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Abstract

How evolutionary changes at enhancers affect the transcription of target genes remains an 

important open question. Previous comparative studies of gene expression have largely measured 

the abundance of mRNA, which is affected by post-transcriptional regulatory processes, hence 

limiting inferences about the mechanisms underlying expression differences. Here we directly 

measured nascent transcription in primate species, allowing us to separate transcription from post-

transcriptional regulation. We used PRO-seq to map RNA polymerases in resting and activated 
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CD4+ T-cells in multiple human, chimpanzee, and rhesus macaque individuals, with rodents as 

outgroups. We observed general conservation in coding and non-coding transcription, punctuated 

by numerous differences between species, particularly at distal enhancers and non-coding RNAs. 

Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily 

stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide 

substitutions are associated with lineage-specific transcription, and at one locus, SGPP2, we 

predict and experimentally validate that multiple substitutions contribute to human-specific 

transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation 

across ensembles of enhancers that jointly regulate target genes.

Introduction

Following decades of speculation that changes in the regulation of genes could be a potent 

force in the evolution of form and function1–3, investigators have now empirically 

demonstrated the evolutionary importance of gene regulation across the tree of life4–8. 

Evolutionary changes in gene expression are primarily driven by mutations in non-coding 

DNA sequences, particularly those that bind transcription factors9. Accordingly, adaptive 

nucleotide substitutions at transcription factor binding sites (TFBSs)4–8,10–12 and gains and 

losses of TFBSs13–21 both appear to make major contributions to the evolution of gene 

expression. These events are believed to modify rate-limiting steps during transcriptional 

activation22. In addition, transcriptional activity is correlated with various epigenomic and 

structural features, including post-translational modifications to core histones, the locations 

of architectural proteins such as CTCF, and the organization of topological associated 

domains. Like TFBSs, these features display general conservation across species, yet do 

exhibit some variation, which correlates with differences in gene expression12,20,23–25.

Nevertheless, many open questions remain about the roles of TFBSs, chromatin 

organization, and posttranscriptional regulation in the evolution of gene expression. Notably, 

the correlation between differences in TF binding and differences in mRNA abundance is 

surprisingly low26–28. Possible reasons for this discordance include non-functional TF 

binding26,27,29, compensatory gains and losses of TFBSs16,30–33, difficulties associating 

distal enhancers with target genes34, and a dependency of TF function on chromatin or 

chromosomal organization35. In addition, some changes in mRNA expression appear to be 

“buffered” at the post-transcriptional level36–38. One reason why it has been difficult to 

disentangle these contributions to gene expression is that expression is typically measured in 

terms of the abundance of mRNA, which is subject to posttranscriptional processing39 and 

therefore is an indirect measure of the transcription of genes by RNA polymerase II.

Here we use Precision Run-On and sequencing (PRO-seq)40 to directly measure 

transcription and map the location of active regulatory elements, including distal 

enhancers41, in CD4+ T-cells. We found that the rates at which regulatory elements are 

gained and lost over evolutionary time correlates with the distance to the nearest 

transcription start site and the number of chromatin interactions detected in chromatin 

conformation capture data. Surprisingly, transcription levels in genes are more stable over 

evolutionary time when the gene is regulated by larger numbers of distal enhancers, yet in 
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this case each enhancer exhibits more freedom to diverge. These findings suggest a critical 

role for redundancy and compensation in the evolution of ensembles of enhancers that 

jointly determine expression at target genes.

Results

Patterns of Transcription in Resting and Activated CD4+ T-cells

We developed nucleotide-resolution maps of RNA polymerase in CD4+ T-cells isolated 

from five mammalian species. Samples were collected under resting and activated conditions 

from three unrelated individuals representing each of three primate species—humans, 

chimpanzees, and rhesus macaques—spanning ~25–30 million years of evolution (MYR) 

(Fig. 1a). To compare with studies that focus on longer evolutionary branch lengths, we also 

collected resting samples from a single individual in each of two rodent species—mouse and 

rat—which together serve as an outgroup to the primates (~80 MYR divergence). We used 

flow cytometry to validate the purity of isolated CD4+ cells (Supplementary Fig. 1). In 

addition, we used measurements of transcriptional activity of T-cell subset markers for T-

helper type 1 (Th1), Th2, Th17, T-regulatory, and T-follicular helper cells to demonstrate 

that the population of CD4+ T-cell subsets within the total CD4+ population was largely 

similar across species (Supplementary Fig. 2). PRO-seq40,42 libraries were sequenced to a 

combined depth of ~1 billion uniquely mapped reads (~78–274 million per species) 

(Supplementary Table 1). Hierarchical clustering and principal component analysis of these 

data grouped the primate samples first by cell type or treatment condition and subsequently 

by species (Fig 1b; Supplementary Fig. 3).

To gain further insight into the evolution of the response to CD4+ T-cell stimulation, we 

compared transcriptional activity under resting and activated conditions within and between 

species. In humans, we found that PMA and ionomycin (π) significantly altered the 

transcription levels of 6,940 (13%) GENCODE-annotated transcription units (TUs) (p < 

0.01, DESeq243; Fig. 1c). Parallel analyses in chimpanzee and rhesus macaque revealed 

many similarities in transcriptional changes following π treatment (Supplementary Fig. 4). 

We identified a core set of 3,157 TUs that undergo evolutionarily conserved transcriptional 

changes in all three species following 30 min. of π-treatment, including many of the 

classical response genes (e.g., IFNG, TNFα, IL2, and IL2RA), as well as numerous novel 

genes and lincRNAs. Active transcriptional regulatory elements (TREs) undergoing changes 

following π-treatment were enriched for a similar set of transcription factor binding motifs 

across species, including those for NF-kB and the AP-1 heterodimers FOS and JUN, which 

are known to be activated by canonical T-cell receptor signaling (Fig. 1d). Thus, the core 

regulatory principles responsible for T-cell signaling and activation appear to remain broadly 

conserved across primate evolution.

Rapid Evolutionary Changes in Transcribed Enhancers

We used dREG to identify 30,357 active TREs in human CD4+ T-cells, based on patterns of 

enhancer-templated RNA (eRNA) or upstream antisense (uaRNA) transcription evident from 

PRO-seq data. We classified these predicted TREs as either protein-coding promoters or 

candidate enhancers based on their proximity to gene annotations. The predicted TREs in 
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each group were highly concordant with other marks of regulatory function in human CD4+ 

T-cells used previously to define groups of candidate enhancers, including acetylation of 

histone 3 lysine 27 (H3K27ac), mono- and trimethylation of histone 3 lysine 4 (H3K4me1 

and H3K4me3), and DNase-I-seq signal (Fig. 1e; Supplementary Note 1).

Extending our dREG analysis to untreated CD4+ T-cells from additional species revealed 

71,748 TREs that were active in untreated T-cells in at least one species (ranging between 

27,581 and 39,387 TREs in each species). We defined two types of changes between 

species: (1) changes in the abundance of Pol II at TREs that were present across all species, 

and (2) complete gains or losses in at least one species (see Supplementary Note 2; 

Supplementary Fig. 5). We found that 52% of distal TREs (henceforth referred to simply as 

“enhancers”) showed evidence of transcriptional changes in at least one of the three primate 

species and 81% showed changes at the longer evolutionary distance between primates and 

rodents (Fig. 2a), similar to recent observations in other systems20,44.

Next we tested whether evolutionary changes in transcriptional activity correlate with the 

enrichment of other marks of active enhancers. Predicted lineage-specific human enhancers 

were enriched for both active and repressive enhancer marks (Fig. 2b; Supplementary Fig. 

