(Yij, tij) : j = 1, …, 

mY,i}, where Xik and Yij are the covariate and response observed at time points sik and tij, 
respectively. We assume that sik ∈ 𝒯X for all i and k and ti j ∈ 𝒯Y for all i and j, where 𝒯X

and 𝒯Y are compact intervals. It is assumed that Xik = Xi(sik), where Xi(·) is a square-

integrable, true smooth signal defined on 𝒯X. It is further assumed that Yij = Yi(tij), where 

Yi(·) is defined on 𝒯Y. For convenience, we assume that the response has zero-mean. In 

practice, this is achieved by de-meaning, that is, by subtracting the response sample mean 

from the individual response curves.

To illustrate our ideas, we assume that both the response and the predictor are observed on a 

fine, regular, and common grid of points so that sik = sk with k = 1, …, m and tij = tj with j = 

1, …, mY for all i. This assumption, as well as the assumption that the functional covariate is 

observed on a fine grid and without noise are made for illustration only; our methodology 

can accommodate more general situations, as we show in Section 4.

We consider a general additive function-on-function regression model

Y i(t) = ∫
𝒯X

F{Xi(s), s, t}ds + εi(t), (1)

where F(·, ·, t) is an unknown smooth trivariate function defined on ℝ × 𝒯X × 𝒯Y, and εi(·) is 

an error process with mean zero and unknown autocovariance function R(t, t′) and is 

independent of the covariate Xi(s). Model (1) was introduced by Scheipl et al. (2015). The 

form F(·, ·, t) quantifies the unknown dependence between the current response Yi(t) and the 

full covariate trajectory Xi(·). If F(x, s, t) = β(s, t)x, then model (1) reduces to the standard 

functional linear model. In principle, this allows us to study whether an additive rather than a 

linear functional model is necessary, but this topic is left for future research.

One possible approach for modeling F is using a tensor product of univariate B-spline basis 

functions for x, s, and t. This approach was proposed by Scheipl et al. (2015) and 

implemented in the R package refund (Goldsmith et al., 2016), although the accuracy of 

their estimation approach has been investigated neither numerically nor theoretically. As 
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expected, and also as observed in our numerical results, using a trivariate spline basis 

imposes a heavy computational burden. The main reason for the high computational cost is 

that the trivariate spline basis requires a large number of basis functions. For example, if F is 

modeled using a tensor product of 10 basis functions per dimension, then there are 103 = 

1000 basis functions in total. Secondly, this estimation methodology requires selection of 

three smoothing parameters, one for each spline basis, which is computationally very 

expensive. Thirdly, the associated penalized criterion uses the response data directly, rather 

than the projection of the data onto a lower dimension basis. In this paper we consider an 

alternative approach that uses a low-rank representation of the response data and, since we 

have only two spline bases, fewer smoothing parameters. The low-dimensional 

representation of the response curves, especially, leads to computationally efficient 

estimation. We will refer to the Scheipl et al. (2015) algorithm as AFF-S, where “S” refers to 

the spline basis for t in F(x, s, t). Our algorithm uses a principal component basis for t and so 

is called AFF-PC.

For some insight, consider a smooth function ϕ( · ) ∈ L2(𝒯Y) and let yi, ϕ = ∫𝒯Y
Y i(t)ϕ(t)dt be 

the projection of Yi onto ϕ(·). Model (1) implies that 

yi, ϕ = ∫𝒯Y
∫𝒯X

F{Xi(s), s, t}ϕ(t)dsdt + ei, ϕ = ∫𝒯X
Gϕ{Xi(s), s}ds + ei, ϕ, where 

Gϕ{Xi(s), s} = ∫𝒯Y
F{Xi(s), s, t}ϕ(t)dt and ei, ϕ = ∫𝒯Y

εi(t)ϕ(t)dt, assuming these integrals 

exist. The implied final model is exactly the one proposed by McLean et al. (2014); thus the 

unknown bivariate function Gϕ(·, ·) can be estimated by modeling it using a tensor product 

of two univariate known bases functions and controlling its smoothness through two tuning 

parameters.

Inspired by this result, let {ϕk(·)}k be an orthogonal basis in L2(𝒯Y):∫𝒯Y
ϕk(t)ϕk′(t)dt = 1 if k 

= k′ and 0 otherwise. We represent the function F(x, s, t) as F(x, s, t) = ∑k = 1
∞ Gk(x, s)ϕk(t). 

Here, Gk(x, s) = ∫𝒯Y
F(x, s, t)ϕk(t)dt, k = 1, …, are unknown basis coefficients that vary 

smoothly over x and s. We model Gk(·, ·) as a tensor product of spline bases, 

Gk(x, s) = ∑l = 1
Kx ∑l′ = 1

Ks BX, l(x)BS, l′(s)θl, l′, k, where {BX, l(x)}
l = 1
Kx  and {BS, l′(s)}

l′ = 1
Ks  are 

orthogonalized B-spline bases (Redd, 2012) of dimensions Kx and Ks, respectively. 

