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ABSTRACT Surface electromyography signal plays an important role in hand function recovery training. In
this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable
armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is
one of the key issues which should be addressed for wearable devices. The SWAwas developed by integrating
a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process,
and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user’s forearm,
drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to
find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different
hand movements, and their performances were appraised by classification complexity estimating algorithms
and principal components analysis. According to the verification results, all nine gestures can be successfully
identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was
implemented for hand rehabilitation training purpose. Correspondingly, user’s hand movement intentions
were extracted and converted into a series of commands which were used to drive motors assembled inside
the dexterous robot hand. As a result, the dexterous robot hand can mimic the user’s gesture in a real-time
manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process
for the patients after stroke.

INDEX TERMS sEMG control, stroke rehabilitation, IoT-enabled wearable device, machine learning.

I. INTRODUCTION
Stroke survivors’ upper limb motor functional recovery is
slower and more difficult [1], compared with their lower
extremities. Moreover, the recovery of hand function is often
limited [2]. Consequently, the effective restoration of its func-
tionality becomes a challenging task.

One-on-one interaction with a therapist who assists and
motivates the patient is generally involved in conventional
therapy, where patient’s willingness of the involvement is
low due the day-by-day repeated passive training [3], [4].

By contrast, the robot-assisted active training system for
neurorehabilitation can capture bio-potential signals from
the patients, decode the patients’ motion volition, and then
enable active response to their intentions. It has been proven
that, such robot-assisted active training is more effective
than passive methods [5], [6] and can enhance therapeutic
effects [7]–[9].

Bio-potential signals can be measured invasively or non-
invasively. Nonetheless, invasive technique is effective, while
high-cost and inconsistent performance caused by tissue
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responses issues cannot be ignored [10]. Alternatively,
surface electromyography (sEMG) is often the preferred
scheme, as the multi-channel sEMG can be collected at any
time on the skin surface according to the needs and the actual
situation without the assistance of a doctor or professional
nursing staff [11].

sEMG control strategy in its early stage primarily focused
on mapping each channel of sEMG signal from the muscle
group to a corresponding single degree of freedom (DOF)
or variable such as speed or direction. In this case, users
must be familiar with these unnatural mappings in order to
perform the desired actions, which is quite cumbersome. In
recent years, machine learning (ML) has been reported as
an efficient approach which, to a large extent, could address
these restrictions and inconvenience.ML is an approach using
machine learning methods to speculate hand gestures from
myoelectric patterns. Compared with conventional control
strategy, ML based control strategy is more effective, as it
maps user’s limb motion volition to dexterous robot hand
function, intuitively and naturally [12]–[14]. In addition, the
clinical applications of myoelectric pattern recognition also
involve prosthetic control [15], and phantom limb pain treat-
ment [16].

In the field of ML based sEMG control, efforts have been
devoted to investigating feature selection and classification
methods, such as Linear Discriminant Analysis (LDA) [17],
Multi-Layer Perception (MLP) [18], and Support Vector
Machine (SVM) [19]–[22]. Nevertheless, there are few stud-
ies focusing on factors that influence the complexity of
the whole classification process. For instance, although the
relevance and redundancy of features were investigated in
previous studies [23], [24], specific conflicting classes still
cannot be informed. Thus, classification complexity esti-
mating algorithms (CCEAs) [26] and principal components
analysis (PCA) were applied to estimate the class separability
of different feature sets in this work.

Additionally, the classifiers adopted in previous studies by
BioPatRec [25], a modular open source research platform
based on MATLAB for myoelectric control, are commonly
LDA and MLP. It has been reported in previous works
that SVM has the advantages in making pattern classifi-
cation of high-dimensional, nonlinear, and small-sampled
data [19], [29]. In this work, a comparative study was con-
ducted among the above mentioned three algorithms, aiming
to find the optimal algorithm with the highest classification
accuracy and the shortest training time.

Some investigations have been made on the correlation
between the number of collected sEMG and the offline
CA [22], [31], where usually no more than four channels
of sEMG are measured for pattern recognition. However,
this approach requires professional knowledge to place the
recording electrodes on the specific position of user’s fore-
arm, where the improper placement may lead to low recog-
nition rate or even result in the failure of classification. In
addition, the recording units or measurement devices reported
in previous works are usually bulky in physical size, which

makes it inconvenient to be applied in daily training for
the stroke patients. Furthermore, the accuracy of the gesture
recognition plays a quite important role for the stroke reha-
bilitation training system. The classification accuracy can
be further improved by measuring extra channels of sEMG
signals and processing with LDA [32].