6). Whereas apparent human gains were enriched for high levels of the active enhancer 

marker H3K27ac, sites with reduced transcriptional activity in humans showed much lower 

enrichments of H3K27ac. Furthermore, locations at which the dREG signal was completely 

lost in a human-specific fashion displayed levels of H3K27ac approaching those of 

randomly selected background sites (Fig. 2b). Intriguingly, many of the losses on the human 

branch retained H3K4me1, which marks both active and inactive enhancers45, and these 

losses displayed higher levels of chromatin marks associated with transcriptional repression 

than a random background (Fig. 2b), indicating that active ancestral primate enhancers often 

retain a ‘poised’ chromatin state in human, despite losing both transcriptional activity and 

H3K27ac.

Transcriptional Changes Correlate with DNA Sequence Differences

To investigate whether changes in TRE activity are accompanied by changes in DNA 

sequence, we compared phyloP sequence conservation scores at transcriptionally conserved 

TREs with phyloP scores at TREs that display evolutionary changes in transcription. We 

restricted our sequence conservation analyses to TFBSs and selected a TFBS match 

threshold at which 60% of binding sites were expected to be bona fide TFBSs, as measured 

by ChIP-seq (positive predictive value [PPV] = 0.60; Supplementary Fig. 7). TFBSs found 

in transcriptionally conserved dREG sites showed a marked enrichment for higher phyloP 

scores relative to surrounding regions, indicating local sequence conservation (Fig. 3a). By 

contrast, TFBSs in lineage-specific dREG sites had substantially reduced enrichments in 

phyloP scores (Fig. 3a, cyan/blue). Notably, TFBSs in dREG sites lost on the human lineage 

showed enhanced conservation compared with those in human-specific gains. This 

observation is consistent with losses evolving under conservation in other mammalian 

species (which contribute to the phyloP scores) and gains emerging relatively recently. Each 

of these patterns was robust to corrections for potentially confounding differences in the 

distribution of sites, as well to choices of motif score thresholds (Supplementary Fig. 8a). 
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Relaxing the motif score threshold to provide sensitivity for larger numbers of TFBSs at the 

expense of specificity, revealed patterns of conservation that correlate with the information 

content of positions within the DNA sequence motif (Supplementary Fig. 8b), further 

supporting TF binding as the functional property driving sequence conservation at these 

sites.

We searched for examples of DNA sequence differences that might be responsible for 

transcriptional changes following π treatment, hypothesizing that causal alleles might be 

characterized more easily than in the untreated condition (Fig. 1d). In one example, we 

found nucleotide substitutions in three apparent NF-kB binding sites in the proximal 

promoter and an internal enhancer of SGPP2 that correlate with differences in SGPP2 
expression (Fig. 3b; Supplementary Fig. 9). Two of these TFBSs were bound by NF-kB in 

human cell lines according to ChIP-seq data from ENCODE. Moreover, substitutions were 

either located in core positions of the DNA sequence motif (Fig. 3b) or were found to 

disrupt the same position in the motif as NF-kB binding QTLs (Supplementary Fig. 9). All 

DNA sequence changes observed showed a trend toward higher predicted NF-kB binding 

affinity in human than non-human primates. To test the hypothesis that observed DNA 

sequence changes produced differential transcriptional activity, we cloned DNA from each 

primate species into a reporter vector driving luciferase activity in an MCF-7 cell model, 

which recapitulates the primary transcriptional features of the SGPP2 locus (Supplementary 

Fig. 9). Differences in basal luciferase activity were generally concordant with those 

observed between species (Supplementary Fig. 10). Moreover, both the proximal promoter 

of SGPP2 and the internal enhancer both activated luciferase expression more strongly 

following NF-kB activation with cloning of human DNA, but not with orthologous DNA 

from the other primates (Fig. 3c).

To determine whether these TREs affect the expression of SGPP2 in its native genomic 

context, we silenced each TRE by using CRISPRi, which targets a catalytically dead CAS9 

fused to the Krüppel-associated box repressor (dCAS9-KRAB), to specifically tri-methylate 

lysine 9 of histone 3 (H3K9me3). Three independent single-guide RNAs (sgRNAs) targeting 

the internal enhancer and two designed for the proximal promoter reduced SGPP2 
transcription to 50–60% of its resting level (p = 1.5e-3 and 2.6e-2, two-tailed t-test; Fig. 3d), 
consistent with these TREs directly contributing to SGPP2 expression in MCF-7 cells. Three 

sgRNAs targeting the upstream enhancer also had a significant effect on SGPP2 expression 

(p = 1.8e-4, two-tailed t-test). Notably, the genome assemblies for chimpanzee and rhesus 

macaque harbor deletions that affect multiple TFBSs in this upstream TRE (Supplementary 

Fig. 9). However, although silencing individual enhancers reduced the transcription level of 

SGPP2 following NF-kB activation, it was insufficient to completely abolish induction of 

SGPP2. Taken together, our findings show that at least two of the three TREs regulating 

SGPP2 drove expression patterns matching PRO-seq data in a reporter assay, but none 

completely explained SGPP2 activation in situ. These observations suggest that that multiple 

causal substitutions in NF-kB binding sites may work in concert to achieve human-specific 

activation of SGPP2.
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Human-Specific TREs Appear to be Evolving Under Positive Selection

In many cases, as with SGPP2 (Fig. 3b), we observed numerous nucleotide substitutions 

within individual or clustered TFBSs. These clusters of substitutions are highly unlikely to 

occur by chance and suggest that positive selection may have driven adaptation of these 

binding sites. To more directly measure the impact of positive selection, we used 

INSIGHT46 to compare patterns of within-species polymorphism and between-species 

sequence divergence in TREs that had undergone human lineage-specific transcriptional 

changes. This analysis indicated that although dREG sites overall are most strongly 

influenced by weak negative selection (Fig. 3e), TREs with lineage-specific transcriptional 

changes in human are strikingly enriched for adaptive nucleotide substitutions (p < 0.01 

INSIGHT likelihood ratio test; Fig. 3e). We estimate a total of at least 121 adaptive 

substitutions since the human/chimpanzee divergence within TFBSs that undergo 

transcriptional changes in human CD4+ T-cells. Despite limited power to detect the specific 

contributions of many individual TFs at our stringent motif match score threshold, we did 

note significant excesses of putatively adaptive substitutions in the predicted binding sites of 

several TFs, including motifs recognized by forkhead box family, POU-domain containing, 

and ELF/ETS family (Supplementary Fig. 11; p < 0.01, INSIGHT likelihood ratio test).

Rates of Enhancer Evolution Vary with Evidence for Gene Interactions

Despite an overall positive correlation between transcription at distal TREs and genes (Fig. 

4, Supplementary Fig. 12, discussed in Supplementary Note 3), transcription at enhancers 

evolves rapidly and is frequently unaccompanied by transcriptional changes at nearby 

protein-coding genes. For example, CCR7 transcription is highly conserved among both 

primate and rodent species in spite of several apparent changes in enhancer activity within 

the same locus (Fig. 5a). One possible explanation for this disparity is that many predicted 

distal enhancers may actually have at most weak effects on the transcription of a target gene, 

and therefore be under reduced evolutionary constraint. If this hypothesis is true, it should be 

possible to identify subsets of predicted distal enhancers that have stronger effects on 

transcription than others, and therefore are more conserved over evolutionary time.