Combining these expansions, the trivariate “kernel” function F can be written as

F(x, s, t) = ∑
k = 1

∞
∑
l = 1

Kx
∑

l′ = 1

Ks
BX, l(x)BS, l′(s)ϕk(t)θl, l′, k, (2)

where θl, l′, k are the unknown parameters. In practice, we truncate the summation in k at 

some finite K. Thus, this representation uses trivariate basis functions obtained by the tensor 
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product of univariate B-spline bases functions in directions x and s and L2(𝒯Y) orthogonal 

basis functions, ϕk(·). Let ℤi be the KxKs-column vector of ∫ 𝒯Y
BX, l{Xi(s)}BS, l′(s)ds and let 

Θk be the KxKs-column vector of unknown coefficients θl, l′, k, where l = 1, …, Kx, l′ = 1, 

…, Ks. Then, model (1) can be approximated as

Y i(t) ≈ ∑k = 1
K ℤi

TΘkϕk(t) + εi(t) . (3)

2.2 Estimation and Prediction

2.2.1 Estimation—We estimate the unknown Θk’s parameters in (3) by penalized least 

squares. However, unlike the standard penalized likelihood approaches (Ruppert et al. 2003; 

Wood 2006), which penalize the basis coefficients in all directions, we use quadratic 

penalties for the directions x and s, and control the roughness in the direction t by the 

number of orthogonal basis functions, K. Here ⊗ is the Kronecker product, and IK is the 

identity matrix of dimension K. Specifically, the curvature in the x-direction is measured 

through ∫ ∫ ∫ {∂2F(x, s, t)/ ∂x2}2
dxdsdt = ∑k = 1

K ∫ ∫ {∂2Gk(x, s)/ ∂x2}2
dxds

= ∑k = 1
K Θk

T(ℙx ⊗ IKs
)Θk

, where ℙx is 

the Kx × Kx penalty matrix with the (l, r) entry equal to ∫ {∂xxBX, l(x)}{∂xxBX, r(x)}dx l, r = 1, 

…, Kx. Using the orthogonality of {ϕk, k = 1, …, K}, the curvature in the s-direction is

∫ ∫ ∫ ∂2F(x, s, t)
∂s2

2
dxdsdt = ∑k = 1

K ∫ ∫ ∂2Gk(x, s)

∂s2

2
dxds = ∑k = 1

K Θk
T(IKx

⊗ ℙs)Θk,

and ℙs is the Ks×Ks penalty matrix with the (l, r) entry equal to 

∫ {∂ssBS, l′(s)}{∂ssBS, r′(s)}ds (l′, r′ = 1, …, Ks). The penalized criterion to be minimized is

∑i = 1
n ‖Y i( · ) − ∑k = 1

K ℤi
TΘkϕk( · )‖2 + ∑k = 1

K Θk
T(λxℙx ⊗ IKs

+ λsIKx
⊗ ℙs)Θk, (4)

where ||·||2 is the L2-norm corresponding to the inner product < f, g >=∫ fg, and λx and λs 

are smoothness parameters that control the tradeoff between the roughness of the function F 
and the goodness of fit. The smoothness parameters λx and λs, in fact, also control the 

smoothness of the coefficient functions Gk(x, s) in directions x and s, respectively.

One convenient way to calculate the first term in (4) is to expand Yi(·) using the same basis 

functions {ϕk(·)}k. Specifically, if {ϕk(·)}k is the eigenbasis of the marginal covariance of 

Yi(·), then Karhunen-Loève (KL) expansion yields Y i(t) = ∑k ξikϕk(t) + eit where eit is a 

zero-mean error and ξik = ∫ 𝒯Y
Y i(t)ϕk(t)dt; recall that the marginal mean of Yi(·) is assumed 
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to be zero. Here “marginal” means marginalized over the covariate function. Criterion (4) 

can be equivalently written as

∑k = 1
K ∑i = 1

n {ξik − ℤi
TΘk}2 + Θk

T(λxℙx ⊗ IKs
+ λsIKx

⊗ ℙs)Θk . (5)

Using the eigenbasis of the response covariance allows a low-dimensional representation of 

(4) that improves computation time and yet preserves model complexity. Our numerical 

results show that AFF-PC is orders of magnitude faster than its closest competitor, AFF-S; 

see Table 2.

We set Kx and Ks to be sufficiently large to capture the complexity of the model and 

penalize the basis coefficients to balance the bias and the variance. The smoothness 

parameters λx and λs can be chosen based on appropriate criteria, such as generalized cross 

validation (GCV) (see e.g., Ruppert et al., 2003; Wood, 2006) or restricted maximum 

likelihood (REML) (see e.g., Ruppert et al., 2003; Wood, 2006). In our numerical studies, 

we let Kx and Ks be as large as possible, while ensuring that KxKs < n, and select the 

smoothness parameters using REML.

The penalized criterion (5) uses the true functional principal component (FPC) scores. In 

practice, we use estimates of FPC scores from functional principal component analysis 

(FPCA), as we show next. Using the eigenbasis of the marginal covariance of the response, 

rather than a spline basis, is appealing because of the resulting parsimonious representation 

of the response and has been often used in the literature; see for example, Aston et al. 