Though non-wearable and wired rehabilitation system can
detect bio-potential signals, it suffers from a restricted work-
ing region, where the user has quite limited mobility. Due
to the advantages of its counter-part, the wearable wireless
system is preferred to collect health data [33]. In addition,
emerging Internet of Things (IoT) technology has offered
great opportunities for developing smart rehabilitation sys-
tems [34]–[40]. Therefore, in this work, a tiny-sized, easy-to-
use, and comfortable IoT-enabled smart wearable armband
was developed, with the miniaturized electronics integrated
inside and flexible textile electrodes evenly distributed along
the inner side of the band. Additionally, a 3D printed five-
finger robot hand driven by ML was implemented for stroke
recovery. The real-time assistance from the robot hand gave
the users the feedback of muscle activities and helped them
strengthen their motion patterns.

The rest of this paper is organized as follows. The archi-
tecture of the whole system is presented in Section II. The
method of gesture recognition and control is given in Section
III. Subsequently, Sections IV presents the results of the pro-
posed method. Finally, Section V discusses and summarizes
the whole paper.

FIGURE 1. Architecture of IoT-enabled stroke rehabilitation system.

II. SYSTEM ARCHITECTURE
The architecture of the stroke rehabilitation system that has
been implemented in this study is shown in Fig. 1. This
proposed prototype consists of two parts: a smart wear-
able armband (SWA) and a smart training equipment (STE).
Worn around user’s forearm, the smart wearable armband
recorded, pre-processed, and transmitted the sEMG signals
to the smart training equipment through wireless communi-
cation. After signal pre-processing and feature extraction,ML
algorithms which had been off-line trained, were leveraged to
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discriminate features. Then the recognition outcome was
mapped to dexterous robot hand function. As a result, the
dexterous robot hand can mimic the user’s gesture in a real-
time manner.

A. SMART WEARABLE ARMBAND
The SWA mainly consists of high pass filters, an analog
front-end, a wireless module, and textile electrodes, which
can collect, pre-process, and wirelessly transmit bio-potential
signals of forearm.

There were two luminescent spots in the design and real-
ization of SWA. Softness is the first highlight. Textile elec-
trodes and stretchable material were employed to fabricate
this SWA. In this case, the SWA can be worn around the
user’s forearm and provide comfort and softness throughout
experiment. The detail of the SWA is shown in Fig. 2, and
the center-to-center distance of the paired electrodes forming
a differential structure was around 20mm. The second advan-
tage is its easiness to use as well as its wireless feature. Due
to the lack of anatomical knowledge, inaccurate placement
of electrode positions hinders the effective identification of
motion intentions. In order to mitigate this drawback, evenly
distributing surface electrodes was proposed in the design
of SWA. Without special attention to the electrode position,
relative high recognition rate can be achieved.

FIGURE 2. Smart wearable armband (SWA).

The design concept of this SWA system as well as the
signal processing flow is described as follows: In the first
place, raw sEMG signal of each channel was filtered by a
10 Hz high pass filter circuit which can avoid saturation of
the amplifier caused by motion artifact. Then, the signal was
amplified and digitized by ADS1198, a TI low-power analog
front-end with eight channels. This analog front-end con-
tains built-in programmable gain amplifiers, 16-bit analog-
to-digital converters and a built-in right leg drive amplifier,
which was designed to suppress the common mode noise
of the muscle electrical signal. Finally, the upper extremity
pre-processed sEMG signals were transmitted in a dedicated
packet structure by a wireless module to STE. The wire-
less communication was achieved by using TI transceiver
CC2540 which supports Bluetooth Low Energy (BLE).