We searched for genomic features correlated with conservation of transcription at enhancers, 

focusing on untreated CD4+ T-cells in order to leverage the large amount of public data 

available for this cell type. Not surprisingly, one of the features most strongly correlated 

with transcriptional conservation at enhancers is the distance from the nearest transcription 

start site of a protein-coding gene (Fig. 5b). More than half of enhancers located within 10 

kbp of an annotated TSS are shared across all three primate species, whereas for distal 

enhancers located between 100 kbp to 1 Mbp from a TSS that fraction drops to roughly a 

third. This relationship is driven by lineage-specific gains or losses of enhancer activity, and 

to a lesser extent by changes in TRE activity levels, rather than by differences in the 

alignability of orthologous DNA (Supplementary Fig. 13).

These simple distance-based observations, however, ignore the critical issue of chromatin 

interactions between enhancers and promoters. To account for such loop interactions, we 

extracted 6,520 putative TRE interactions from Chromatin Interaction Analysis with Paired 

End Tag sequencing (ChIA-PET) data recognizing loops marked with H3K4me2 in human 
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CD4+ T-cells. We found that 55% of enhancers that participate in these loops were 

conserved between primate species compared to only 47% of non-looped enhancers (Fig. 5c; 

p = 5.6e-4, Fisher’s exact test). Moreover, higher transcriptional conservation at looped 

enhancers does not depend on the distance to the transcription start site. Parallel analysis of 

promoter-capture Hi-C data revealed that the strength of chromatin interaction was 

correlated with evolutionary conservation of distal TREs, corroborating the result obtained 

using ChIA-PET (p < 1e-3, bootstrap test). We observed similar levels of conservation at 

recently defined super-enhancers, although this conservation may simply reflect an 

enrichment for loop interactions (48% of TREs in super-enhancers loop according to ChIA-

PET, compared to 15% of all TREs). Looped enhancers were also enriched for elevated 

phyloP scores relative to either non-looped enhancers or randomly selected DNA sequences 

(Supplementary Fig. 14; phyloP > 0.75; p < 2.2e-16, Wilcoxon Rank Sum Test).

Enhancer-Promoter Interactions Contribute to Constraint on Gene Transcription Levels

Another possible explanation for the differences in the rates of enhancer and promoter 

evolution is that stabilizing selection on transcription levels drives enhancers to compensate 

for one another as they undergo evolutionary flux. Examination of specific loci revealed 

several interesting examples where widely different strategies appeared to drive consistent 

levels of transcription in distinct combinations of species. In one example, SGPL1 is 

transcribed at similar levels in chimpanzee and rhesus macaque, but both species activate 

transcription of SGPL1 in a distinct manner (Supplementary Fig. 15). We more commonly 

observed species-specific changes in enhancer activities at densely populated loci, as in the 

case of CCR7 (Fig. 5a).

We therefore hypothesized that redundancy in the set of enhancers associated with a target 

gene might enable compensation during enhancer evolution. Indeed, we found that 

evolutionary conservation of promoter TRE transcription is remarkably strongly correlated 

with the number of loop interactions a promoter has with distal sites (Fig. 6a, weighted 

Pearson’s correlation = 0.87; p < 1e-3 by a bootstrap test). A similar trend was observed 

between the number of loop interactions made by a target promoter and DNA sequence 

conservation in putative TFBSs at the promoter, although the effect was weaker and did not 

meet our criteria for statistical significance (Fig. 6b, weighted Pearson’s correlation = 0.65; 

p = 0.07 bootstrap test).

But how does redundancy in enhancers relate to the evolutionary conservation of the 

enhancers themselves? If redundant enhancers compensate for one another, perhaps each 

one will be less, rather than more, conserved when the associated promoters have larger 

numbers of loop interactions. To address this question, we examined the rate of conservation 

of looped enhancers as a function of the number of loops in which their gene-proximal 

partners participated. We found that DNA sequence conservation in putative TFBSs 

negatively correlates with the number of loops at the proximal end (Fig. 6d; weighted 

Pearson’s correlation = −0.80; p = 2e-3 bootstrap test). We noted a similar trend toward a 

negative correlation between the conservation of distal TRE transcription and the number of 

loop interactions (weighted Pearson’s correlation = −0.67; p = 0.059, bootstrap test, Fig. 6c). 

These results suggest that each associated distal TFBS is individually less essential at genes 
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having larger numbers of loop interactions with distal sites, and they are therefore consistent 

with a model in which such TFBSs are more freely gained and lost during evolution. Taken 

together, our results imply that distance, looping, and redundancy of enhancers all contribute 

to constraints on the evolutionary rates of changes in gene transcription.

Discussion

Observations made recently across a number of biological systems13–21 have demonstrated 

that changes in distal TREs arise surprisingly rapidly during the course of evolution, at much 

faster rates than evolutionary changes in protein-coding genes. However, the available data 

have not allowed these discordances in evolutionary rate to be explained. Do these 

disparities reflect compensation at the level of RNA stability, as has been observed at the 

translational level36, compensatory changes in transcriptional regulation, or are other factors 

involved? By making use of direct measurements of primary transcription and excluding the 

confounding effects of mRNA stability, our work strongly suggests that the effects of 

evolutionary changes in enhancers are buffered at the transcriptional level, most likely by 

compensatory changes at other enhancers.

Several lines of evidence in our study suggest that many apparent distal enhancers do not 

have a strong effect on gene expression, possibly explaining the rapid changes in TREs that 

are less likely to interact with protein-coding genes. In particular, we found that enhancer 

conservation is stratified by distance, in both one-dimensional genomic coordinates (Fig. 5b) 

and based on interactions in chromosome conformation capture data (Fig. 5c), relative to 

genes. It is unlikely that these results can be explained by false positive or false negative 

TRE calls, as they are also supported by a more conservative approach based on raw PRO-

seq read counts (Supplementary Table 2). The higher levels of conservation observed for 

TREs that are found near genes suggest that these TREs have a disproportionately large 

effect on organism fitness, and therefore are likely to more directly regulate the transcription 

of critical protein-coding genes.

An alternative (but not mutually exclusive) explanation for differences in the rates of 

evolution between enhancers and promoters is that enhancers frequently compensate for one 

another as they undergo evolutionary flux, whereas promoters are less labile. Our 

observations suggest that such compensatory evolution within ensembles of enhancers is a 

surprisingly widespread feature of mammalian genomes. We find that such compensation 

frequently arises at the locus-level by changes in enhancers spread over genomic distances 

spanning tens to hundreds of kilobases and communicating through TRE-TRE loop 

interactions. This finding is supported by the strong correlation between the probability of 

conservation in the transcription of gene promoters (Fig. 6a) or their DNA sequences (Fig. 

6b) and the number of loop interactions with distal sites. These observations are also 

compatible with those made very recently in liver tissue47. In addition, we find a strong 

correlation in the opposite direction at the distal end of loops, where promoters that form 

more loop interactions have enhancers that are less, rather than more, conserved at the level 

of both transcription (Fig. 6c) and DNA sequence (Fig. 6d). While this inverse correlation is 

at first counterintuitive, on further reflection it also supports the hypothesis of widespread 

enhancer compensatory turnover, because it suggests lower conservation for those TFBSs 
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that are part of large ensembles of regulatory elements than for those that act individually or 

in small numbers. This finding of widespread redundancy in the regulatory architecture of 

primate genes potentially has broad implications for our understanding of the general mode 

and tempo of regulatory evolution.