(2010); Jiang and Wang (2010); Park and Staicu (2015). This choice of orthogonal basis also 

allows us to formulate the mean model for the conditional response profile, given scalar/

vector covariates, based on mean models for the conditional FPC scores given the covariates: 

E[Y i(t) | Xi( · )] = ∑k = 1
K ϕk(t)E[ξik | Xi( · )], where E[ξik | Xi( · )] = ∫ 𝒯X

Gk{Xi(s), s}ds, Gk(·, ·) 

are unknown bivariate functions and ξik are the FPC scores of response. The representation 

is novel and extends ideas of Aston et al. (2010) and Pomann et al. (2015) to the case of a 

functional covariate. Also, it is related to Müller and Yao (2008) for 

E[ξik | Xi( · )] = ∑m = 1
M f km(ξim

X ), where fkm(·) are unknown smooth functions for m = 1, …, 

M and k = 1, …, K, {ξi1
X , …, ξiM

X } are the FPC scores of the functional covariate Xi(·), and M is 

a finite truncation.

2.2.2 Prediction—We use the following notation: ‘ˆ’ for prediction based on the function-

on-function regression model and ‘~’ for estimation based on the marginal analysis of 

response Yi(·). Estimation and prediction of the response curves Yi(·) follows a three-step 

procedure: 1) reconstruct the smooth trajectory of the response Y i( · ) by smoothing the data 

for each I (Zhang and Chen, 2007) and de-mean it, Y i
c( · ) = Y i( · ) − μY( · ) where μY( · ) is the 

estimated mean function; 2) use functional principal components analysis (PCA) to estimate 

the eigenbasis ϕk( · ) of the (marginal) covariance of Y i( · ), and then obtain the functional 
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PCA scores ξ ik = ∫ 𝒯Y
Y i

c(t)ϕk(t)dt; and 3) Obtain estimates Θ̂k, k = 1, …, K, of the basis 

coefficients by minimizing the penalized criterion (5) with respect to Θk’s, and using ξ ik in 

place of ξik. The truncation point K is determined through a pre-specified percent of 

variance explained; in our numerical work we use 95%. For fixed smoothness parameters, 

the minimizer of (5) has a closed form:

Θk = Hλ ∑i = 1
n ℤiξ ik , (6)

where Hλ = ∑i = 1
n ℤiℤi

T + Pλ
−1

, Pλ = λxℙx ⊗ IKs
+ λsIKx

⊗ ℙs, and λ = (λx, λs)T. Once 

the basis coefficients are estimated, F(·, ·, ·) can be estimated by

F̂(x, s, t) = ∑k = 1
K ∑l = 1

Kx ∑l′ = 1
Ks BX, l(x)BS, l′(s)ϕk(t)θ̂ l, l′, k .

Furthermore, for any X(s), the response curve can be predicted by the estimated E[Y |X(·)],

Ŷ(t) = ∑k = 1
K ϕk(t) ∑l = 1

Kx ∑l′ = 1
Ks θ̂ l, l′, k∫𝒯X

BX, l{X(s)}BS, l′(s)ds , (7)

which is obtained by plugging in the expression of F̂(x, s, t) into the integral term of (1).

2.3 Implementation and Extensions

Implementation of our method requires transformation of the covariate as a preliminary step 

since the realizations of the covariate functions {Xi(sk): k, i} may not be dense over the 

entire domain of the B-spline basis functions for x. In this situation, some of the B-spline 

basis functions may not have observed data on their support. This problem has been 

addressed by McLean et al. (2014) and Kim et al. (2016) with different strategies. This paper 

uses pointwise center/scaling transformation of the functional covariate proposed by Kim et 

al. (2016). For completeness, we present the full details in Section B of the Supplementary 

Material.

We have presented our methodology for the case where, for each subject, the functional 

covariate is observed on a fine grid and without measurement error. The approach can be 

easily modified to accommodate a variety of other realistic settings such as noisy functional 

covariates observed on either a dense or sparse grid of points for each subject, or a 

functional response observed on a sparse grid of points for each subject. Details on the 

necessary modifications are provided in the Supplementary Material, Section A. Our 

numerical investigation, to be discussed in Section 4, considers settings where the functional 

covariates are observed at dense or moderately sparse grids of points and the measurements 

are corrupted with noise.
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3 Out-of-Sample Prediction

In this section, we focus on out-of-sample prediction and its associated inference. For 

example, in the capital bike share study (Fanaee-T and Gama, 2013), an important research 

objective is to understand better how the hourly temperature profile for a weekend day 

affects the bike rental patterns for that day. The idea is that nowadays with reasonably 

accurate weather forecasts, AFF-PC could be applied to the next day’s weather forecast to 

predict bike rental demand that day; this could help the company avoid deploying too many 

or too few bikes for rental.

Inference for predicted response curves is not straightforward due to two important sources 

of variability: (1) uncertainty produced by predicting response curves conditional on the 

particular estimate of the orthogonal basis {ϕk(·)}k and (2) uncertainty induced by estimating 

the eigenbasis {ϕk(·)}k. Ignoring the second source of variability could cause 

underestimation of total variance. Inspired by the ideas of Goldsmith et al. (2013), we assess 

the total variability of the predicted response curves by combining the two sources of 

variability. As the two sources are assessed based on the estimated error covariance, we first 

describe the estimation of the error covariance in Section 3.1, and then discuss the out-of-

sample prediction inference in Section 3.2.