B. SMART TRAINING EQUIPMENT
The smart training equipment mainly consists of machine
learning algorithms and a 3D printed dexterous robot hand.
First, the wireless module received pre-processed sEMG sig-
nals from SWA and transmitted them to PC host. In the PC
environment, after signal pre-processing and feature extrac-
tion, off-line trainedML algorithms based onMatlab (Version
R2015a, MathWorks, Natick, MA, USA) were leveraged to
discriminate features. All nine gestures can be successfully
identified. Meanwhile, the real time recognition results were
converted to a series of appropriate commands which were
used to drive motors integrated in a 3D printed dexterous
robot hand, an assistive device for neurorehabilitation.

III. GESTURE RECOGNITION AND CONTROL
A. SUBJECTS INFORMATION AND EXPERIMENT
To verify the performance of the proposed prototype, experi-
ments were conducted where two male able-bodied subjects
(aged 22-24) and one female able-bodied subject (aged 22)
were involved. Before carrying out this study, approval of
the Ethics Committee of the 117th Hospital of People’s Lib-
eration Army (PLA) has been obtained. Voluntary subjects
signed informed consents prior to the experiment.

There were two parts in the experiment: a recording section
and an identification section. In the recording section, sub-
jects were seated in a comfortable height-adjustable chair.
The sEMG signals of each action were recorded in sequence.
More specifically, after the skin was cleaned with medical
alcohol wipes, the designed armband was placed on the right
forearm. The instructed contraction time was 3 s. Between
every two consecutive contractions, there was sufficient rest
time to avoid muscle fatigue. Each movement was repeated
three times. When performing gestures, the fingers only need
to be fully extended or fully flexed without excessive force.
The target gesture set includes agree (AG), close hand (CH),
open hand (OH), pointer (PT), thumb and middle finger
(T&M), thumb and little finger (T&L), flex hand (FH), extend
hand (EH), relax (RE), as shown in Fig. 3. In the identi-
fication section, any movement of the nine target gestures
was allowed to execute during this period, with each gesture
repeated 12 times in total. And real-time hand gesture recog-
nition result was further served as instructions to control the
five-finger dexterous robot hand.

B. GESTURE RECOGNITION
Based on BioPatRec, a modular open source research plat-
form [20], [25], some specific innovations and the main
contributions of our work are as follows: First, an additional
sEMG signal feature, three-order AR coefficients, was intro-
duced. Second, a new method was put forward to find an
optimal feature set. Third, a comparative studywas conducted
among LDA, MLP, and SVM algorithms, which was rarely
studied with BioPatRec. Finally, the performances of the
above work were appraised by the combination of CCEAs
and PCA.
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FIGURE 3. Target gesture set: a) AG, b) CH, c) OH, d) PT, e) T&M, f) T&L,
g) FH, h) EH, i) RE.

1) PRE-PROCESSING
In order to get effective information, we removed 15% of the
contraction time both at the beginning and end of the recorded
data to distill valid signals. For each hand gesture of each
subject, in total 6.3 seconds of sEMG recording was involved
in the analysis. Then the 6.3 seconds section was segmented
into 200-ms-long time windows with an overlap of 50 ms.
Thus the valid 6.3 seconds section was divided into 123 time
windows.

2) FEATURE EXTRACTION
Six sEMG features were employed, including mean abso-
lute value (MAV), standard deviation (SD), variance (VAR),
waveform length (WL), root mean square (RMS), zero-
crossing (ZC). As they are time domain features, they were
denoted as ‘‘tmabs’’ ‘‘tstd’’ ‘‘tvar’’ ‘‘twl’’ ‘‘trms’’ ‘‘tzc’’,
respectively. WL and ZC were described in equation (1)-(2).
In addition, three-order AR coefficients was introduced as
an additional sEMG signal feature in BioPatRec, which is
denoted as ‘‘tar33’’. The system function of the AR model
was expressed by equation (3).

WL =
N−1∑
i=1

|xi+1 − xi| (1)

where N is the window size, xi is the sEMG signal.

ZC =
N−1∑
i=1

I {sgn(xi+1) · sgn(xi) < 0} (2)

where the restriction |xn-xn+1| ≥ ε should be taken
into account, and ε is the threshold to depress the noise

effect.

AR =
p∑

k=1

akxi−k + wi (3)

where xi is the sEMG signal, p denotes the order of the AR
model, ak and wi are AR coefficients and Gaussian white
noise, respectively.