Online Methods

Multiple species PRO-seq library generation

Isolation of primate CD4+ T-cells—All human and animal experiments were done in 

compliance with Cornell University IRB and IACUC guidelines. We obtained peripheral 

blood samples (60–80 mL) from healthy adult male humans, chimpanzees, and rhesus 

macaques. Informed consent was obtained from all human subjects. To account for within-

species variation in gene transcription we used three individuals to represent each primate 

species. Blood was collected into purple top EDTA tubes. Human samples were maintained 

overnight at 4C to mimic shipping non-human primate blood samples. Blood was mixed 

50:50 with phosphate buffered saline (PBS). Peripheral blood mononuclear cells (PBMCs) 

were isolated by centrifugation (750× g) of 35 mL of blood:PBS over 15 mL Ficoll-Paque 

for 30 minutes at 20C. Cells were washed three times in ice cold PBS. CD4+ T-cells were 

isolated using CD4 microbeads (Miltenyi Biotech, 130-045-101 [human and chimp], 

130-091-102 [rhesus macaque]). Up to 108 PBMCs were resuspended in binding buffer 

(PBS with 0.5% BSA and 2mM EDTA). Cells were bound to CD4 microbeads (20uL of 

microbeads/107 cells) for 15 minutes at 4C in the dark. Cells were washed with 1–2 mL of 

PBS/BSA solution, resuspended in 500uL of binding buffer, and passed over a MACS LS 

column (Miltenyi Biotech, 130-042-401) on a neodymium magnet. The MACS LS column 

was washed three times with 2mL PBS/BSA solution, before being eluted off the 

neodymium magnet. Cells were counted in a hemocytometer.

Isolation of CD4+ T-cells from mouse and rat—Spleen samples were collected from 

one male mouse (FVB) and one male rat (Albino Oxford) that had been sacrificed for 

IACUC-approved research not related to the present study. Dissected spleen was mashed 

through a cell strainer using a sterile glass pestle and suspended in 20 mL RPMI-1640. Cells 

were pelleted at 800xg for 3 minutes and resuspended in 1–5mL of ACK lysis buffer for 10 

minutes at room temperature to lyse red blood cells. RPMI-1640 was added to a final 

volume 10 times that used for ACK lysis (10–40 mL). Cells were pelleted at 800xg for 3 

minutes, counted in a hemocytometer, and resuspended in RPMI-1640 to a final 

concentration of 250,000 cells per ml. CD4+ T-cells were isolated from splenocytes using 

products specific for mouse and rat (Miltenyi Biotech, 130-104-453 [mouse], 130-090-319 

[rat]) following instructions from Miltenyi Biotech, and as described above.

T-cell treatment and PRO-seq library generation—CD4+ T-cells were allowed to 

equilibrate in RPMI-1640 supplemented with 10% FBS for 2–4 hours before starting 

experiments. Primate CD4+ T-cells were stimulated with 25ng/mL PMA and 1mM 

Ionomycin (P/I or π) or vehicle control (2.5uL EtOH and 1.66uL DMSO in 10mL of culture 

media). We selected the minimum concentrations which saturate the production of IL2 and 

IFNG mRNA after 3 hours of treatment. A 30 min. treatment duration was selected after 
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observing a sharp increase in ChIP-qPCR signal for RNA Pol II phosphorylated at serine 5 

on the C-terminal domain on the IFNG promoter at 30 min. To isolate nuclei, we 

resuspended cells in 1 mL lysis buffer (10 mM Tris-Cl, pH 8, 300 mM sucrose, 10 mM 

NaCl, 2 mM MgAc2, 3 mM CaCl2 and 0.1% NP-40). Nuclei were washed in 10 mL of wash 

buffer (10 mM Tris-Cl, pH 8, 300 mM sucrose, 10 mM NaCl and 2 mM MgAc2) to dilute 

free NTPs. Nuclei were washed in 1 mL, and subsequently resuspended in 50 μL, of storage 

buffer (50 mL Tris-Cl, pH 8.3, 40% glycerol, 5 mM MgCl2 and 0.1 mM EDTA), snap 

frozen in liquid nitrogen and kept for up to 6 months before making PRO-seq libraries. PRO-

seq libraries were created exactly as described previously40. In most cases, we completed 

library preps with one member of each species (usually one human, chimpanzee, and rhesus 

macaque) to prevent batch effects from confounding differences between species. Samples 

were sequenced on an Illumina Hi-Seq 2000 or NextSeq500 at the Cornell University 

Biotechnology Resource Center.

Mapping PRO-seq reads—We mapped PRO-seq reads using standard informatics tools. 

Our PRO-seq mapping pipeline begins by removing reads that fail Illumina quality filters 

and trimming adapters using cutadapt with a 10% error rate48. Reads were mapped with 

BWA49 to the appropriate reference genome (either hg19, panTro4, rheMac3, mm10, or rn6) 

and a single copy of the Pol I ribosomal RNA transcription unit (GenBank ID# U13369.1). 

Mapped reads were converted to bigWig format for analysis using BedTools50 and the 

bedGraphToBigWig program in the Kent Source software package51. The location of the 

RNA polymerase active site was represented by the single base, the 3′ end of the nascent 

RNA, which is the position on the 5′ end of each sequenced read. After mapping reads to 

the reference genome, three samples (one human, U and PI, one chimpanzee, U and PI, and 

one rhesus macaque, U and PI) were identified as having poor data quality on the basis of 

the number of uniquely mapped reads, and were excluded from downstream analysis.

Mapping 1:1 orthologs between different species

During all comparative analyses, the genomic coordinates of mapped reads, dREG scores, 

and other parameters of interest were converted to the human assembly (hg19) using 

CrossMap52. We converted genomic coordinates between genome assemblies using 

reciprocal-best (rbest) nets53. Reciprocal-best nets have the advantage that comparisons 

between species are constrained to 1:1 orthologues. This constraint on mapping is enforced 

by requiring each position to map uniquely in a reciprocal alignment between the human 

reference and the other species in the comparison. We downloaded rbest nets for hg19-

mm10, hg19-panTro4, hg19-rn6 from the UCSC Genome Browser. We created rbest nets for 

hg19-rheMac3 using the doRecipBets.pl script provided as part of the Kent Source software 

package.

Analysis of transcriptional regulatory elements

Defining a consensus set of transcriptional regulatory elements—We predicted 

TREs using dREG41 separately in each species’ reference genome. dREG uses a support 

vector regression model to score each site covered in a PRO-seq dataset based on its 

resemblance to features associated with transcription start sites in a reference training 

dataset. The dREG model was trained to recognize DNase-I-hypersensitive sites that also 
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show substantial evidence of GRO-cap data in six PRO-seq or GRO-seq datasets measuring 

transcription in resting K562 cells. dREG scores were computed in the reference genome of 

each species in order to provide as much information as possible on the native context of 

each locus. In all cases, we combined the reads from all individuals for each species in order 

to maximize power for the discovery of TREs. In the primate species, treated and untreated 

CD4+ T-cells were analyzed separately.

We then defined a consensus set of TRE annotations, each of which bore the signature of an 

active TRE in at least one species and treatment condition. To define such a set, dREG 

scores were first converted to human reference genome (hg19) coordinates using CrossMap 

and the reciprocal-best nets. The advantage of converting dREG scores between the 

reference genome is that individual bases transfer more completely than genomic intervals 

using CrossMap and related tools. We then identified TREs in each species separately by 

thresholding the dREG scores. In all analyses, we selected a threshold of 0.3, which 

corresponds to a predicted false discovery rate of <7% compared with other sources of 

genomic data in human CD4+ T-cells. In addition, parallel analyses at separate thresholds 

(0.25 and 0.35) provided results that were in all cases consistent with those reported in the 

main manuscript (Supplementary Table 2). The set of overlapping TREs from each species 

were reduced to a single element containing the union of all positions covered by the set 

using bedops, and sites within 500 bp of each other were further merged. We assigned each 

putative TRE the maximum dREG score for each species and for each treatment condition.