Let ξ ik = ∫𝒯Y
Y i

c(t)ϕk(t)dt be the projection of the de-meaned full response curve onto ϕk(t); 

recall that the {ϕk( · )}
k
 are obtained from the spectral decomposition of the estimated 

marginal covariance of the response. Define var(ξik) = σk
2, var(ξ ik) = νkk, and 

cov(ξ ik, ξ ik′) = νkk′(k ≠ k′). For notational simplicity, let η = K, {σk
2, ϕk( · )}

k = 1
K

 be the set of 

all parameters that describe the marginal covariance of the response.

3.1 Estimation of Error Covariance

For inference about the model parameters, we account for dependence of the errors using 

ideas similar to those of Kim et al. (2016). We assume that the covariance function of ε(t), 
denoted by R(t, t′), can be decomposed as R(t, t′) = Σ(t, t′) + σ2I(t = t′), where Σ(t, t′) is a 

continuous covariance function, σ2 > 0, and I(·) is the indicator function. Estimation of R(t, t
′) follows two steps: 1) fit the additive function-on-function model using a working 

independence assumption and obtain residuals, ei j = Y i j − Y i(t j) where 

Y i(t) = ∑k = 1
K ℤi

TΘ̂kϕk(t); and 2) apply standard functional PCA based methods (see e.g., 

Yao et al., 2005a; Di et al., 2009) to the residual curves and estimate a finite rank 

approximation of ∑̂(t, t′); this yields estimated eigencomponents and estimated error 

variance, σ̂2.

3.2 Inference

We now discuss the variability of the predicted response curves when new covariate profiles 

are observed. Let X0(·) be the new functional covariate and assume 
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Y0(t) = ∫𝒯X
F{X0(s), s, t}ds + ε0(t) as in (1). Let Ŷ0(t) be the right-hand side of (7) with X = 

X0. We measure the uncertainty in the prediction by the prediction error Ŷ0(t) − Y0(t)

(Ruppert et al., 2003), which is defined as

var{Ŷ0(t) − Y0(t)} = var{Ŷ0(t)} + var{ε0(t)} . (8)

Assume that the error process ε0(t) has the same distribution as εi(t) in (1) and is 

independent of X0(s). Then, the variance of ε0(t) can be estimated by R̂(t, t′); here R̂(t, t′) is 

obtained as in the previous section. We approximate {Ŷ0(t)} using the iterated variance 

formula:

var{Ŷ0(t)} = Eη[var{Ŷ0(t) |η}] + varη[E{Ŷ0(t) |η}], (9)

where η  is the estimator of η.

We begin by deriving a model-based variance estimate of var{Ŷ0(t) |η}. From (7),

Var{Ŷ0(t) |η} = ∑k = 1
K ϕk(t)ℤ0

Tvar(Θ̂k)ℤ0ϕk(t) + ∑k ≠ k′ϕk(t)ℤ0
Tcov(Θ̂k, Θ̂k′)ℤ0ϕk′(t),

where ℤ0 is the KxKs-column vector of ∫ 0
1BX, l{X0(s)}BS, l′(s)ds for l = 1, …, Kx, l′ = 1, …, 

Kx. Next, var(Θ̂k) = νkkHλ{∑i = 1
n ℤiℤi

T}Hλ
T and cov(Θ̂k, Θ̂k′) = νkk′Hλ{∑i = 1

n ℤiℤi
T}Hλ

T. The 

conditional variance of Ŷ0(t) is

var{Ŷ0(t) |η} = ∑k = 1
K νkkϕk(t)Ω0ϕk(t) + ∑k ≠ k′νkk′ϕk(t)Ω0ϕk′(t), (10)

where Ω0 = ℤ0
THλ{∑i = 1

n ℤiℤi
T}Hλ

Tℤ0 and where implicitly this variance is conditioned on 

X0(s). We estimate var{Ŷ0(t) |η} by plugging estimates of νkk and νkk′ into (10). When the 

response curve is observed on a fine and regular grid of points, we estimate νkk by 

νkk = ∫ ∫ ∑Y (t, t′)ϕk(t)ϕk(t′)dtdt′, where ∑~
Y ( · , · ) is the estimated marginal covariance 

function of response, and νkk′ is approximately 0 for k ≠ k′, since {ϕ( · )}k is the eigenbasis 

of ∑~
Y ( · , · ) and therefore orthogonal. When the response curve is observed at sparse and 

irregular grid of points, modification is needed to obtain νkk and νkk′; see Section A of the 

Supplementary Material.
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To account for the second source of variability, we use bootstrapping of subjects. We 

approximate the total variance of Ŷ0(t) using the iterated variance formula in (9); the first 

term, Eη[var{Ŷ0(t) |η}], can be estimated by averaging the model-based conditional variances 

across bootstrap samples. The second term, varη[E{Ŷ0(t) |η}], is estimated by the sample 

variance of the predicted responses obtained from the bootstrap samples. Algorithm 1, 

displayed below, computes the total variance of Ŷ0(t). Using this result, we can construct a 

100(1 − α)% pointwise prediction interval for the new response Y0(t) as 

Ŷ0(t) ± zα/2SE{Ŷ0(t) − Y0(t)}, where zα/2 is the α/2 upper quantile of the standard normal 

distribution and SE{Ŷ0(t) − Y0(t)} = [var{Ŷ0(t) − Y0(t)}]1/2
 is obtained by bootstrapping the 

subjects using Algorithm 1.