The feature vector used for classification was composed
of the features extracted from a single time window. Every
8 consecutive elements of the feature vector were eight fea-
tures of the same type which were extracted from 8 different
channels. For instance, the first 8 elements of the feature
vector were eight MAV features. Different features distribute
differently in feature space, and thus the outcome of pattern
classifier varies with different feature sets. For instance,MAV
andRMSboth describe the signal energy of sEMG, indicating
that the motion information implied by some certain fea-
tures is coincident. Therefore, in order to prevent redundant
information in gesture recognition, it is necessary to find an
optimal feature set [41], [42].

Univariate feature selection to find the optimal feature set
was proposed in this study. It can be briefly described as
follows. Firstly, offline classification accuracies for individ-
ual features were calculated using ML algorithm. The result
is shown in Fig. 4. And one set of four features with the
highest average CA was selected. Each time add one of the
remaining features to form a new feature combination, and
then select the combination of highest recognition rate from
all options until the feature number of combination was up to
six. Finally,we got the best set of six features.

FIGURE 4. Offline classification accuracy using individual feature.

3) ESTIMATE THE RESULT OF FEATURE SELECTION
It is known that features with high class separability improve
recognition accuracy. Therefore, the data analysis tools
including CCEAs [26] and PCAwere further used to evaluate
class separabilities of different combinations of features.

Mahalanobis distance [27], [28], the average of the dis-
tances between all movements and their most conflicting
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neighbor [49], is one of themeasures in CCEAs.Mahalanobis
distance can be understood in the following equations.

Sb =
C∑
i=1

pi(mi − m)T (mi − m) (4)

Sw =
C∑
i=1

pi
1
ni

ni∑
k=1

(x(i)k − mi)(x
(i)
k − mi) (5)

J = tr(Sb)/tr(Sw) (6)

where C is the number of classes, ni is the total number of
class i, x(i)k and pi are feature vectors and priori probabil-
ity for class i, respectively, Sb and Sw are the trace of the
divergence matrix between categories and within categories,
respectively.

PCA can present a lower-dimensional picture to view class
separability by maintaining the first few principal compo-
nents, resulting in the reduction of the transformed data
dimensions. In this study, the cumulative contribution rate of
the first three principal components was 95.86%. Therefore,
three eigenvectors corresponding to the largest eigenvalues
were selected as the PCA projection matrix in order to view
the most informative three-dimensional picture.

4) CLASSIFICATION
A comparative study was conducted among LDA, MLP, and
SVM algorithms, which was rarely studied with BioPatRec.
LDA, a statistical classification method, is the fastest algo-
rithm with low complexity and quick training than other
types of algorithms [15], [50]. Concentrating on the decision
boundary, LDA is generally more robust against irrelevant
outliers in the training data. Nevertheless, as LDA gives less
insight into the structure of the data space, it has limited
capacity when dealing with data containing missing entries.
The goal of the SVM is to obtain the minimum classification
error, as well as the maximum classification interval to ensure
maximum stability and excellent generalization ability. Take
the two-class linear classification issue, the initial design
concept of the SVM, for example.

g(x) = wT · ϕ(x)+ b (7)

where w is a weight vector, ϕ(x) is the kernel map, and b is
an offset.

The original optimization problem can be transformed into
the corresponding dual optimization problem:

min
1
2
||w||2 + C

N∑
i=1

ξi

s.t. yi(w
Tϕ(xi)+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,N (8)

where ξi is slack variable, C is regularization parameter to
make balance between the minimum amount of data point
deviation and maximum margin, and y is an indicator vector.

Theoretically, MLP provides a method for finding optimal
solutions that can be applied to any kind of classification

FIGURE 5. Offline classification accuracy using different combinations of
features.

problem, and it can classify more complex patterns through
self-learning.