Identifying differences in TREs between species—Differences in TRE transcription 

in 3-way (human-chimp-rhesus macaque) or 5-way (human-chimp-rhesus macaque-mouse-

rat) species comparisons were identified using a combination of heuristics and statistical 

tests. Starting with the consensus set of TREs in hg19 coordinates, we first excluded 

potential one-to-many orthologs, by eliminating TREs that overlapped gaps in the 

reciprocal-best nets that were not classified as gaps in the standard nets. The remaining 

TREs were classified as unmappable when no orthologous position was defined in the rbest 

nets. Complete gains and losses were defined as TREs that were mappable in all species and 

for which the dREG score was less than 0.05 in at least one species and greater than 0.30 in 

at least one other species (see Supplementary Note 1). Gains and losses were assigned to a 

lineage based on an assumption of maximum parsimony under the known species 

phylogeny. We defined a set of TREs that displayed high-confidence changes in activity by 

comparing differences in PRO-seq read counts between species using deSeq2 and 

thresholding at a 1% false discovery rate (as described below). Changes in TRE activities 

were compared to histone modification ChIP-seq, DNase-I-seq, and DNA methyl 

immunoprecipitation data from the Epigenome Roadmap project54.

TRE classification—For some analyses, TREs were classified as likely promoters or 

enhancers on the basis of their distance from known protein-coding gene annotations 

(GENCODE v.19). TRE classes of primary interest include (see also Supplementary Fig. 7): 

(1) Promoters: near an annotated transcription start site (<100 bp); (2) Enhancers: distal to 

an annotated transcription start site (>5,000 bp)
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Covariates that correlate with TRE changes—We compared the frequency at which 

evolutionary changes in transcription occur at TREs in a variety of different genomic 

contexts. We examined the rate of change as a function of distance from the nearest 

annotated transcription start site in GenCode v.19. TREs were binned by distance in 

increments of 0.02 on a log10 scale and we evaluated the mean rate at which evolutionary 

changes in TRE transcription arise in each bin. We also compared the rate of changes in 

TRE transcription across a variety of functional associations, including loop interactions, 

within the same topological associated domain, and in super-enhancers. H3K4me2 ChIA-

PET data describing loop interactions were downloaded from the Gene Expression Omnibus 

(GEO) database (GSE32677) (ref.55) and the genomic locations of loops were converted 

from hg18 to hg19 coordinates using the liftOver tool. We also analyzed a separate dataset 

profiling loop interactions based on promoter capture Hi-C data in human CD4+ T-cells 

taken from the supplementary materials of ref.56. Topological associated domains (TADs) 

based on Hi-C data for GM12878 cells were also downloaded from GEO (GSE63525) (ref.
57). Super-enhancers in CD4+ T-cells were taken from the supplementary data for ref.58. In 

all cases we excluded sites with potential one-to-many orthology in any of the species 

included in the comparison (typically just the three primates). Potential one-to-many 

orthologs were defined based on differences in the standard and reciprocal-best nets for each 

species pair.

Refining the location of active TREs using dREG-HD—During analyses of 

transcription factor binding motifs we further refined the location of TREs to the region 

between divergent paused RNA polymerase using a strategy that we call dREG-HD 

(manuscript in preparation, preliminary version available at https://github.com/Danko-Lab/

dREG.HD). Briefly, we used an epsilon-support vector regression (SVR) with a Gaussian 

kernel to map the distribution of PRO-seq reads to smoothed DNase-I signal intensities. 

Training was conducted on randomly chosen positions within dREG peaks extended by 

200bp on either side. Selection of feature vectors was optimized based on Pearson 

correlation coefficients between the imputed and experimental DNase-I score over the 

validation set. PRO-seq data was normalized by sequencing depth and further scaled such 

that the maximum value of any prediction dataset is within 90 percentile of the training 

examples. We chose a step size to be 60bp and extending 30 steps on each direction. The 

final model was trained using matched DNase-I and PRO-seq data in K562 cells.

Next we identified peaks in the imputed DNase-I hypersensitivity profile by fitting the 

imputed DNase-I signal using a cubic spline and identifying local maxima. We optimized 

two free parameters that control the (1) smoothness of spline curve fitting, and (2) threshold 

on the imputed DNase-I signal intensity. Parameters were optimized to achieve an 

appropriate trade-off between FDR and sensitivity on the testing K562 dataset. Parameters 

were tuned using a grid optimization over free parameters.

DNA sequence analysis

Finding candidate transcription factor binding motifs—All motif analyses focused 

on 1,964 human TF binding motifs from the CisBP database59 clustered using an affinity 

propagation algorithm into 567 maximally distinct DNA binding specificities (see ref60). 
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Scores, which reflect a loge-odds ratio comparing each candidate motif model to a third-

order Markov background model, were calculated using the RTFBSDB package60.

We selected two separate motif thresholds for different analyses. Scores >10 were used in 

analyses which mix multiple TF binding motifs, and strike a tradeoff that focuses on 

minimizing false positives at the expense of sensitivity. We dropped the cutoff score to 

motifs >8 in analyses that use individual motifs in order to increase statistical power. For 

each of these thresholds, we estimated the mean genome-wide positive predictive values to 

be 0.60 and 0.38, respectively, for motif cutoffs of 10 and 8, by comparing motifs to ChIP-

seq peak calls in K562 cells. This represents a 2-fold improvement in performance over 

publicly available tools, even those using high-resolution DNase-I-seq data61 

(Supplementary Fig. 8). Thus, our use of high-resolution PRO-seq data and our improved 

computational toolkit achieves a highly respectable level of specificity on the difficult 

problem of TFBS prediction.

During comparative analyses we scanned each primate reference genome separately with 

each motif to allow the detection of a putative binding site in any of the species included in 

the analysis, and then moved scores to a human (hg19) reference genome using the 

CrossMap tool. We chose this strategy because changes in TRE activity may reflect changes 

in binding in any of the primate species. For example, human gains may be explained by 

either a new binding site for a transcriptional activator in the human genome, or a loss in 

binding of a transcriptional repressor that was bound in both primate species.

Motif enrichment in TREs that change during CD4+ T-cell activation—Motifs 

enriched in up- or down-regulated dREG-HD TREs during CD4+ T-cell activation (p < 0.01) 

were selected using Fisher’s exact test with a Bonferroni correction for multiple hypothesis 

testing. Up- or down-regulated TREs were compared to a background set of >2,500 GC-

content matched TREs that do not change transcription levels following π treatment (log-2 

fold change <0.5-fold in magnitude and p > 0.25) using the enrichmentTest function in 

RTFBSDB60. To test for motif robustness, the background resampling was repeated 100 

times and motifs were selected that achieve a significant result in >90%.

DNA sequence conservation analysis—For our evolutionary conservation analysis, 
we used phyloP scores62 based on the 100-way genome alignments available in the UCSC 

Genome Browser (hg19). In all cases, bigWig files were obtained from the UCSC Genome 

Browser and processed using the bigWig package in R. We represented evolutionary 

conservation as the mean phyloP score in each identified TFBS in the indicated set of 

dREG-HD sites.

Enrichment of DNA sequence changes in motifs—We identified single-nucleotide 

DNA sequence differences at sites at which two of three primate species share one base and 

the third species diverges. We intersected these species-specific divergences with matches to 

transcription factor binding motifs found within dREG-HD sites that undergo transcriptional 

changes between primate species. Because many motifs in Cis-BP are similar to one another, 

we first partitioned the motifs using clustering (as described above), and examined 

enrichments at the level of these clusters. Motifs were ranked by the Fisher’s exact test p-
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value of the enrichment of species divergences in dREG-HD sites that change transcription 

status (where changes in DNA sequence and transcription occur on the same branch) to 

dREG-HD sites that do not change. We also compute the enrichment ratio, which we define 

as the number of species divergences in each TF binding motif in dREG-HD sites that 

change on the same branch normalized to the same statistic in sites that do not change.