Our inferential procedure has two advantages. First, the procedure accommodates complex 

correlation structure within the subject. Second, the iterated expectation and variance 

formula combines the model-based prediction variance and the variance of η , and better 

captures the total variance of the predicted response curves; our numerical study confirms 

the standard error characteristics in finite samples. One possible alternative for estimating 

the error covariance function R(t, t′) is to use B−1∑b = 1
B R̂

b(t, t′) where R̂
b(t, t′) is estimated 

using the bth bootstrap sample, and our numerical study is based on this approach. Our 

numerical experience is that using the latter estimate of the covariance yields similar results 

as using the estimated model covariance R̂(t, t′) derived in Section 3.1.

Algorithm 1

Bootstrap of subjects

1: for b = 1 to B do

2:  Resample the subjects with replacement. Let {b1, …, bn} be the subject index of the bootstrap resample.

3:

 Define the covariate and the response curves in the bth bootstrap sample as {Xi
(b)( · ) = Xbi

( · )}
i = 1

n
 and 

{Yi
(b)( · ) = Ybi

( · )}
i = 1

n
, respectively. The bootstrap data for the ith subject is obtained by collecting the 

trajectories {Xi
(b)(sk), sk}

k = 1
m

 and {Yi
(b)(t j), t j} j = 1

mY
.

4:

 Apply FPCA to {Yi
(b)( · )}

i = 1
n

 and obtain an estimate of the eigenbasis {ϕk
(b)( · )}

k = 1
K(b)

, where K(b) is the 

finite truncation that explains a pre-specified percent of variance.

5:

 For l = 1, …, Kx, l′ = 1, …, Ks, and k = 1, …, K(b), obtain parameter estimates θ̂ l, l′, k
(b)

 by applying AFF-PC to 

{Xi
(b)(sk), sk}

k = 1
m

 and {Yi
(b)(t j), t j} j = 1

mY
.
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6:
 For a new covariate X0(s), obtain the predicted response by 

Ŷ0
(b)(t) = ∑k = 1

K(b)
ϕk

(b)(t)∑l = 1
Kx ∑l′ = 1

Ks θ̂ l, l′, k
(b) ∫𝒯X

BX, l{X0(s)}BS, l′(s)ds.

7:

 Compute V(b)(t) = var{Ŷ0
(b)(t) |ηb} using the model-based formula in (10).

8: end for

9:
Approximate the marginal variance of predicted response by

var{Ŷ0(t)} ≈ B−1∑b = 1
B V(b)(t) + B−1∑b = 1

B {Ŷ0
(b)(t) − Y0(t)}

2
,

where Y0(t) is the sample mean of Ŷ0
(b)(t).

As the Associate Editor pointed out, the proposed approach to construct prediction bands 

relies on the validity of the involved bootstrap approximations. We use resampling of the 

subjects (see also Benko et al. (2009); Park et al. (2017)) to approximate both the 

unconditional model-based variance component and the variance of the predicted 

trajectories. But a rigorous study of the bootstrap techniques is somewhat limited in the 

functional data analysis. In particular, there is no consistency result about the bootstrap 

procedure involved here. While our numerical investigation, based on the coverage of the 

prediction bands (see Table 3), confirms that the methodology has desired property in the 

settings considered here, there is no guarantee that it is generally valid and the approach is 

for illustration.

4 Simulation Study

We investigate the finite sample performance of our method through simulations. We 

generate N = 1000 samples from model (1) with the true functional covariate given by 

X(s) = a1 + a2 2sin(πs) + a3 2cos(πs) where a1, a2, and a3 vary independently across subjects, 

specifically, ap ~ Normal(0, 2(1−p)2) for p = 1, 2, 3. Also, the covariate is observed with 

noise, Wik = Xi(sik) + δik where the δik are independent Normal(0, 0.5). For each sample we 

generate training sets of size n = 50, 100, and 300 and a test set of size 50; also 

𝒯X = 𝒯Y = [0, 1]. The training sets include two different scenarios for the sampling of s and 

t. (i) Dense design - the grids of points {sik: k = 1, …, mi} and {tik : k = 1, …, mY,i} are the 

same across i, mi = m and mY,i = mY, and are defined as the set of 81 and 101 equidistant 

points in [0, 1] respectively. (ii) Sparse design - for each i the number of observation points 

mi ~ Uniform(45, 54) and mY,i ~ Uniform(35, 44); the time-points {sik : k = 1, …, mi} and 

{tik : k = 1, …, mY,i} are randomly sampled without replacement from a set of 81 and 101 

equidistant points in [0, 1] respectively.