Since the 6.3 seconds section was segmented into
200-ms-long time windows with an overlap of 50 ms, the
6.3 seconds section was divided into 123 time windows.
123 feature vectors were further obtained, as a feature vector
was extracted from a single time window. To assess the clas-
sification performance of different feature sets and different
classifiers, holdout cross validation was adopted. The detail
of holdout cross validation can be described as follows: the
whole 123 feature vectors were randomized and were split
into three sets: 40% of the feature vectors for training the
classifiers, 20% for validation process, and the rest for testing
process. These three sets never overlap. Then the holdout
cross validation was repeated twenty times to draw the clas-
sification results. Classification accuracy (CA) is a notable
indicator of the classification results, which is defined below:

CA =
Number of correct testing samples
Total number of testing samples

× 100% (9)

C. CONTROL
The identifiedmovement intentionwhichwas achieved by the
steps described above served as control input to a five-finger
dexterous robot hand. Its working principle can be briefly
described as follows: 3D printing technology was applied to
fabricate the robot hand. AndArduinoMega 2560was chosen
as electronic control unit, for its low cost, fast-prototyping,
and open-source prototyping platform. Each servo motor
drove corresponding reel to rotate, meanwhile, wound fishing
line onto the reel. As the fishing line passed through the
corresponding finger and the end of the line was fixed at the
finger tips, therefore, the 3D printed finger was accordingly
bent. Take the movement of agree as an example. In order to
realize this gesture on the five-finger dexterous robot hand,
the servo motor corresponding to the thumb remained its
original angle. Meanwhile, the rest four servo motors drove
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FIGURE 6. Data analysis tool using CCEAs [26]. Section 1 illustrates the distance of each class and its closest neighbors in feature space (2D). Section 2
shows a table in the order of the number of times that a movement is the most conflicting neighbor for any of the other movements. Data from a
recording session of nine movements was showed. The feature extraction setting is ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’. Section 3 shows a table of
movement conflicts.

corresponding reels to rotate, further bending the remaining
four 3D printed fingers.

IV. RESULTs
A. FEATURE SELECTION
Figure 4 illustrates offline classification accuracy using
individual feature, and meanwhile LDA was employed as
the classifier. ‘‘tmabs’’ (97.79 ± 0.49%), ‘‘tstd’’ (98.25 ±
0.25%), ‘‘twl’’ (97.12 ± 0.59%), and ‘‘trms’’ (97.94 ±
0.49%) were the four with the highest average classifica-
tion accuracy, and they were defined as ‘‘top4’’. Despite the
adoption of AR in previous studies, it is obvious that offline
classification performance of ‘‘tar33’’ was inferior to ‘‘tvar’’
(74.82 ± 4.20% versus 92.11 ± 2.57%), and their perfor-
mances ranked sixth and fifth, respectively. As sEMG signals
are non-stationary micro electrical signal, the rate of the
signal value passing through zero tended to have a very slight
difference among nine movements, which means that ‘‘tzc’’
provides too low spatial resolution information to identify
gestures independently. Consequently, offline classification
performance of ‘‘tzc’’ (55.66± 4.05%) was the worst among
all the features.

The classification accuracies of different feature com-
binations were further investigated using LDA, as shown

in Fig. 5. ‘‘top4’’ stands for ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’ and
‘‘trms’’, the four with the highest average CA, which has been
described above. The offline classification performance of
‘‘top4+tvar’’ was just a little bit inferior to ‘‘top4+tvar+tzc’’
(99.81 ± 0.04% versus 99.86 ± 0.02%), and their perfor-
mances ranked second and first, respectively.

Taking the classification performance and computational
complexity into account, ‘‘top4+tvar’’ with low dimension
and high classification performance was selected as the
optional feature set. It is worth noting that the outcome of
combining all the features (99.76 ± 0.10%) was not the best,
just ranked third.

B. VERIFY THE RESULT OF FEATURE SELECTION
Figure 6 displays the data analysis result using CCEAs, while
the feature extraction setting was ‘‘top4+tvar’’, which means
‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’. Section 1
shows nine scatter plots, illustrating each class and its closest
neighbor in feature space. The red dot set is the concerned
movement in a single subfigure. Meanwhile, the blue dot
set is the closest neighbor of the concerned movement. The
concerned movements presented by the red dot sets vary in
different subfigures (see Table 1 for details). Section 2 shows
one of the scatter plots more clearly. The red dot set is extend
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TABLE 1. Mahalanobis distance between two classes.

FIGURE 7. The distribution of nine classes in feature space (3D)
leveraging PCA: (a) the feature extraction setting is ‘‘tzc’’; (b) the feature
extraction setting is ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’.

hand, the concerned movement. The blue dot set is open hand
which is the closest neighbor of the concerned movement.
The Mahalanobis distance between the two classes is 13.
Section 3 shows a table in order. And the movement which is
the most conflicting neighbor for any of the other movements
ranks at the head of the form. The overwhelming majority of
scatter plots of nine movements were smooth curves, suffi-
ciently demonstrating the effectiveness of proposed feature
selection method.