INSIGHT analysis—We examined the modes by which DNA sequences evolve in human 

lineage-specific dREG-HD sites or DHSs using INSIGHT46. We passed INSIGHT either 

complete DHSs, dREG-HD sites, or TFBS within dREG-HD sites that undergo the changes 

(see Identifying differences in TREs between species) indicated in the comparison. Human 

gains and losses, for example, were comprised of 4,384 dREG-HD sites with 9,924 separate 

regions (median length of 16 bp) after merging overlapping TFBSs with a log-odds score 

greater than 10. We also analyzed 24 transcription factors each of which has more than 900 

occurrences in dREG-HD sites that change on the human branch (log-odds score >8). All 

analyses were conducted using the INSIGHT web server (http://compgen.cshl.edu/

INSIGHT/) with the default settings enabled.

bQTL analysis—Frequency shift estimates for all variants in Tehranchi et al. (2016) (ref.
63) were provided by the authors and converted to a queryable database filtered to include 

only variants with coverage by 25 reads (75th percentile) or more to avoid noise at low read 

counts. For each sequence/variant query, a set of four equivalent sequences/alternate allele 

pairs was constructed by swapping which allele was the reference and getting the reverse 

complement for both alleles. For example, given a sequence:variant:position combination of 

AATCGAA:C:3, the other queries produced were AACCGAA:T:3 (allele swap), 

TTCGATT:G:5 (reverse complement), and TTCGGTT:A:5 (reverse complement allele 

swap). Frequency shifts were computed by taking the post-ChIP frequency minus the pre-

ChIP frequency for the human reference allele. Since k-mers longer than 7 had few hits, we 

allowed for wildcards (N) in longer sequences that would match any base. Wildcards were 

introduced into a k-mer by matching the k-mer sequence to the NF-kB motif and replacing 

the 3 lowest information content positions with N(s). Systematic shifts from 0 were tested 

using a one-tailed t-test. P-values for systematic differences at multiple sites were combined 

using Fisher’s method

De novo discovery of transcription units

Identification of transcription units (TU) using a three-state hidden Markov 
model—We inferred transcription units (TU) using a three-state hidden Markov model 

(HMM) similar to those we have recently published64,65. Each TU begins at a TRE 

identified using dREG and continues through the entire region inferred to be transcribed, 

which can covers tens- to hundreds- of kilobases. Three states were used to represent 

background (i.e., outside of a transcription unit), the TU body, and a post-polyA decay 

region. The HMM transition structure is shown in Supplementary Fig. 13a. We allow 

skipping over the post-polyA state, as unstable transcripts do not have these two-phase 

profiles. We took advantage of dREG as a potential signal for transcription initiation by 

incorporating the dREG score (maximum value in the interval from a given positive read-

count position until the next, clamped to the zero-one interval) as a transition probability 
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from the background to the transcription body state. PRO-seq data is generally sparse, so we 

applied a transformation that encoded only non-zero positions and the distance between such 

consecutive positions (Supplementary Fig. 13a). Our model described this transformed data 

using emissions distributions based on two types of variables. The first type of emission 

variable defines the PRO-seq read counts in non-zero positions. These counts were modeled 

using Poisson distributions in the background and post-polyA states, and using a Negative 

Binomial distribution in the transcription body state. The negative binomial distribution can 

be seen as a mixture of Poisson distributions with gamma-distributed rates and therefore 

allows for variation in TU expression levels across the genome. The second type of emission 

variable describes the distribution of distances in base pairs between positions having non-

zero read counts. This distribution was modeled using a separate geometric distribution for 

each of the three states. Maximum likelihood estimates of all free parameters were obtained 

via Expectation Maximization, on a per-chromosome basis. TU predictions were then 

obtained using the Viterbi algorithm with parameters fixed at their maximum-likelihood 

values. Finally these predictions were mapped from the transformed coordinates back to 

genomic coordinates. Source code for our implementation is publicly available on GitHub: 

https://github.com/andrelmartins/tunits.nhp.

Inferring TU boundaries in the common great ape ancestor—We identified the 

most likely TU locations in the great ape ancestor by maximum parsimony. TUs were 

identified and compared in human reference coordinates (hg19) for all species. We used the 

bedops package to find the intersection between the predicted TU intervals in each pair of 

species (i.e., human-chimp, human-rhesus macaque, and chimp-rhesus macaque). 

Intersections (>= 1bp) between pairs of species were merged, resulting in a collection of 

TUs shared by any two pairs of species, and therefore likely to be a TU in the human-chimp 

ancestor. All steps were applied independently on the plus and minus strands. These steps 

identified 37,626 putative TUs active in CD4+ T-cells of the primate ancestor. We added 

17,167 TUs that did not overlap ancestral TUs but were found in any one of the three 

primate species.

Transcription unit classification—TUs were classified by annotation type using a 

pipeline similar to ones that we have described recently64–66. Before classifying TUs we 

applied a heuristic to refine TUs on the basis of known annotations. TUs that completely 

overlap multiple gene annotations were broken at the transcription start site provided that a 

dREG site overlapped that transcription start site. Classification was completed using a set 

of rules to iteratively refine existing annotations, as shown in Supplementary ig. 13a. Unless 

otherwise stated, overlap between a TU and a transcript annotation was defined such that 

>50% of a TU matched a gene annotation and covers at least 50% of the same annotation. 

TUs overlapping GENCODE annotations (>50% overlap, defined as above) were classified 

using the biotype in the GENCODE database into protein coding, lincRNA (lincRNA or 

processed transcript), or pseudogene. The remaining transcripts were classified as annotated 

RNA genes using GENCODE annotations, the rnaGenes UCSC Genome Browser track 

(converted from hg18 to hg19 coordinates), and miRBase v2067. As many RNA genes are 

processed from much longer TUs, we required no specific degree of overlap for RNA genes. 

Upstream antisense (i.e., divergent) TUs were classified as those within 500bp of the 
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transcription start site of any GENCODE or higher level TU annotation (including 

lincRNAs). Antisense transcripts were defined as those with a high degree of overlap 

(>50%) with annotated protein coding genes in the opposite orientation. The remaining 

transcripts with a high degree of overlap (>50%) to annotated repeats in the repeatmasker 

database (rmsk) were classified as repeat transcription. Finally, any TUs still remaining were 

classified as unannotated, and were further divided into those which are intergenic or that 

partially overlapping existing annotations.

Comparing transcription between conditions and species

Comparing transcription before and after CD4+ T-cell activation—We compared 

π treated and untreated CD4+ T-cells within each of the primate species using gene 

annotations (GENCODE v19). We focused on 42,556 GENCODE-annotated transcription 

units (TUs) best supported by PRO-seq data for human CD4+ T-cells using tuSelector68. We 

counted reads in the interval between 500 bp downstream of the annotated transcription start 

site and either the end of the gene or 60,000 bp into the gene body (whichever was shorter). 

This window was selected to avoid (1) counting reads in the pause peak near the 

transcription start site, and (2) to focus on the 5′ end of the gene body affected by changes 

in transcription during 30 minutes of π treatment assuming a median elongation rate of 2 kb/

minute64,69. We limited analyses to gene annotations longer than 500 bp in length. To 

quantify transcription at enhancers, we counted reads in the window covered by each dREG-

HD site plus an additional 250 bp on each end. Differential expression analysis was 

conducted using DESeq243.