The test set is generated using the set of 81 and 101 equispaced points in [0, 1] for s and t, 

respectively. We denote realizations of the error process by 𝔼i = [εi(ti1), …, εi(timY , i
)]T and 

generate them using four different covariance structures; these cases are denoted by 𝔼i
1, 𝔼i

2, 
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𝔼i
3, 𝔼i

4, where 𝔼i
1 assumes a simple independent error structure, and other cases have 

correlated structure with increasing complexity and are described in Section C of the 

Supplementary Material. We consider three forms of true function F: linear function F1(x, s, 

t), simple nonlinear function F2(x, s, t), and complex nonlinear function F3(x, s, t); they too 

are defined in the Supplementary Material, Section C. Figure 1 shows the true surface of 

F3(x, s, t) along with x and s at fixed points t = 0.05, 0.5, and 1. The thick solid line is F3 

evaluated at fixed values for t and s so that only x varies; the nonlinearity of this curve 

indicates a departure from a functional linear model where F(x, s, t) would be linear in x. 

The remaining details about the simulation are in the Supplementary Material, Section C. 

The R packages Matrix (Bates and Maechler, 2017) and MASS (Venables and Ripley, 2002) 

were used to generate data.

The performance of AFF-PC was assessed in terms of in-sample and out-of-sample 

predictive accuracy, as measured by the root mean squared prediction error (RMSPE), 

average computation time, and coverage probabilities of prediction intervals. The in-sample 

and out-of-sample root mean squared prediction error (RMSPE) are denoted by RMSPEin 

and RMSPEout, respectively. We define the in-sample RMSPE by

RMSPEin = N−1∑r = 1
N [n−1∑i = 1

n mY , i
−1∑ j = 1

mY , i {Yi
(r)(ti j) − Ŷ i

(r)(ti j)}
2
]
1
2 ,

where Y i
(r)(ti j) and its estimate Ŷ i

(r)(ti j) are from the rth Monte Carlo simulation. The out-of-

sample RMSPE, denoted by RMSPEout, is defined similarly. For each prediction we 

calculate the average coverage probability of the pointwise prediction intervals.

4.1 Competitive Methods

We compare our method to three other approaches: the functional linear model, the 

functional additive model of Müller and Yao (2008), which we label FAM, and the B-spline 

based estimation of Scheipl et al. (2015), AFF-S. Our approach is implemented using the R 

packages refund (Goldsmith et al., 2016) and mgcv (Wood, 2011, 2004, 2003). Details 

about the selection of the tuning parameters for our approach and the competitive 

approaches are in Section C of the Supplementary Material. We assess the prediction 

accuracy of the proposed approach and three competitive alternatives and compare their 

computational efficiency. Due to the high computational cost of the functional additive 

model and AFF-S, we restrict our comparisons with these methods to the case where n = 50 

and the error process (𝔼i) is either 𝔼i
2 or 𝔼i

4 as described in Section C of the Supplementary 

Material. For the functional linear model, we consider a model defined by 

E[Y i(t) | Xi] = ∫𝒯X
Xi(s)β(s, t)ds. Implementation details of our method and the three other 

approaches are summarized in the Supplementary Material, Section C.3.
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4.2 Simulation Results

4.2.1 Prediction Performance—The comparison with the functional linear model is 

summarized in Table 1. For in-sample prediction accuracy, we report the relative percent 

gain in prediction with respect to functional linear model by computing 

100 × (1 − RMSPEAFF − PC
in /RMSPEFLM

in ), where RMSPEAFF − PC
in  and RMSPEFLM

in  are the in-

sample prediction errors obtained by fitting the AFF-PC and functional linear model, 

respectively. Relative improvement for out-of-sample prediction is measured similarly. Thus, 

values closer to 0 indicate similar prediction performance between the two models, while 

larger positive values are indicative of AFF-PC having greater prediction accuracy than the 

functional linear model. The top part of Table 1 contains the case when the underlying true 

model is linear in x; the true relationship is described by F1. Both AFF-PC and the 

functional linear model, provide relatively similar in-sample and out-of-sample prediction 

performance in all scenarios. The number of subjects, the sampling design of the grid points, 

and the error structure slightly affect the numerical results. The results confirm that when the 

true relationship is linear, then AFF-PC has similar prediction performance to the functional 

linear model, although there are few cases, especially for sparse designs and smaller sample 

sizes, where AFF-PC is slightly worse with respect to out-of-sample prediction.

The prediction results for the case where the true model in nonlinear are shown in the middle 

and bottom parts of the table: the true relationship is described by F2 (simple nonlinear, 

middle) and F3 (complex nonlinear, bottom). The results confirm that if the true model is 

nonlinear, then AFF-PC shows a dramatic improvement in prediction accuracy over the 

functional linear model. Depending on the complexity of the mean model, AFF-PC 

improves prediction accuracy compared to the functional linear model by over 50%. This 

improvement increases as the sample size gets larger.

Next, we compare AFF-PC to the AFF-S estimator (Scheipl et al., 2015), which uses B-

splines rather than an eigenbasis to represent the trajectories. The results are presented in 

Table 2. Comparing the columns labeled (1) and (2) in the two panels, we observe that the 

two estimators have similar accuracy, with accuracy varying slightly with the complexity of 

the relationship. Column labeled (3) shows the average computation time (in seconds), 

indicating an order of magnitude improvement by AFF-PC over AFF-S. The models were 

run on a 2.3GHz AMD Opteron Processor.