The distribution of nine classes in feature space (3D) by
leveraging PCA is shown in Fig. 7. This is done by selecting

the first three principal components from the PCA-reduced
feature matrix from a typical data record. Each type of marker
represented one movement. Selecting ‘‘tzc’’ feature as the
only feature fed to classifier, it came out that nine movements
were mixed together, which means the separability among
classes was low (see Fig. 7 (a)). It vividly illustrates the rela-
tively low offline CA employing the ‘‘tzc’’ feature individ-
ually, which is mentioned in the first part of this section
(see Fig. 4). In contrast, having applied the proposed method,
the optimal feature set of the highest accuracy was obtained,
that is ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’. Obvi-
ously, every movement tends to cluster and there is relatively
clear interval among nine movements, and also each kind of
marker stands for one movement (see Fig. 7 (b)).

The clusters for different classes slightly overlap in the
reduced feature space which cannot be used to refute high
classification performance (99.81 ± 0.04%). That is because

C. CLASSIFICATION
when the PCA transforms the original feature space into a
new feature spacewith the component in turn having the high-
est variance possible, it merely produces a well-described
coordinate system for most informative projection, without
consideration of class separation. In this case, the effect of
signal compression by the PCA projection leads to low class
separability of the PCA-reduced feature space.

Offline classification accuracy using different classifiers
was reported in Fig. 8. Similarly, the feature extraction set-
ting is ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’. It was
observed that the classification performance of MLP was
superior to SVM (96.79 ± 1.84% versus 95.7 ± 0.95%).
However, MLP shows a distinct disadvantage in terms of
training time (9.20 ±6.12 s versus 0.33 ±0.10 s). It illumi-
nates that despite the good approximation performance of the
neural network, it hasmany defects, such as slow convergence
speed and tend to stuck in local minima.

FIGURE 8. Offline classification accuracy and training/validation time
using different classifiers.

Nonetheless, the classification ability inmulti-classification
problems of LDA is limited, while it performed well in the
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classification of nine kinds of gestures in this study with
significant high CA (99.85 ± 0.03%) and short training time
(0.37 ± 0.01 s). As it emphasizes on the decision boundary,
LDA is universally more robust against irrelevant outliers in
the training data.

Figure 9 presents the offline and real-time CA of nine
movements. ‘‘tmabs’’, ‘‘tstd’’, ‘‘twl’’, ‘‘trms’’, and ‘‘tvar’’ are
the selected features, and meanwhile LDA was employed as
the classifier. The offline average CA of nine movements,
AG, CH, OH, PT, T&M, T&L, FH, EH, RE, is significantly
high (99.82 ± 0.43%). The real-time average CA of close
hand was relatively low (90.95 ± 1.64%), compared with
offline CA (99.43 ± 1.50%). The different ways of subject
holding its fist in recording section and real-time gesture
recognition section led to this result. And the real time aver-
age CA of nine movements (96.20 ± 0.47%) was superior to
a commercial gesture input device named MYO which can
recognize five gestures.

FIGURE 9. Offline and real time classification accuracy of nine
movements.

D. CONTROL
As EMG-driven system which enables active response to
user’s intention is more effective than the passive mode, a
five-finger dexterous robot hand used to assist stroke reha-
bilitation therapy was designed in this study. The real-time
gesture recognition result from ML algorithm was further
mapped as instruction to control the 3D printed five-finger
dexterous robot hand, which was illustrated in

Fig. 10. The response time of the system was around
190 ms and less than 300 ms, thus the user performed reha-
bilitation training without being aware of the time delay.

The whole signal flow is described as below: Firstly, the
eight channels raw sEMG signals of forearm detected by
the SWA were pre-processed by using high-pass filters on-
site the armband to largely remove motion artifact (usually
below 20Hz). And then the data were amplified and con-
verted to digital ones by adopting ADS1198, an analog front-
end. Secondly, the pre-processed sEMG data were wirelessly

FIGURE 10. Real time gesture recognition results to control a five-finger
dexterous robot.

forwarded to PC host via BLE, where the data were streamed
to BioPatRec for feature extraction and classification which
has been described in detail in section III. Thirdly, real time
finger motions recognition result was further used as instruc-
tion to control the five-finger robot manipulator.