Comparing transcription between species—Read counts were compared between 

different species in hg19 coordinates. In all analyses, reads were transferred to the hg19 

reference genome using CrossMap with rbest nets. Our analysis focused on transcription 

units or on the union of dREG sites across species. We focused our analysis of transcription 

units on the interval between 250 bp downstream of the annotated transcription start site and 

either the end of the gene or 60,000 bp into the gene body (whichever was shorter). We 

limited our analyses to TUs longer than 500 bp in length. Reads counts were obtained within 

each transcription unit, gene annotation, or enhancer, abbreviated here as a ‘region of 

interest’ (ROI), that has confident one-to-one orthology in all species examined in the 

analysis. This strategy of focusing on blocks of one-to-one orthology avoids errors caused 

by systematic differences in mappability or repeat content of species-specific genomic 

segments. We broke each each ROI into segments that have conserved orthology between 

hg19 and all species examined in the analysis, which included either a three-way (human-

chimp-rhesus macaque) or five-way (human-chimp-rhesus macaque-mouse-rat) species 

comparison. We defined intervals of one-to-one orthology as those represented in levels 1, 3, 

and 5 of the reciprocal best nets (with gaps defined in levels 2, 4, and 6)53. Reads that map 

to regions that have orthology defined in all species were counted using the bigWig package 

in R using reads mapped to hg19 coordinates. Final counts for each ROI were defined as the 

sum of read counts within the regions of orthology that intersect that ROI. ROIs without 

confident one-to-one orthologs in all species analyzed were discarded. Our pipeline makes 

extensive use of the bigWig R package, Kent source tools, as well as the bedops and 
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bedtools software packages50,70. Differential expression was conducted between species 

using the deSeq2 package for R, as described above.

MCF-7 G11 cell culture

Analysis of PRO-seq data in MCF7 cells71 revealed a similar pattern of transcription at the 

SGPP2 locus (Supplementary Fig. 10). MCF7 G11 tamoxifen resistant cells, were a gift 

from Dr. Joshua LaBaer. Cells were maintained in DMEM with 5% FBS, antibiotics, and 

1uM tamoxifen. MCF-7 G11 dCas9-KRAB stable cell lines were made (as described below) 

and were maintained in DMEM with 5% FBS, antibiotics, and 1uM tamoxifen. MCF-7 G11 

dCas9-KRAB sgRNA stable cell lines were maintained in DMEM with 5% FBS, antibiotics, 

1uM tamoxifen, and 150ug/ul Hygromycin B.

Luciferase assays

Genomic DNA was isolated from human, chimp, and rhesus macaque PBMCs depleted for 

CD4+ cells using a Quick-DNA Miniprep Plus Kit (#D4068S; Zymo research) following the 

manufacturer’s instructions. Putative enhancer regions were amplified from the genomic 

DNA, restriction digested with KpnI and MluI, and cloned into the pGL3-promoter vector 

(Promega). The same orthologous regions were amplified from all three species with 

identical primers where possible or species-specific primers covering orthologous DNA in 

diverged regions. Vectors were co-transfected with pRL-SV40 Renilla (Promega) in a 10:1 

ratio (500ng pGL3 to 50ng pRL-SV40) in MCF7 G11 cells cultured in 1uM tamoxifen. 

Transfected cells were treated with either 25ng/ml TNFa or water 21 hours after 

transfection. 24 hours post-transfection, luminescence was measured in triplicate using the 

Dual-Luciferase® Reporter Assay System (Promega).

Silencing endogenous TREs using dCAS9-KRAB

Cloning signle-guide RNAs (sgRNAs)—We used CRISPR interference (CRISPRi) to 

silence enhancers near SGPP272. Single- guide RNAs (sgRNAs) were designed using the 

CRISPR design tool (http://crispr.mit.edu) and sequences are shown in Supplementary Table 

3. Forward and reverse sgRNAs were synthesized separately by IDT and annealed. T4 

Polynucleotide Kinase (NEB) was used to phosphorylate the forward and reverse sgRNA 

during the annealing. 10× T4 DNA Ligase Buffer, which contains 1mM ATP, was incubated 

for 30 minutes at 37°C and then at 95C for 5 minutes, decreasing by 5°C every 1 minute 

until 25°C. Oligos were diluted 1:200 using Molecular grade water. sgRNAs were inserted 

into the pLenti SpBsmBI sgRNA Hygro plasmid from addgene (#62205) by following the 

authors protocol73. The plasmid was linearized using BsmBI digestion (NEB) and purified 

using gel extraction (QIAquick Gel Extraction Kit). The purified linear plasmid was then 

dephosphorylated using Alkaline Phosphatase Calf Intestinal (CIP) (NEB) to ensure the 

linear plasmid did not ligate with itself. A second gel extraction was used as before to purify 

the linearized plasmid. The purified dephosphorylated linear plasmid and phosphorylated 

annealed oligos were ligated together using the Quick Ligation Kit (NEB). The ligated 

product was transformed into One Shot Stbl3 Chemically Competent E. coli (ThermoFisher 

Scientific). 100ul of the transformed bacteria were plated on Ampicillin (200ug/ml) plates. 
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Single colonies were picked, sequenced, and the plasmid was isolated using endo free midi-

preps from Omega.

Transfection of MCF-7 G11 cell lines—We used lentivirus to transfect MCF-7 cells. 

Lentivirus was made using lipofectamine 3000 from Invitrogen. Phoenix Hek cells (grown 

in DMEM with 10% FBS and antibiotics) were seeded in a 6-well plate at 400,000 cells/

plate. Cells were grown until ~90% confluent. 1ug of pHAGE_EF1a_dCas9-KRAB plasmid 

from addgene (#50919) plasmid or the pLenti SpBsmBI sgRNA Hygro (addgene #62205) 

containing each sgRNA, 0.5ug of psPAX (addgene #12260), and 0.25ug pMD2.G (addgene 

#12259) were mixed.

MCF-7 G11 cells were plated at ~200,000 cells/well in a 6-well plate. 24 hours later 3ml/

well of virus was mixed with 10ug/ml polybrene and incubated for 5 minutes at room 

temperature. This mix was added to the cells and centrifuged for 40 minutes at 800g at 32C. 

12–24 hours later the virus was removed and fresh media was added. 24–48 hours later the 

cells were selected with 2ug/ml puromycin for 2 weeks. The MCF-7 G11 dCas9-KRAB 

stable cell lines was grown and maintained in puromycin. A second lentiviral infection was 

done using the stable MCF-7 G11 dCas9-KRAB cells. The same protocol was used. 24–48 

hours later the cells were selected with 150ug/ml Hygromycin B. New stable cell lines were 

grown and maintained in hygromycin B.

TNFa treatment—Prior to TNFa treatment, cells were grown for 3 days in DMEM with 

5% FBS, antibiotics, tamoxifen and hygromycin. Cells were then left untreated or treated for 

40 min with 25ng/ml TNFa. RNA was extracted using TRIzol Reagent (Invitrogen). We 

reverse transcribed 1ug of RNA and used this as input for real-time quantitative PCR (RT-

PCR) to analyze SGPP2 expression. Primers for SGPP2 were designed targeting a sequence 

in intron 1, upstream of the intronic enhancer. Raw Cp values were transferred to units of 

expression using a standard dilution curve comprised of a mixture of cDNA from each 

sample within the biological replicate. We included four serial dilutions, each of which 

covered a two-fold difference in expression. Each sample was further normalized for 

differences in RNA content by primers recognizing the 18S rRNA control. The ratio 

between normalized SGPP2 expression in each sgRNA-transfected MCF-7 cell line and the 

empty vector control was log-2 transformed and tested for differences from 0 using a two-

sided t-test.