Table 2 also compares AFF-PC and FAM. As the model complexity increases, the out-of-

sample prediction accuracy of AFF-PC increases compared to FAM. Also, FAM takes much 

more computation time than AFF-PC, especially when the grid points are sparsely sampled. 

Computation time is less affected by the error covariance structure than is prediction 

accuracy.

In summary, AFF-PC better captures complex nonlinear relationships than the functional 

linear model, and yet AFF-PC performs as well as the functional linear model when the 

latter is true. The B-spline based estimator, AFF-S, and AFF-PC have similar prediction 

performance, while AFF-S and FAM are much slower than AFF-PC.
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4.2.2 Performance of the Prediction Intervals—Next, we assess coverage accuracy of 

the pointwise prediction intervals. These intervals are approximated using the method 

described in Section 3 with 100 bootstrap samples per simulated data set. Table 3 reports the 

average coverage probability for both the dense and sparse design at nominal levels of 85%, 

90%, and 95%. When the sample size is small (e.g., n = 50), the prediction intervals are 

conservative, providing greater coverage probabilities than the nominal values. However, the 

coverage probabilities approach the nominal levels as the sample size increases. The 

complexity of the true function F(x, s, t) affects the coverage performance slightly. If the true 

function is complex, e.g., F(x, s, t) = F3(x, s, t), the coverage probability converges more 

slowly to the nominal levels as n increases compared to when the true function is simple, 

e.g., F(x, s, t) = F2(x, s, t). The number of subjects, the sampling design of the grid points, 

and the error covariance structure also affect the coverage performance slightly.

Remark: Section D.1 of the Supplementary Material includes additional simulation results 

corresponding to another level of sparseness, and the results indicate that our approach still 

maintains prediction accuracy. Section D.2 of the Supplementary Material illustrates 

numerically that our method is not sensitive to the choice of K.

5 Capital Bike Share Data

We now turn to the capital bike share study (Fanaee-T and Gama, 2013). The data were 

collected from the Capital Bike Share system in Washington, D.C., which offers bike rental 

services on an hourly basis. In recent years, there has been an increased demand for bicycle 

rentals; renting is viewed as an attractive alternative to owing bicycles. Ensuring a sufficient 

bike supply represents an important factor for a successful business in this area. In this paper 

we try to gain a better understanding of the customers’ rental behavior during a weekend day 

in relation to the weather condition for that day. We are interested in casual rentals, which 

are rentals to cyclists without membership in the Capital Bike Share program. The counts of 

casual bike rentals are recorded at every hour of the day, during the period from January 1, 

2011 to December 31, 2012, for a total of 105 weeks. Also collected are weather 

information such as temperature (°C) and humidity on an hourly basis.

Bike rentals have different dynamics on weekends compared to weekends. We restrict our 

study to Saturday rentals, when there is a particularly high demand for casual bike rentals. 

Our focus is on how Saturday rentals relate to the temperature, while accounting for 

humidity. Understanding the nature of this association could help one predict the casual 

rental demand based on the weather forecast available on the previous day. Figure 2 shows 

the counts of casual bike rentals (left panel) and hourly temperature (right panel) on 

Saturdays; each curve corresponds to a particular week. The solid, dotted, and dashed lines 

are the observations for three different Saturdays. On weekends, many renters can be 

flexible about when during the day to rent, so it is assumed that the entire temperature curve 

affects the number of casual bikes rental at any time on Saturday. To remove skewness, we 

log-transform the response data, x → log(x + 1), before we proceed with our analysis.

Let CBi(t) be the number of casual bikes rented recorded, on the log-scale, for the ith 

Saturday at the tth hour of the day; also let Tempi(t) denote the true temperature for the ith 
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Saturday at the tth hour of the day and let AHumi be the average humidity for the 

corresponding Saturday. We consider the general additive function-on-function regression 

AFF-PC model

E[CBi(t) |Tempi( · ), AHumi] = α(t) + ∫
0

24
F{Tempi(s), s, t}ds + AHumiγ(t), (11)

where α(·) is the marginal mean of the response, F(·, ·, ·) is an unknown trivariate function 

capturing the effect of the daily temperature and γ(·) is a smooth univariate function that 

quantifies the time-varying effect of the average humidity.

The temperature and the counts of bike rentals have a small amount of missingness. 