V. DISCUSSION AND CONCLUSION
This study presented a facilitating motor recovery system.
It demonstrated a significantly average offline CA (99.82 ±
0.43%) and high real-time gesture recognition performance
(96.20 ± 0.64%) to control a five-finger dexterous robot
(Fig. 9). Compared to stroke rehabilitation systems based on
virtual reality, this proposed prototype can help the patients
to achieve more intuitive and authentic experience (Fig. 10).
Worn around the user’s forearm, the smart wearable armband
provides comfort and softness (Fig. 2), collecting sEMG at
any time on the skin surface according to the needs and the
actual situation. Three-order AR coefficient does not show its
evident advantage, as shown in Fig. 5. The CCEAs (Fig. 6)
and PCA (Fig. 7) evaluation results sufficiently demonstrate
the effectiveness of our feature selection method and inform
specific conflicting classes.
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One limitation of this work is that it only focused on
user-specific condition, where the training data and the veri-
fication data are from the same subject. However, the user-
independent manner is more essential. Since the classifier
does not need to be recalibrated when applied to a new
user in user-independent condition, it can be time-saving.
Related works were conducted by [45]–[48]. A representa-
tive work, [45], reported the classification accuracy in user-
independent condition was 7.4% lower than in user-specific
condition. Part of the reason is the strength performed by
different subjects varies, which attributes to individual differ-
ences and could affect the sEMG amplitudes, further influ-
ence the classification accuracy.

Additionally, although this design is capable of recogniz-
ing nine gestures in total by analyzing the collected mus-
cle signals from the user’s forearm, more hand gestures
are expected be discriminated in order to achieve a more
advanced post stroke active rehabilitation training system.
Experiments were conducted to analyze and recognize the
gestures other than the illustrated nine, and experimental
results showed that the recognition accuracy of other ges-
tures was relatively low (70%∼80%) compared to the above-
mentioned nine. This is due to the extracted features from
the measured eight channels muscle signals are insufficient
to cover all hand gestures. One approach to identify more
gestures with high recognition accuracy is to increase sEMG
channel number. However, this may lead to higher design
requirements and computational load [51], [52]. In addition,
the processing capability of BioPatRec is limited tomaximum
eight channels. Therefore, in order to accommodate more
channels, corresponding improvements of the algorithm itself
are needed for balancing observational latency and recogni-
tion accuracy.

Furthermore, the real-time data in this work were obtained
immediately after the off-line training. Actually, the experi-
ment with the armband taken off and then re-taken was also
performed. After re-taken, it was observed that the real-time
accuracy dropped 6%. This is because after the armband re-
taken, electrodes may slightly shift away from their previous
positions, leading to electrodes deployment mismatch, as
a result, the accuracy dropped after re-taken. An effective
approach ensuring proper electrode deployment is to design
and fabricate an elbow length glove where the developed
smart armband is integrated inner side around the forearm
position. The proposed glove scheme would somehow help
avoid the armband rotation against the user’s arm. When the
user puts on the elbow length glove, the electrodes will be
attached on the forearm. As the electrodes are firmly embed-
ded in the glove, the positions of electrodes to the forearm
will remain unchanged in different trials with the glove taken
off and then re-taken. This mechanismwould to a large extent
address the issue of electrodes deployment mismatch.

In this work, an IoT-based stroke rehabilitation system has
been implemented, consisting of a smart wearable armband,
machine learning algorithms, and a 3D printed robot hand.
The smart wearable armband is unobtrusive, comfortable, and

easy-to-use, which can be easily applied on user’s forearm
without the need of professional knowledge or the help from
clinicians which largely save the time for the clinical profes-
sionals. The utility of CCEAs and PCA was demonstrated
with the high classification accuracy yielded by the feature
sets selected. A 3D printed five-finger robot hand driven by
ML algorithm was developed for stroke recovery. The real-
time assistance from the robot hand can give the users the
feedback of muscle activities and help them strengthen their
motion patterns, which demonstrates the feasibility of robot-
assisted active training after stroke.
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