Data availability

PRO-seq data was deposited into the Gene Expression Omnibus database under accession 

number GSE85337.

Code availability

All data analysis scripts and software are publicly available on GitHub: https://github.com/

Danko-Lab/CD4-Cell-Evolution.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Maps of primary transcription in CD4+ T-cells
(a) CD4+ T-cells were isolated from the blood or spleen of individuals from five vertebrate 

species, including human, chimpanzee, rhesus macaque, mouse, and rat. (b) Hierarchical 

clustering of PRO-seq signal intensities in gene bodies groups CD4+ T-cell samples first by 

treatment condition and second by species. The color scale represents Spearman’s rank 

correlation between normalized transcription levels in active gene bodies. Colored boxes 

(top) represents the species and treatment condition of each sample. (c) MA plot shows the 

log2 fold-change following π treatment in human CD4+ T-cells (y-axis) as a function of the 

mean transcription level in GENCODE annotated genes (x-axis). Red points indicate 

statistically significant changes (p < 0.01). Several classical response genes that undergo 

well-documented changes in transcript abundance following CD4+ T-cell activation (e.g., 

IL2, IFNG, TNFα, and EGR3) are marked. (d) Enrichment of TF binding motifs in TREs 

that increase transcription levels following π treatment in the indicated species (n = 8,030 

[human], 7,258 [chimpanzee], 7,967 [rhesus macaque]) compared to TREs whose 

transcription abundance does not change. Table shows the Bonferroni corrected p-value 

based on a Fisher’s exact test (circle size), and the fold-enrichment over a group of 

unchanged background sequences (color scale). Motif p-values were calculated based on 

100 distinct samples of the background distribution each with >2,500 sites after correcting 

for differences in GC content (see Online Methods). Motif logos and the candidate 

transcription factor or Cis-BP motif ID are shown. (e) Heatmaps show the distribution of 

PRO-seq (red and blue indicate transcription on the plus and minus strand, respectively), 

ChIP-seq for H3K27ac, H3K4me1, and H3K4me3, and DNase-I-seq signal intensity. Plots 

are centered on transcriptional regulatory elements (TREs) predicted in untreated human 

CD4+ T-cells using dREG-HD (see Online Methods). All plots are ordered based on the 

maximum dREG score in the window.
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Fig. 2. Frequency of changes in TRE transcription
(a) The fractions of TREs active in untreated CD4+ T-cells that are present in the human 

reference genome and are conserved across all species (blue), are not detectable and are 

therefore inferred as gains or losses (teal-white) or undergo significant changes (green) in at 

least one species, or fall in regions for which no ortholog occurs in at least one of the 

indicated genomes (pink). Inferred gains or losses are colored according to the FDR 

corrected p-value associated with changes in RNA polymerase abundance (DESeq2). Plots 

labeled “Primate” illustrate frequency of changes in a three-way comparison of human, 

chimpanzee, and rhesus macaque focusing on the untreated condition, whereas those labeled 

“Mammal” summarize a five-way comparison also including rat and mouse. π treatment 

denotes a comparison between human untreated and PMA+Ionomycin treated CD4+ T-cell 

samples. (b) Boxplots show the ChIP-seq signal near dREG sites classified as conserved (n 
= 2,887), gain (n = 1,002), complete gain (n = 1,938), loss (n = 854), or complete losses (n = 

1,430) for the indicated chromatin or DNA modification in units of reads per kilobase. The 

box represents the 25th and 75th percentile. Whiskers represent 1.5 times the interquartile 

range, and points outside of this range are not shown.
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Fig. 3. Evolutionary changes in TRE transcription correlate with DNA sequence conservation
(a) Mean phyloP scores near TFBSs that are conserved (red, n = 8,271), gained (blue, n = 

9,642), or lost (cyan, n = 11,632) on the human branch. Motifs (score > 10) are at least 100 

bp from the nearest annotated exon. (b) UCSC Genome Browser track shows transcription 

near SGPP2 and FARSB in untreated (U) and PMA+ionomycin (π) treated CD4+ T-cells 

isolated from the indicated primate species. PRO-seq tracks show transcription on the plus 

(red) and minus (blue) strands in units of reads per kilobase per million mapped (RPKM). 

Transcription units inferred from the PRO-seq data are shown above the plot. The Green et. 

al. selective sweep scan track (top) represents the enrichment of derived alleles in modern 

human where Neanderthal has the ancestral allele. Points below the line represent a 

statistically significant number of derived alleles in modern human (line indicates a Z-score 

of −2). Net synteny tracks show the position of regions that have one-to-one orthologs in the 

chimpanzee and rhesus macaque genomes. (c) Luciferase signal driven by the SGPP2 
promoter or the internal enhancer in MCF-7 cells using DNA from each primate species. 

Bars show the mean fold-induction following 3 hours of stimulation with TNFα (n = 3). 

Error bars represent the standard error of the mean. Red ** denotes p < 1e-3 by a two-tailed 

t-test. (d) Transcription of SGPP2 using primers targeting intron 1 following 0 or 40 min. of 

TNFα treatment after silencing the indicated TRE using dCAS9-KRAB. Bars represent the 

median of three independent biological replicates of two gRNAs targeting the promoter, 

three targeting the internal enhancer, and four targeting the upstream enhancer. Error bars 
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represent the standard error. Red * denotes p < 5e-2 and ** p < 5e-3 by a two-tailed t-test. 

(e) INSIGHT estimates of the fraction of nucleotides under selection (ρ), segregating 

polymorphisms under weak negative selection (E[Pw]/kbp), or human nucleotide 

substitutions driven by positive selection (E[Dp]/kbp) in human populations in the indicated 

class of sites. * denotes significant enrichment over background (p < 0.01; two-tailed Χ2-

test).
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Fig. 4. Changes in non-coding RNA transcription predict changes in gene transcription
(a) The fraction of each indicated class of RNAs that undergo changes in transcription in 

human CD4+ T-cells (see Online Methods). The relationships among the indicated classes of 

transcription units are depicted at top. (b) Scatterplot shows the magnitude of changes in 

transcription predicted for protein-coding genes using changes in the transcription of nearby 

non-coding RNAs (y-axis) as a function of changes observed (x-axis). The line has a slope 

of 1 and an intercept of 0.
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Fig. 5. TRE conservation correlates with loop interactions and distance to gene promoters
(a) UCSC Genome Browser tracks show transcription, dREG signal, and ChIA-PET loop 

interactions near the CCR7 superenhancer in the human genome. PRO-seq tracks show 

transcription on the plus (red) and minus (blue) strands in units of RPKM. Net synteny 

tracks show regions of one-to-one orthology with the chimpanzee and rhesus macaque 

genomes. (b) Scatterplot shows the percentage of TREs conserved among all three primate 

species (y-axis) as a function of distance, either upstream or downstream, from the nearest 

annotated protein-coding transcription start site (x-axis). The size of each point represents 

the amount of data in the corresponding distance bin. (c) The percentage of all dREG sites 

that are conserved in each indicated class of TRE. TREs are separated into three bins based 

on the distance relative to the nearest transcription start site. Error bars reflect a 1,000-

sample bootstrap.
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Fig. 6. Stabilizing selection on protein coding gene transcription
(a–b) Scatterplot shows promoter conservation (a) or DNA sequence conservation (b) as a 

function of the number of loop interactions made by that site to distal sites across the 

genome (x-axis). (c–d) TRE conservation (c) or DNA sequence conservation (d) as a 

function of the number of loop interactions made by the sequence at the distal end of the 

loop interaction (x-axis). In all panels the size of each point is proportional to the number of 

examples in the corresponding bin, following the scale shown in the center.
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