Therefore, we smoothed the temperature profiles using functional principal component 

analysis before applying the center/scaling transformation. We assessed both in-sample and 

out-of-sample prediction accuracy by splitting the data into training and test sets of size 89 

and 16, respectively. To model the function F, we used Kx = Ks = 7 cubic B-splines for the 

x- and s-directions and selected K, the number of eigenfunctions {ϕk( · )}
k = 1
K  for modeling F 

in the t direction, by fixing the percentage of explained variance to 95%; this resulted in K = 

3. These choices for the tuning parameters are supported by additional sensitivity analysis 

included in Section E.2 of the Supplementary Material. We also used {ϕk( · )}
k = 1
K  to model 

the marginal mean function α(·) and the smooth effect of average humidity γ(t), 

α(t) = ∑k = 1
K ϕk(t)βk and γ(t) = ∑k = 1

K ϕk(t)ζk, where βk and ζk are the unknown basis 

coefficients. Such a representation allows us to use K also to control the smoothness of the 

fitted coefficient function, γ̂ (t). Parameter estimation was done as described in Section 2.2 

with minor modifications due to the additional covariate, average humidity. Briefly, to 

estimate the unknown parameters, βk, ζk and θl, l′, k, we constructed 

ℤ(i) = 1, AHumi, {∫0

1
BX, l{Tempi(s)}BS, l′(s)ds}

l, l′
, Θk = [βk, ζk, {θl, l}l, l′], ℙx = diag(0, 0, ℙx)

and ℙs = diag(0, 0, ℙs) and then minimized the penalized criterion (5) using ℙx and ℙs in 

place of ℙx and ℙs, respectively.

Figure 3 shows the estimated parameter functions: the top two plots illustrate the estimated 

intercept function α̂( · ) and γ̂ ( · ). On average the number of casual bike rentals decreases 

until 5AM (t = 5 on the plot) and then increases steadily peaking at about 3:00PM (t = 15). 

As expected, humidity is negatively associated with the bike rentals; the effect seems to be 

largest at 3:00PM. The bottom panels show the contour plots of the function F̂(x, s, t) for 

three values of t, t = 0 (midnight), t = 12 (noon) and t = 20 (evening, 8PM); the values of x 
have a standardized interpretation. For example, x = 1 is interpreted as one standard 

deviation away from the mean temperature profile. The plots were produced using the R 

packages gridExtra (Auguie, 2016) and lattice (Sarkar, 2008).
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As mentioned in Section 2.1, the functional linear model is the special case of (1) where F(x, 

s, t) = β(s, t)x, which implies that ∂F(x, s, t)/∂x does not depend on x. The nonlinearity of F̂
in x can be noted in all these plots but in particular in the middle bottom panel (t = 12). 

Consider the case when s = 10; simple calculations yield that the partial derivative of F with 

respect to x at x = −1 is different from the one for x = 1, and thus that F̂ is not linear in x.

Table 4 compares AFF-PC, AFF-S, and the functional linear model in terms of prediction 

accuracy. AFF-PC results in better prediction performance than functional linear model for 

both in-sample and out-of sample. As expected, AFF-PC and AFF-S have similar accuracy 

but AFF-PC is much faster than AFF-S.

Furthermore, we can construct bootstrap-based prediction intervals for the predicted 

trajectories in the test set, by slightly modifying the bootstrap procedure included in Section 

3.2. For completeness, the algorithm is provided in the Supplementary Material, Section E.3. 

Figure 4 illustrates the 95% prediction bands constructed for three different Saturdays in the 

test set. Finally, we assessed the coverage probability of the prediction intervals. AFF-PC 

tended to produce conservative prediction intervals. For example, using 1000 bootstrap 

replications, the actual coverage probability of the 95% prediction intervals was 0.988 with a 

standard error of 0.003.

6 Discussion

This article considered additive regression models for functional responses and functional 

covariates. These models are a generalization of the functional linear model and allow for a 

nonlinear relationship between the response and the covariate. We proposed a novel 

estimation technique, AFF-PC, that is computationally very fast. We developed prediction 

inference for a future functional outcome when the functional covariate is known. As 

illustrated by the bike share study, AFF-PC can accommodate additional scalar or vector 

covariates. Furthermore, AFF-PC can easily be extended to accommodate multiple 

functional covariates. We showed through numerical study that when the true model is 

linear, AFF-PC’s performance is very close to that of the functional linear model, but if the 

true model is nonlinear, AFF-PC can yield considerably improved prediction performance. 

The capital bike share data is available at: https://archive.ics.uci.edu/ml/datasets/Bike

+Sharing+Dataset. The R code used in the simulation is available at: http://

www4.stat.ncsu.edu/~staicu/Code/affpccode.zip.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The three panels show the complex nonlinear function F3(·). Plotted are F3(x, s, 0.05) (left), 

F3(x, s, 0.5) (middle), and F3(x, s, 1) (right). The thick solid line represents the curve 

obtained by fixing s at 0.6. Notice its nonlinearity as a function of x.
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Figure 2. 
The number of casual bike users (left panel) and hourly temperatures (°C, right panel) 

collected every Saturday. The measurements taken in three different days on January, April, 

and July in 2011 are indicated by solid, dashed, and dotted lines, respectively.
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Figure 3. 
Displayed are the estimated parameter functions obtained by regressing log(1+countij) on 

the transformed temperature (°C) and average humidity. Top panels: marginal mean, α̂(t) and 

the effect of average humidity, γ̂ (t). Bottom panels: contour plots of the estimated surface, 

F̂(x, s, 0) (left), F̂(x, s, 12) (middle) and F̂(x, s, 20) (right).
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Figure 4. 
95% prediction bands constructed for three subject-level trajectories in the bike data. “●” 

are the observed response trajectories, solid lines are predicted response. Dashed lines are 

the prediction bands obtained by applying the method of AFF-PC.
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